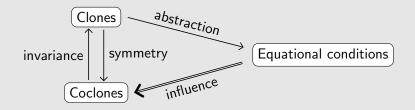
Equationally **non**trivial algebras

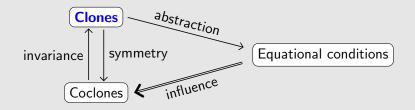
Libor Barto

Charles University in Prague

BLAST Nashville, 15 Aug 2017



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Clone

Definition

Operation on A = function $A^n \rightarrow A$, $n \ge 1$ Clone on A = set of operations on A closed under forming term operations

For each clone **A** on A:

• for each $i \leq n$

$$(x_1,\ldots,x_n)\mapsto x_i$$

is in \boldsymbol{A}

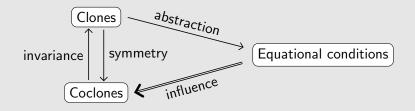
• if f,g are binary operations from **A**, then

$$(x, y, z) \mapsto f(g(f(z, x), y), g(x, x))$$

is in A

Notation: For algebra A, Clo(A) = all term operations of A

- ► ({0,1}; ∨)
- ▶ ({0,1}; \lor, \land)
- ▶ ({0,1}; majority)
- ► ({0,1}; ∨, ∧, ¬)
- $(\mathbb{Z}_p; x+y)$
- $(\mathbb{Z}_p; x y + z)$



Q: Why understand \Leftarrow ?

A: to understand clones and coclones

Q: Why understand clones or coclones?

A: to understand algebras

A: to understand symmetries

- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

- carries important information subuniverses, congruences
- for some purposes carries all necessary information (sometimes term equivalent algebras are essentially the same)
- Q: Why understand algebras?

Too popular viewpoint

Group theory, Semigroup theory

- group: algebraic structure $\mathbf{G} = (G; \cdot, ^{-1}, 1)$ satisfying ...
- permutation group: when G happens to be a set of bijections,
 - is composition, ...
- monoid: algebraic structure $\mathbf{M} = (M; \cdot, 1)$ satisfying ...
- transformation monoid: . . .

Universal algebra

• algebra: any algebraic structure $\mathbf{Z} = (Z; \text{ some operations })$

Rants

- Model theorist: models of purely algebraic signature, why do you avoid relations?
- Algebraist: groups are complicated enough, nothing interesting can be said about general algebras
- All: have you ever seen a 37-ary operation? You shouldn't study such a nonsense

Alternative viewpoint

	concrete	abstract
unary invert. symmetries	permutation group	group
unary symmetries	transformation monoid	monoid
higher arity symmetries	clone	abstract clone

▶ permutation group: Subset of {f : A → A} closed under composition and id_A and inverses...

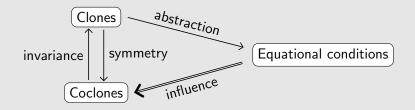
can be given by a generating unary algebra

- group: Forget concrete mappings, remember composition
- ► clone: Subset of {f : Aⁿ → A : n ∈ N} closed under composition and projections

can be given by a generating algebra

 abstract clone: Forget concrete mappings, remember composition

aka variety, finitary monad over SET, Lawvere theory



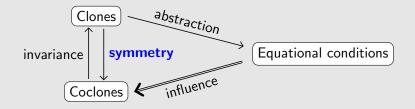
Q: Why understand \Leftarrow ?

A: to understand clones and coclones

- **Q:** Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Clones:

- classical algebraic structures \rightarrow general algebras \rightarrow clones
- permutation group \rightarrow clone



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

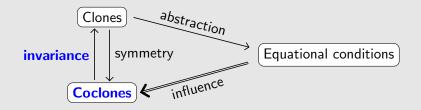
Definition

 $f : A^n \to A$ is compatible with $R \subseteq A^k$ (f is a symmetry of R, f is a polymorphism of R, R is invariant under f) if $f(\mathbf{a}_1, \dots, \mathbf{a}_n) \in R$ whenever $\mathbf{a}_1, \dots, \mathbf{a}_n \in R$

Notation: For a set of relations \mathbb{A} , Pol(\mathbb{A}) = all operations compatible with all relations in \mathbb{A}

Fact: $Pol(\mathbb{A})$ is a clone.

- $\blacktriangleright (\{0,1\}; x \land y \to z, x \land y \to \neg z)$
- ► ({0,1}; ≤)
- ({0,1}; all binary relations)
- ► ({0,1,2}; ≠)
- $(\mathbb{Z}_p; \text{ vector subspaces of } \mathbb{Z}_p^3)$
- $(\mathbb{Z}_p; \text{ affine subspaces of } \mathbb{Z}_p^3)$



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Notation: For a set of relations \mathbb{A} , Inv(A) = all relations invariant under all operations in A

Fact: It is closed under pp-definitions = 1st order definitions using \exists , =, and

Example: If binary R, S in Inv(A), then

 $\{(x, y, z) : (\exists u)(\exists v) \ R(x, u) \text{ and } S(u, v) \text{ and } R(y, y)\}$

is in $Inv(\mathbf{A})$

Definition

Coclone on A = set of (nonempty) relations on A closed under pp-definitions

- ({0,1}; $x \wedge y \rightarrow z, x \wedge y \rightarrow \neg z$)
- ► ({0,1}; ≤)
- ({0,1}; all binary relations)
- ► ({0,1,2}; ≠)
- $(\mathbb{Z}_p; \text{ vector subspaces of } \mathbb{Z}_p^3)$
- $(\mathbb{Z}_p; \text{ affine subspaces of } \mathbb{Z}_p^3)$

- ► ({0,1}; ∨)
- ▶ ({0,1}; \lor, \land)
- ▶ ({0,1}; majority)
- ► ({0,1}; ∨, ∧, ¬)
- $(\mathbb{Z}_p; x+y)$
- $(\mathbb{Z}_p; x y + z)$

$\mathsf{Clones} \leftrightarrow \mathsf{Coclones}$

Theorem ([Geiger]; [Bodnarchuk et al.])

For finite A, Pol, Inv are (mutually inverse) bijections

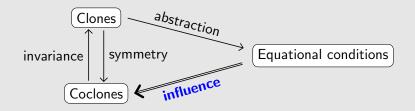
Clones on $A \leftrightarrow$ Coclones on A

Remarks:

- $Clo(\mathbf{A}) = Pol(Inv(\mathbf{A})), Coclo(\mathbb{A}) = Inv(Pol(\mathbb{A}))$
- Clones determined by invariant relations
- Coclones determined by symmetries
- Understanding clones = understanding coclones

Proof: Regard the set of *n*-ary operations in **A** as $|A|^n$ -ary relation

From now on: A clone, \mathbb{A} corresponding coclone



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Theorem ([Maltsev])

A contains a Maltsev operation (m(x, y, y) = m(y, y, x) = x) iff

Each R in A is rectangular $(ab, ab', a'b \in R \Rightarrow ab' \in R)$

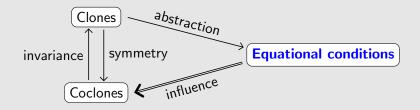
Theorem ([Baker,Pixley])

A contains a majority operation (m(x, x, y) = m(x, y, x) = m(y, x, x) = x)iff

Each R is determined by its projections to pairs of coordinates.

Does Clo(A) have Maltsev or majority operation?

- ► ({0,1}; ∨)
- ► ({0,1}; ∨, ∧)
- ▶ ({0,1}; majority)
- ► ({0,1}; ∨, ∧, ¬)
- $(\mathbb{Z}_p; x+y)$
- $(\mathbb{Z}_p; x y + z)$



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Definition

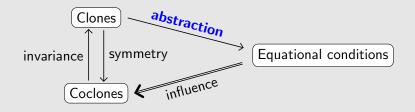
Equational condition = condition of the form "there exists operations ... satisfying equations" (infinitely many operations or equations allowed)

Examples: the existence of a Maltsev term, the existence of a majority term

Remarks:

- Equational conditions are ordered by strength
- Equational condition is nontrivial if it is not satisfied in some clone
- Clone is equationally nontrivial if it satisfies some nontrivial equational condition

- ► ({0,1}; ∨)
- ► ({0,1}; ∨, ∧)
- ▶ ({0,1}; majority)
- ► ({0,1}; ∨, ∧, ¬)
- $(\mathbb{Z}_p; x+y)$
- $(\mathbb{Z}_p; x y + z)$



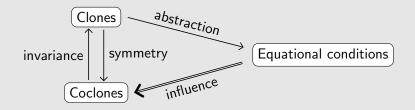
- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Consider two clones equivalent if they satisfy the same equational conditions

Abstraction: clone \rightarrow its equivalence class

Remarks:

- The set of equivalence classes is lattice ordered
- Simple formalization: It is the order induced by clone homomorphisms



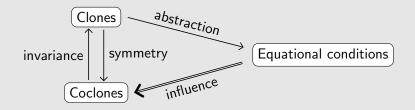
- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Definition

Clone **A** is idempotent if f(x, x, ..., x) = x for each f in **A** \Leftrightarrow unary part of **A** is trivial

Why this assumption?

- Complementary to group/semigroup theory
- Many useful equational conditions are idempotent
- Gives some information about general clones



Q: Why understand \Leftarrow ?

A: to understand clones and coclones

- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Theorem ([Birkhoff]; [Bodirsky]; [Bulatov])

For finite idempotent clone A TFAE

(i) Some part of the domain is purely combinatorial:

Formally TRIV ∈ HSP(A) (TRIV is the clone of projections on a 2-element set) Equivalently TRIV ∈ HS(A)

(ii) \mathbb{A} has the highest expressive power

Formally, \mathbbm{A} pp-interprets all finite relational structures

(iii) **A** is equationally trivial

Definition (Just for this talk)

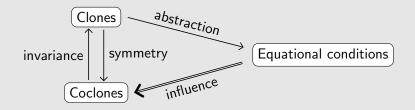
A is a Taylor clone if it is finite, idempotent, and equationally **non**trivial

Theorem ([Taylor])

For an idempotent clone A TFAE

- A is equationally nontrivial
- A satisfies nontrivial height 1 equational condition involving a single operation symbol:

$$t(x, ..., ...) = t(y, ..., ...)$$
$$t(..., x, ...) = t(..., y, ...)$$
$$\vdots$$
$$t(..., ..., x) = t(..., ..., y)$$



Q: Why understand \Leftarrow ?

A: to understand clones and coclones

- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?

A: sometimes exactly what's needed

A: nontrivial results possible

Sometimes it's exactly what's needed

Complexity of constraint satisfaction problems (CSPs) ... **large** part of computational complexity

Fixed finite template CSP

► a class of computational problems, one for each finite relational structure A

 $\mathrm{CSP}(\mathbb{A}) = \mathsf{membership} \text{ in } \{\mathbb{X}: \mathbb{X} \to \mathbb{A}\}$

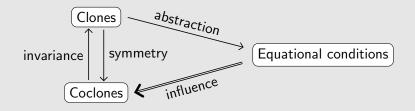
- tiny fraction of computational complexity (from global perspective)
- very broad class, base case for more optimistic goals

Theorem: [Bulatov, Jeavons, Krokhin] The complexity depends only on the position of **A** in the order.

Consequence: If **A** is not Taylor, the $CSP(\mathbb{A})$ is NP-complete.

THEOREM ([Bulatov]; [Zhuk])

If **A** is Taylor, then $\mathrm{CSP}(\mathbb{A})$ is solvable in polynomial time.



- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

Classic:

- Commutator theory [Smith], ...
- ► Tame congruence theory [Hobby, McKenzie], ...

More recent:

- Absorption theory [Barto, Kozik], ...
- Bulatov's theory
- Zhuk's theory

Theorem ([Maróti, McKenzie]; [Barto, Kozik, Niven]; [BK])

- If **A** is Taylor, then:
 - There exists n > 1 such that every symmetric n-ary relation in A contains a constant tuple
 - ► Every linked binary relation in A contains a loop
 - ► For every prime p > |A|, every cyclically-symmetric p-ary relation in A contains a constat tuple

Consequences for equations

Theorem ([MM], [Kearnes, Marković, McKenzie], [BK])

For an idempotent clone A on finite set TFAE

(i) **A** is Taylor

(ii) A has a weak near unanimity operation of some arity n > 1

$$w(x,\ldots,x,y) = w(x,\ldots,x,y,x) = \cdots = w(y,x,\ldots,x)$$

(iii) **A** has a 4-ary Sigger's operation

$$t(r,a,r,e) = t(a,r,e,a)$$

(iv) **A** has a cyclic operation of each prime arity p > |A|

$$t(x_1, x_2, \ldots, x_p) = t(x_2, \ldots, x_p, x_1)$$

Note: (iii): A weakest nontrivial equation!

Digression to infinite

Recall: From any set of idempotent operations $f_1, ...$ on a finite set A satisfying nontrivial equations one can build a term operation s such that s(r, a, r, e) = s(a, r, e, a)

Intuition: A is finite \Rightarrow composition is not sufficiently free

"Obviously": It is impossible to find a weakest equations without the restriction to finite sets

Wrong!

Theorem ([Olšák])

For an idempotent clone A TFAE

- A is equationally nontrivial
- ► A contains a 6-ary t such that

$$t(x,x,y,y,y,x) = t(x,y,x,y,x,y) = t(y,x,x,x,y,y)$$

End of digression

Absorption theory

Definition

Let $B \subseteq A$ be in \mathbb{A} .

B absorbs **A** if \exists *n*-ary *t* in **A** such that $t(A, B, B, \ldots, B) \subseteq B, t(B, A, B, \ldots, B) \subseteq B, \ldots$

Theorem

If binary R in A is subdirect and linked, then $B = A^2$ or **A** has a proper absorbing set.

Theorem

If B, C are minimal absorbing sets of **A**, binary R in \mathbb{A} is subdirect and linked, and $R \cap (B \times C) \neq \emptyset$, then $B \times C \subseteq R$.

Bulatov's theory

 ${\bf A} \rightarrow$ digraph on A, 3 types of edges: semilattice, majority, affine

Definition

(a, b) is a semilattice edge if ∃ binary s in A such that s(a, b) = s(b, a) = b
(a, b) is a majority edge if ... [a more complex condition] ...

(*a*, *b*) is an affine edge if ... [even more complex condition] ...

Theorem

 ${\bf A}$ is Taylor iff the digraph of ${\bf B}$ is connected for each subalgebra ${\bf B}$.

Theorem

If B, C are minimal affine & semilattice upward-closed subsets of A, binary R in A is subdirect and linked, and $R \cap (B \times C) \neq \emptyset$, then $B \times C \subseteq R$. Strong structure theorems on "indecomposable" relations.

Crucial concepts: binary absorption, center,

Definition

A subset B of A is a center of **A** if [such and such relation] is compatible with [something weird] and [some other condition].

Theorem

If B, C are minimal centers of **A**, binary R in \mathbb{A} is subdirect and linked, and $R \cap (B \times C) \neq \emptyset$, then $R \cap (B \times C)$ is subdirect and linked.

Methods

- absorption: heavily relational, lightly algebraic
- Bulatov: extremely algebraic, heavily relational
- Zhuk: heavily relational, lightly algebraic

Common: Some results look **very** similar (different concepts, same assumptions and conclusions)

But: There is no clear connection, e.g. adding operations to a clone does not destroy absorption, can change colors, or centers

Also: Bulatov and Zhuk sometimes need to remove some operations (while remaining Taylor)

Work of:

- Zarathustra Brady (great write-up on his website)
- B + Bulatov + Kozik + Zhuk (last 2 weeks)

Definition

An idempotent clone is Taylor minimal if

- it is Taylor
- no proper subclone is Taylor

Fact: Each Taylor clone contains a Taylor minimal clone

Theorem?

For a Taylor minimal clone A and a unary B in A TFAE

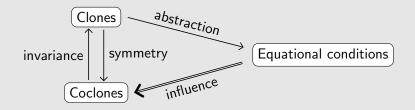
- B is binary absorbing
- For each operation f in A and each essential variable i, f(A,...,A,B,A,...,A) ⊆ B
- B is a cube term blocker
- B is semilattice & majority & affine upward-closed

Theorem?

For a Taylor minimal clone **A** and $B \subseteq A$, (i) \Rightarrow (ii) \Rightarrow (iii) ...

- (i) B is ternary absorbing
- (ii) B is a center
- (iii) B is absorbing
- (iv) B is semilattice & affine upward-closed
- (v) B is "singleton ternary absorbing"

- [Brady] Complete classification of 3-element affine-free Taylor minimal clones
- ► Complete classification on small domains possible → source of examples
- Taylor minimality closed under H,S,P
- ▶ 5 omitting colors theorem, e.g.
 - semilattice & affine free \Leftrightarrow majority \Leftrightarrow near-unanimity
 - ► majority & affine free ⇔ 2-semilattice ⇔ binary cyclic
- 1 missing
- many questions...



Goal: Understand ⇐ in "the most general" case equationally nontrivial clones, finite, idempotent

- **Q:** Why understand \Leftarrow ?
 - A: to understand clones and coclones
- Q: Why understand clones or coclones?
 - A: to understand algebras
 - A: to understand symmetries
- Q: Why the most general setting?
 - A: sometimes exactly what's needed
 - A: nontrivial results possible

- Organize, unify, simplify, ...
- $\blacktriangleright \rightarrow (\mathsf{slightly}) \text{ infinite}$
- $\blacktriangleright \rightarrow \mathsf{weighted}$
- $\blacktriangleright \rightarrow {\rm clonoids}$