
Universal algebra and the constraint satisfaction
problem

Libor Barto

Charles University in Prague

ASL North American Annual Meeting
University of Colorado, 20 May 2014

Constraint satisfaction problem (CSP)

I Common framework for many practical problems

I This is the last time when the word “practical” appears
I Common framework for some computational problems

I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Constraint satisfaction problem (CSP)

I Common framework for many practical problems

I This is the last time when the word “practical” appears

I Common framework for some computational problems

I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Constraint satisfaction problem (CSP)

I Common framework for some computational problems
I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Constraint satisfaction problem (CSP)

I Common framework for some computational problems
I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Constraint satisfaction problem (CSP)

I Common framework for some computational problems
I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Constraint satisfaction problem (CSP)

I Common framework for some computational problems
I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP:
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP:
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution

I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP:
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP:
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints

I Approx. Max-CSP:
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP: Find a map satisfying 0.7× Optimum

constraints

I Robust CSP: Find an almost satifying assignment given an
almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP: or: Find a map satisfying 0.3-fraction

of constraints given 0.6-satisfiable instance

I Robust CSP: Find an almost satifying assignment given an
almost satisfiable instance

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Decision CSP: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP: or: Find a map satisfying 0.3-fraction

of constraints given 0.6-satisfiable instance
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

CSP over a structure (aka constraint language)

Interesting subproblems ... restrict the set of allowed relations

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

I What is the computational complexity for fixed A?

I This talk: Mainly decision CSP(A)
I Other interesting problems:

I restrict something else than the set of allowed relations
I allow infinite A
I allow weighted relations: mappigs Ak → Q ∪ {∞}
I (approximate) counting, Max-CSP, Approx Max-CSP

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)
I 3-COL: A = ({0, 1, 2}; x 6= y)
I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)
I q-LIN: A = (GF (q); affine subspaces).
I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)
I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

I What is the computational complexity for fixed A?
I This talk: Mainly decision CSP(A)

I Other interesting problems:
I restrict something else than the set of allowed relations
I allow infinite A
I allow weighted relations: mappigs Ak → Q ∪ {∞}
I (approximate) counting, Max-CSP, Approx Max-CSP

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)
I 3-COL: A = ({0, 1, 2}; x 6= y)
I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)
I q-LIN: A = (GF (q); affine subspaces).
I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)
I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

I What is the computational complexity for fixed A?
I This talk: Mainly decision CSP(A)
I Other interesting problems:

I restrict something else than the set of allowed relations
I allow infinite A
I allow weighted relations: mappigs Ak → Q ∪ {∞}
I (approximate) counting, Max-CSP, Approx Max-CSP

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)
I 3-COL: A = ({0, 1, 2}; x 6= y)
I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)
I q-LIN: A = (GF (q); affine subspaces).
I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)
I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I 3-COL: A = ({0, 1, 2}; x 6= y)

I HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I Graph reachability: A = ({0, 1}, x ,¬x , x = y)

CSP over a structure (aka constraint language)

Definition

A = (A; R1,R2, . . .): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

Examples:

I (NP-c) 3-SAT : A = ({0, 1}; x ∨ y ∨ z , x ∨ y ∨ ¬z , . . .)

I (NP-c) 3-COL: A = ({0, 1, 2}; x 6= y)

I (P-c) HORN-3-SAT : A = ({0, 1}; x ,¬x , x ∧ y → z)

I q-LIN: A = (GF (q); affine subspaces).

I (NL-c) Digraph reachability: A = ({0, 1}; x ,¬x , x ≤ y)

I (L-c) Graph reachability: A = ({0, 1}, x ,¬x , x = y)

Decision CSP as model checking problem

CSP(A) :
Instance: Sentence φ in the language of A with ∃ and ∧
Question: Is φ true in A?

What about: Allow some other combination of
{∃,∀,∧,∨,¬,=, 6=}.

From 27 cases only 3 interesting (others reduce to these or are
boring)

I {∃,∧, (=)} (CSP)
open

I {∃,∀,∧, (=)} (qCSP)
open

I {∃,∀,∧,∨} (Positive equality free)
solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c
B.Martin, F.Madelaine 11

Decision CSP as model checking problem

CSP(A) :
Instance: Sentence φ in the language of A with ∃ and ∧
Question: Is φ true in A?

What about: Allow some other combination of
{∃,∀,∧,∨,¬,=, 6=}.

From 27 cases only 3 interesting (others reduce to these or are
boring)

I {∃,∧, (=)} (CSP)
open

I {∃,∀,∧, (=)} (qCSP)
open

I {∃,∀,∧,∨} (Positive equality free)
solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c
B.Martin, F.Madelaine 11

Decision CSP as model checking problem

CSP(A) :
Instance: Sentence φ in the language of A with ∃ and ∧
Question: Is φ true in A?

What about: Allow some other combination of
{∃,∀,∧,∨,¬,=, 6=}.

From 27 cases only 3 interesting (others reduce to these or are
boring)

I {∃,∧, (=)} (CSP)
open

I {∃,∀,∧, (=)} (qCSP)
open

I {∃,∀,∧,∨} (Positive equality free)
solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c
B.Martin, F.Madelaine 11

The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, decision CSP(A) is either in P or NP-complete.

I Evidence (in 93):
I True for |A| = 2 Schaefer’78
I True if A = (A; R), R is binary and symmetric

Hell and Nešeťril’90

I Feder and Vardi suggested that tractability is tied to “closure
properties”

I → algebraic approach Bulatov, Jeavons, Krokhin’00

The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, decision CSP(A) is either in P or NP-complete.

I Evidence (in 93):
I True for |A| = 2 Schaefer’78
I True if A = (A; R), R is binary and symmetric

Hell and Nešeťril’90

I Feder and Vardi suggested that tractability is tied to “closure
properties”

I → algebraic approach Bulatov, Jeavons, Krokhin’00

The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, decision CSP(A) is either in P or NP-complete.

I Evidence (in 93):
I True for |A| = 2 Schaefer’78
I True if A = (A; R), R is binary and symmetric

Hell and Nešeťril’90

I Feder and Vardi suggested that tractability is tied to “closure
properties”

I → algebraic approach Bulatov, Jeavons, Krokhin’00

The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, decision CSP(A) is either in P or NP-complete.

I Evidence (in 93):
I True for |A| = 2 Schaefer’78
I True if A = (A; R), R is binary and symmetric

Hell and Nešeťril’90

I Feder and Vardi suggested that tractability is tied to “closure
properties”

I → algebraic approach Bulatov, Jeavons, Krokhin’00

The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, decision CSP(A) is either in P or NP-complete.

I Evidence (in 93):
I True for |A| = 2 Schaefer’78
I True if A = (A; R), R is binary and symmetric

Hell and Nešeťril’90

I Feder and Vardi suggested that tractability is tied to “closure
properties”

I → algebraic approach Bulatov, Jeavons, Krokhin’00

Disclaimer

Most of the definitions will be imprecise

Almost no theorem is true as stated

PP and UA

Simulation

I If A “can simulate” B then
CSP(A) is at least as hard as CSP(B).

I What does simulate mean?

I (Slightly imprecise) answer:
“can simulate” means “positively primitively (pp) interprets”

I Special case of pp-interpretability is pp-definability

I Assume A,B have the same domain.
A pp-defines B = relations in B definable using

relations in A, and ∃,=,∧.

Simulation

I If A “can simulate” B then
CSP(A) is at least as hard as CSP(B).

I What does simulate mean?

I (Slightly imprecise) answer:
“can simulate” means “positively primitively (pp) interprets”

I Special case of pp-interpretability is pp-definability

I Assume A,B have the same domain.
A pp-defines B = relations in B definable using

relations in A, and ∃,=,∧.

Simulation

I If A “can simulate” B then
CSP(A) is at least as hard as CSP(B).

I What does simulate mean?

I (Slightly imprecise) answer:
“can simulate” means “positively primitively (pp) interprets”

I Special case of pp-interpretability is pp-definability

I Assume A,B have the same domain.
A pp-defines B = relations in B definable using

relations in A, and ∃,=,∧.

Simulation

I If A “can simulate” B then
CSP(A) is at least as hard as CSP(B).

I What does simulate mean?

I (Slightly imprecise) answer:
“can simulate” means “positively primitively (pp) interprets”

I Special case of pp-interpretability is pp-definability

I Assume A,B have the same domain.
A pp-defines B = relations in B definable using

relations in A, and ∃,=,∧.

Simulation

I If A “can simulate” B then
CSP(A) is at least as hard as CSP(B).

I What does simulate mean?

I (Slightly imprecise) answer:
“can simulate” means “positively primitively (pp) interprets”

I Special case of pp-interpretability is pp-definability

I Assume A,B have the same domain.
A pp-defines B = relations in B definable using

relations in A, and ∃,=,∧.

Example of pp-definability

I A = (A; R), where R is ternary

I B = (B; S ,T), where S is binary and T is unary
I S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
I T (x) iff R(x , x , x)

I Each instance of CSP(B), eg.

T (z), S(x , y)

I can be rewritten to an equivalent instance of CSP(A)

R(z , z , z), R(x , y ,w), R(y , y , x)

I Thus CSP(A) is at least as hard as CSP(B)

Example of pp-definability

I A = (A; R), where R is ternary
I B = (B; S ,T), where S is binary and T is unary

I S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
I T (x) iff R(x , x , x)

I Each instance of CSP(B), eg.

T (z), S(x , y)

I can be rewritten to an equivalent instance of CSP(A)

R(z , z , z), R(x , y ,w), R(y , y , x)

I Thus CSP(A) is at least as hard as CSP(B)

Example of pp-definability

I A = (A; R), where R is ternary
I B = (B; S ,T), where S is binary and T is unary

I S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
I T (x) iff R(x , x , x)

I Each instance of CSP(B), eg.

T (z), S(x , y)

I can be rewritten to an equivalent instance of CSP(A)

R(z , z , z), R(x , y ,w), R(y , y , x)

I Thus CSP(A) is at least as hard as CSP(B)

Example of pp-definability

I A = (A; R), where R is ternary
I B = (B; S ,T), where S is binary and T is unary

I S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
I T (x) iff R(x , x , x)

I Each instance of CSP(B), eg.

T (z), S(x , y)

I can be rewritten to an equivalent instance of CSP(A)

R(z , z , z), R(x , y ,w), R(y , y , x)

I Thus CSP(A) is at least as hard as CSP(B)

Example of pp-definability

I A = (A; R), where R is ternary
I B = (B; S ,T), where S is binary and T is unary

I S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
I T (x) iff R(x , x , x)

I Each instance of CSP(B), eg.

T (z), S(x , y)

I can be rewritten to an equivalent instance of CSP(A)

R(z , z , z), R(x , y ,w), R(y , y , x)

I Thus CSP(A) is at least as hard as CSP(B)

pp-interpretation, the borderline?

I A pp-interprets B if

I The domain of B is a pp-definable subset of Ak modulo a
pp-definable equivalence

I The relations of B are “pp-definable” from A
(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

pp-interpretation, the borderline?

I A pp-interprets B if
I The domain of B is a pp-definable subset of Ak modulo a

pp-definable equivalence

I The relations of B are “pp-definable” from A
(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

pp-interpretation, the borderline?

I A pp-interprets B if
I The domain of B is a pp-definable subset of Ak modulo a

pp-definable equivalence
I The relations of B are “pp-definable” from A

(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

pp-interpretation, the borderline?

I A pp-interprets B if
I The domain of B is a pp-definable subset of Ak modulo a

pp-definable equivalence
I The relations of B are “pp-definable” from A

(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

pp-interpretation, the borderline?

I A pp-interprets B if
I The domain of B is a pp-definable subset of Ak modulo a

pp-definable equivalence
I The relations of B are “pp-definable” from A

(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

pp-interpretation, the borderline?

I A pp-interprets B if
I The domain of B is a pp-definable subset of Ak modulo a

pp-definable equivalence
I The relations of B are “pp-definable” from A

(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

pp-interpretation, the borderline?

I A pp-interprets B if
I The domain of B is a pp-definable subset of Ak modulo a

pp-definable equivalence
I The relations of B are “pp-definable” from A

(m-ary relation on B is defined as a km-ary relation on A)

I If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

I This explains NP-completness for all known NP-complete
CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov,
Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL
Larose, Tesson

PP and UA

I Operation t : Ak → A is compatible with relation R ⊆ An, if
R is closed under coordinate-wise application of t.

I Operation t : Ak → A is a polymorphism of A if it is
compatible with every relation in A

polymorphism with k = 1 = endomorphism
polymorphism with k > 1 = higher arity symmetry

I Pol(A) = (A; all polymorphisms of A) ... the algebra of
polymorphisms

I Old theorem: A pp-defines B iff Pol(A) ⊆ Pol(B)
Geiger’68, Bondarchuk, Kaluznin, Kotov, Romov’69

I More generally: A pp-interprets B iff Pol(B) interprets Pol(A)
Birkhoff’35, Bodirsky’08

I Interpretations closely connected to central objects of study in
UA: varieties and Mal’tsev conditions

PP and UA

I Operation t : Ak → A is compatible with relation R ⊆ An, if
R is closed under coordinate-wise application of t.

I Operation t : Ak → A is a polymorphism of A if it is
compatible with every relation in A

polymorphism with k = 1 = endomorphism
polymorphism with k > 1 = higher arity symmetry

I Pol(A) = (A; all polymorphisms of A) ... the algebra of
polymorphisms

I Old theorem: A pp-defines B iff Pol(A) ⊆ Pol(B)
Geiger’68, Bondarchuk, Kaluznin, Kotov, Romov’69

I More generally: A pp-interprets B iff Pol(B) interprets Pol(A)
Birkhoff’35, Bodirsky’08

I Interpretations closely connected to central objects of study in
UA: varieties and Mal’tsev conditions

PP and UA

I Operation t : Ak → A is compatible with relation R ⊆ An, if
R is closed under coordinate-wise application of t.

I Operation t : Ak → A is a polymorphism of A if it is
compatible with every relation in A

polymorphism with k = 1 = endomorphism
polymorphism with k > 1 = higher arity symmetry

I Pol(A) = (A; all polymorphisms of A) ... the algebra of
polymorphisms

I Old theorem: A pp-defines B iff Pol(A) ⊆ Pol(B)
Geiger’68, Bondarchuk, Kaluznin, Kotov, Romov’69

I More generally: A pp-interprets B iff Pol(B) interprets Pol(A)
Birkhoff’35, Bodirsky’08

I Interpretations closely connected to central objects of study in
UA: varieties and Mal’tsev conditions

PP and UA

I Operation t : Ak → A is compatible with relation R ⊆ An, if
R is closed under coordinate-wise application of t.

I Operation t : Ak → A is a polymorphism of A if it is
compatible with every relation in A

polymorphism with k = 1 = endomorphism
polymorphism with k > 1 = higher arity symmetry

I Pol(A) = (A; all polymorphisms of A) ... the algebra of
polymorphisms

I Old theorem: A pp-defines B iff Pol(A) ⊆ Pol(B)
Geiger’68, Bondarchuk, Kaluznin, Kotov, Romov’69

I More generally: A pp-interprets B iff Pol(B) interprets Pol(A)
Birkhoff’35, Bodirsky’08

I Interpretations closely connected to central objects of study in
UA: varieties and Mal’tsev conditions

PP and UA

I Operation t : Ak → A is compatible with relation R ⊆ An, if
R is closed under coordinate-wise application of t.

I Operation t : Ak → A is a polymorphism of A if it is
compatible with every relation in A

polymorphism with k = 1 = endomorphism
polymorphism with k > 1 = higher arity symmetry

I Pol(A) = (A; all polymorphisms of A) ... the algebra of
polymorphisms

I Old theorem: A pp-defines B iff Pol(A) ⊆ Pol(B)
Geiger’68, Bondarchuk, Kaluznin, Kotov, Romov’69

I More generally: A pp-interprets B iff Pol(B) interprets Pol(A)
Birkhoff’35, Bodirsky’08

I Interpretations closely connected to central objects of study in
UA: varieties and Mal’tsev conditions

PP and UA

I Operation t : Ak → A is compatible with relation R ⊆ An, if
R is closed under coordinate-wise application of t.

I Operation t : Ak → A is a polymorphism of A if it is
compatible with every relation in A

polymorphism with k = 1 = endomorphism
polymorphism with k > 1 = higher arity symmetry

I Pol(A) = (A; all polymorphisms of A) ... the algebra of
polymorphisms

I Old theorem: A pp-defines B iff Pol(A) ⊆ Pol(B)
Geiger’68, Bondarchuk, Kaluznin, Kotov, Romov’69

I More generally: A pp-interprets B iff Pol(B) interprets Pol(A)
Birkhoff’35, Bodirsky’08

I Interpretations closely connected to central objects of study in
UA: varieties and Mal’tsev conditions

On the algebraic approach

Interpretations closely connected to central objects of study in UA:
varieties and Mal’tsev conditions

I Important conditions on A correspond to previously studied
conditions for Pol(A)

I We can use UA to identify interesting special cases
I Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. A does not interpret (=cannot simulate) 3-SAT

2. . . .

. . . Taylor, Hobby, McKenzie, Bulatov, Maróti, Siggers, . . .

33. . . .

34. Pol(A) contains an operation t such that t(a, a, . . . , a) = a
and t(a1, a2, . . . , ak) = t(a2, . . . , ak , a1) for all a, ai ∈ A
B, Kozik’10

On the algebraic approach

Interpretations closely connected to central objects of study in UA:
varieties and Mal’tsev conditions

I Important conditions on A correspond to previously studied
conditions for Pol(A)

I We can use UA to identify interesting special cases
I Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. A does not interpret (=cannot simulate) 3-SAT

2. . . .

. . . Taylor, Hobby, McKenzie, Bulatov, Maróti, Siggers, . . .

33. . . .

34. Pol(A) contains an operation t such that t(a, a, . . . , a) = a
and t(a1, a2, . . . , ak) = t(a2, . . . , ak , a1) for all a, ai ∈ A
B, Kozik’10

On the algebraic approach

Interpretations closely connected to central objects of study in UA:
varieties and Mal’tsev conditions

I Important conditions on A correspond to previously studied
conditions for Pol(A)

I We can use UA to identify interesting special cases

I Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. A does not interpret (=cannot simulate) 3-SAT

2. . . .

. . . Taylor, Hobby, McKenzie, Bulatov, Maróti, Siggers, . . .

33. . . .

34. Pol(A) contains an operation t such that t(a, a, . . . , a) = a
and t(a1, a2, . . . , ak) = t(a2, . . . , ak , a1) for all a, ai ∈ A
B, Kozik’10

On the algebraic approach

Interpretations closely connected to central objects of study in UA:
varieties and Mal’tsev conditions

I Important conditions on A correspond to previously studied
conditions for Pol(A)

I We can use UA to identify interesting special cases
I Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. A does not interpret (=cannot simulate) 3-SAT

2. . . .

. . . Taylor, Hobby, McKenzie, Bulatov, Maróti, Siggers, . . .

33. . . .

34. Pol(A) contains an operation t such that t(a, a, . . . , a) = a
and t(a1, a2, . . . , ak) = t(a2, . . . , ak , a1) for all a, ai ∈ A
B, Kozik’10

On the algebraic approach

Interpretations closely connected to central objects of study in UA:
varieties and Mal’tsev conditions

I Important conditions on A correspond to previously studied
conditions for Pol(A)

I We can use UA to identify interesting special cases
I Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. A does not interpret (=cannot simulate) 3-SAT

2. . . .

. . . Taylor, Hobby, McKenzie, Bulatov, Maróti, Siggers, . . .

33. . . .

34. Pol(A) contains an operation t such that t(a, a, . . . , a) = a
and t(a1, a2, . . . , ak) = t(a2, . . . , ak , a1) for all a, ai ∈ A
B, Kozik’10

Results

Results

I Better understanding of pre-algebraic results

I Far broader special cases solved. The dichotomy conjecture is
true:

I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A; R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood

I Describing all solutions
Idziak, Markovic, McKenzie, Valeriote, Willard’07

I Local consistency (constraint propagation)
Barto, Kozik’09, Bulatov

I All known tractable cases solvable by a combination of these
two

Results

I Better understanding of pre-algebraic results
I Far broader special cases solved. The dichotomy conjecture is

true:
I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A; R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood

I Describing all solutions
Idziak, Markovic, McKenzie, Valeriote, Willard’07

I Local consistency (constraint propagation)
Barto, Kozik’09, Bulatov

I All known tractable cases solvable by a combination of these
two

Results

I Better understanding of pre-algebraic results
I Far broader special cases solved. The dichotomy conjecture is

true:
I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A; R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood

I Describing all solutions
Idziak, Markovic, McKenzie, Valeriote, Willard’07

I Local consistency (constraint propagation)
Barto, Kozik’09, Bulatov

I All known tractable cases solvable by a combination of these
two

Results

I Better understanding of pre-algebraic results
I Far broader special cases solved. The dichotomy conjecture is

true:
I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A; R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood
I Describing all solutions

Idziak, Markovic, McKenzie, Valeriote, Willard’07

I Local consistency (constraint propagation)
Barto, Kozik’09, Bulatov

I All known tractable cases solvable by a combination of these
two

Results

I Better understanding of pre-algebraic results
I Far broader special cases solved. The dichotomy conjecture is

true:
I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A; R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood
I Describing all solutions

Idziak, Markovic, McKenzie, Valeriote, Willard’07
I Local consistency (constraint propagation)

Barto, Kozik’09, Bulatov

I All known tractable cases solvable by a combination of these
two

Results

I Better understanding of pre-algebraic results
I Far broader special cases solved. The dichotomy conjecture is

true:
I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A; R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood
I Describing all solutions

Idziak, Markovic, McKenzie, Valeriote, Willard’07
I Local consistency (constraint propagation)

Barto, Kozik’09, Bulatov
I All known tractable cases solvable by a combination of these

two

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k, l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
definability in Datalog)

Example of (2, 3)-consistency

Let A = ({0, 1}; x = y , x 6= y)

Consider the instance

x = y , y = z , z = w , x 6= w

I By looking at {x , y , z} we see (using x = y and y = z) that
x = z .

I By looking at {x , z ,w} we see (using x = z and z = w) that
x = w .

I By looking at {x ,w} we now see a contradiction

In fact, A has width (2, 3), that is, such reasoning is always
sufficient for an instance of CSP(A).

Example of (2, 3)-consistency

Let A = ({0, 1}; x = y , x 6= y)

Consider the instance

x = y , y = z , z = w , x 6= w

I By looking at {x , y , z} we see (using x = y and y = z) that
x = z .

I By looking at {x , z ,w} we see (using x = z and z = w) that
x = w .

I By looking at {x ,w} we now see a contradiction

In fact, A has width (2, 3), that is, such reasoning is always
sufficient for an instance of CSP(A).

Example of (2, 3)-consistency

Let A = ({0, 1}; x = y , x 6= y)

Consider the instance

x = y , y = z , z = w , x 6= w

I By looking at {x , y , z} we see (using x = y and y = z) that
x = z .

I By looking at {x , z ,w} we see (using x = z and z = w) that
x = w .

I By looking at {x ,w} we now see a contradiction

In fact, A has width (2, 3), that is, such reasoning is always
sufficient for an instance of CSP(A).

Example of (2, 3)-consistency

Let A = ({0, 1}; x = y , x 6= y)

Consider the instance

x = y , y = z , z = w , x 6= w

I By looking at {x , y , z} we see (using x = y and y = z) that
x = z .

I By looking at {x , z ,w} we see (using x = z and z = w) that
x = w .

I By looking at {x ,w} we now see a contradiction

In fact, A has width (2, 3), that is, such reasoning is always
sufficient for an instance of CSP(A).

Example of (2, 3)-consistency

Let A = ({0, 1}; x = y , x 6= y)

Consider the instance

x = y , y = z , z = w , x 6= w

I By looking at {x , y , z} we see (using x = y and y = z) that
x = z .

I By looking at {x , z ,w} we see (using x = z and z = w) that
x = w .

I By looking at {x ,w} we now see a contradiction

In fact, A has width (2, 3), that is, such reasoning is always
sufficient for an instance of CSP(A).

Bounded width

I The problems q-LIN do not have bounded width
Feder, Vardi‘93

I If A can simulate q-LIN then A does not have bounded width
Larose, Zádori’07

I Thus the “obvious” necessary condition for bounded width is
that A cannot simulate q-LIN.

I It is sufficient:

Theorem

The following are equivalent.

1. A cannot simulate q-LIN

2. A has bounded width B, Kozik’09

3. A has width (2, 3) B; Bulatov

Bounded width

I The problems q-LIN do not have bounded width
Feder, Vardi‘93

I If A can simulate q-LIN then A does not have bounded width
Larose, Zádori’07

I Thus the “obvious” necessary condition for bounded width is
that A cannot simulate q-LIN.

I It is sufficient:

Theorem

The following are equivalent.

1. A cannot simulate q-LIN

2. A has bounded width B, Kozik’09

3. A has width (2, 3) B; Bulatov

Bounded width

I The problems q-LIN do not have bounded width
Feder, Vardi‘93

I If A can simulate q-LIN then A does not have bounded width
Larose, Zádori’07

I Thus the “obvious” necessary condition for bounded width is
that A cannot simulate q-LIN.

I It is sufficient:

Theorem

The following are equivalent.

1. A cannot simulate q-LIN

2. A has bounded width B, Kozik’09

3. A has width (2, 3) B; Bulatov

Bounded width

I The problems q-LIN do not have bounded width
Feder, Vardi‘93

I If A can simulate q-LIN then A does not have bounded width
Larose, Zádori’07

I Thus the “obvious” necessary condition for bounded width is
that A cannot simulate q-LIN.

I It is sufficient:

Theorem

The following are equivalent.

1. A cannot simulate q-LIN

2. A has bounded width B, Kozik’09

3. A has width (2, 3) B; Bulatov

Bounded width

I The problems q-LIN do not have bounded width
Feder, Vardi‘93

I If A can simulate q-LIN then A does not have bounded width
Larose, Zádori’07

I Thus the “obvious” necessary condition for bounded width is
that A cannot simulate q-LIN.

I It is sufficient:

Theorem

The following are equivalent.

1. A cannot simulate q-LIN

2. A has bounded width B, Kozik’09

3. A has width (2, 3) B; Bulatov

Bonus: Robust approximation

I Task: Find an almost satisfying assignment given an almost
satisfiable instance

I More precisely: Find an assignment satisfying at least
(1− g(ε)) fraction of the constraints given an instance which
is (1− ε) satisfiable, where g(ε)→ 0 as ε→ 0 (g should only
depend on A).

I Algorithms for 2-SAT and HORN-SAT based on linear
programming and semidefinite programming Zwick’98

I q-LIN has no robust polynomial algorithm
(assuming P 6= NP) Hastad’01

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

Bonus: Robust approximation

I Task: Find an almost satisfying assignment given an almost
satisfiable instance

I More precisely: Find an assignment satisfying at least
(1− g(ε)) fraction of the constraints given an instance which
is (1− ε) satisfiable, where g(ε)→ 0 as ε→ 0 (g should only
depend on A).

I Algorithms for 2-SAT and HORN-SAT based on linear
programming and semidefinite programming Zwick’98

I q-LIN has no robust polynomial algorithm
(assuming P 6= NP) Hastad’01

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

Bonus: Robust approximation

I Task: Find an almost satisfying assignment given an almost
satisfiable instance

I More precisely: Find an assignment satisfying at least
(1− g(ε)) fraction of the constraints given an instance which
is (1− ε) satisfiable, where g(ε)→ 0 as ε→ 0 (g should only
depend on A).

I Algorithms for 2-SAT and HORN-SAT based on linear
programming and semidefinite programming Zwick’98

I q-LIN has no robust polynomial algorithm
(assuming P 6= NP) Hastad’01

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

Bonus: Robust approximation

I Task: Find an almost satisfying assignment given an almost
satisfiable instance

I More precisely: Find an assignment satisfying at least
(1− g(ε)) fraction of the constraints given an instance which
is (1− ε) satisfiable, where g(ε)→ 0 as ε→ 0 (g should only
depend on A).

I Algorithms for 2-SAT and HORN-SAT based on linear
programming and semidefinite programming Zwick’98

I q-LIN has no robust polynomial algorithm
(assuming P 6= NP) Hastad’01

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

Bonus: Robust approximation

I Task: Find an almost satisfying assignment given an almost
satisfiable instance

I More precisely: Find an assignment satisfying at least
(1− g(ε)) fraction of the constraints given an instance which
is (1− ε) satisfiable, where g(ε)→ 0 as ε→ 0 (g should only
depend on A).

I Algorithms for 2-SAT and HORN-SAT based on linear
programming and semidefinite programming Zwick’98

I q-LIN has no robust polynomial algorithm
(assuming P 6= NP) Hastad’01

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

Bonus: Robust approximation 2

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

I Conjecture of Guruswami and Zhou: this is the only obstacle

Theorem (B, Kozik’12)

The following are equivalent (assuming P 6= NP)

I A cannot simulate q-LIN

I CSP(A) has a robust polynomial algorithm

I canonical semidefinite programming relaxation correctly
decides CSP(A)

Bonus: Robust approximation 2

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

I Conjecture of Guruswami and Zhou: this is the only obstacle

Theorem (B, Kozik’12)

The following are equivalent (assuming P 6= NP)

I A cannot simulate q-LIN

I CSP(A) has a robust polynomial algorithm

I canonical semidefinite programming relaxation correctly
decides CSP(A)

Bonus: Robust approximation 2

I If A can simulate q-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

I Conjecture of Guruswami and Zhou: this is the only obstacle

Theorem (B, Kozik’12)

The following are equivalent (assuming P 6= NP)

I A cannot simulate q-LIN

I CSP(A) has a robust polynomial algorithm

I canonical semidefinite programming relaxation correctly
decides CSP(A)

Bonus 2: Counting CSP

I The complexity is also controlled by Pol(A)

I A necessary condition for tractability found
Bulatov, Dalmau’03
(inspiration: the other algorithm for decison CSPs)

I A stronger necessary condition for tractability found
Bulatov, Grohe’05

I The stronger condition is sufficient
Bulatov’08, Dyer and Richerby’10

Bonus 2: Counting CSP

I The complexity is also controlled by Pol(A)

I A necessary condition for tractability found
Bulatov, Dalmau’03
(inspiration: the other algorithm for decison CSPs)

I A stronger necessary condition for tractability found
Bulatov, Grohe’05

I The stronger condition is sufficient
Bulatov’08, Dyer and Richerby’10

Bonus 2: Counting CSP

I The complexity is also controlled by Pol(A)

I A necessary condition for tractability found
Bulatov, Dalmau’03
(inspiration: the other algorithm for decison CSPs)

I A stronger necessary condition for tractability found
Bulatov, Grohe’05

I The stronger condition is sufficient
Bulatov’08, Dyer and Richerby’10

Bonus 2: Counting CSP

I The complexity is also controlled by Pol(A)

I A necessary condition for tractability found
Bulatov, Dalmau’03
(inspiration: the other algorithm for decison CSPs)

I A stronger necessary condition for tractability found
Bulatov, Grohe’05

I The stronger condition is sufficient
Bulatov’08, Dyer and Richerby’10

Final remarks

For decision CSPs
I Easy criterion for hardness
I Theory gives generic reduction between any two NP-complete

CSPs (instead of ad hoc reductions)
I Applicability of known algorithms understood
I The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)
I Universal algebra also relevant Cohen, Cooper, Creed,

Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
I More or less the same criterion for easiness/hardness
I Easiness comes from “symmetry”
I One needs symmetry of higher arity (e.g. polymorphisms)

rather than just automorphisms or endomorphisms

Beyond CSPs
I ???
I There is ≥ 1 examples Raghavendra

Final remarks

For decision CSPs
I Easy criterion for hardness
I Theory gives generic reduction between any two NP-complete

CSPs (instead of ad hoc reductions)
I Applicability of known algorithms understood
I The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)
I Universal algebra also relevant Cohen, Cooper, Creed,

Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
I More or less the same criterion for easiness/hardness
I Easiness comes from “symmetry”
I One needs symmetry of higher arity (e.g. polymorphisms)

rather than just automorphisms or endomorphisms

Beyond CSPs
I ???
I There is ≥ 1 examples Raghavendra

Final remarks

For decision CSPs
I Easy criterion for hardness
I Theory gives generic reduction between any two NP-complete

CSPs (instead of ad hoc reductions)
I Applicability of known algorithms understood
I The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)
I Universal algebra also relevant Cohen, Cooper, Creed,

Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
I More or less the same criterion for easiness/hardness
I Easiness comes from “symmetry”
I One needs symmetry of higher arity (e.g. polymorphisms)

rather than just automorphisms or endomorphisms

Beyond CSPs
I ???
I There is ≥ 1 examples Raghavendra

We need coffee!

Thank you!

