Universal algebra and the constraint satisfaction problem

Libor Barto

Charles University in Prague

ASL North American Annual Meeting
University of Colorado, 20 May 2014
Constraint satisfaction problem (CSP)

- Common framework for many practical problems
Constraint satisfaction problem (CSP)

- Common framework for many practical problems
- This is the last time when the word “practical” appears
Constraint satisfaction problem (CSP)

- Common framework for some computational problems
 - Broad enough to include interesting examples
 - Narrow enough to make significant progress (on all problems within a class, rather than just a single computational problem)
Constraint satisfaction problem (CSP)

- Common framework for some computational problems
 - Broad enough to include interesting examples
 - Narrow enough to make significant progress (on all problems within a class, rather than just a single computational problem)
- Main achievement: better understanding why problems are easy or hard:
 - Hardness comes from lack of symmetry
 - Symmetries of higher arity are important (not just automorphisms or endomorphisms)
 - Universal algebra (not just group or semigroup theory)
- Long term goal: go beyond CSP
Constraint satisfaction problem (CSP)

- Common framework for some computational problems
 - Broad enough to include interesting examples
 - Narrow enough to make significant progress (on all problems within a class, rather than just a single computational problem)
- Main achievement: better understanding why problems are easy or hard:
 - Hardness comes from lack of symmetry
 - Symmetries of higher arity are important (not just automorphisms or endomorphisms)
 → universal algebra (not just group or semigroup theory)
Constraint satisfaction problem (CSP)

- Common framework for some computational problems
 - Broad enough to include interesting examples
 - Narrow enough to make significant progress (on all problems within a class, rather than just a single computational problem)

- Main achievement: better understanding why problems are easy or hard:
 - Hardness comes from lack of symmetry
 - Symmetries of higher arity are important (not just automorphisms or endomorphisms)
 → universal algebra (not just group or semigroup theory)

- Long term goal: go beyond CSP
Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), R_2(t, z), R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{true, false\} \)).

Assignment = mapping \(variables \rightarrow domain \)
Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{\text{true, false}\} \)).

Assignment = mapping variables \(\rightarrow \) domain

- **Decision CSP**: Is there an assignment satisfying all constraints (a solution)
Instance of the CSP

A \textit{Definition} of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \quad R_2(t, z), \quad R_1(y, y, z), \quad \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{true, false\} \)).

\textit{Assignment} = mapping \textit{variables} \rightarrow \textit{domain}

- \textbf{Decision CSP:} Is there an assignment satisfying all constraints (a \textit{solution})
- \textbf{Search problem:} Find a solution
Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{true, false\} \)).

Assignment = mapping **variables** \(\rightarrow \) **domain**

- **Decision CSP**: Is there an assignment satisfying all constraints (a **solution**)
- **Search problem**: Find a solution
- **Counting CSP**: How many solutions are there?
Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \to \{true, false\} \)).

Assignment = mapping **variables** \(\rightarrow \) **domain**

- **Decision CSP:** Is there an assignment satisfying all constraints (a **solution**)
- **Search problem:** Find a solution
- **Counting CSP:** How many solutions are there?
- **Max-CSP:** Find a map satisfying maximum number of constraints
Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{true, false\} \)).

Assignment = mapping variables \(\rightarrow \) domain

- **Decision CSP:** Is there an assignment satisfying all constraints (a solution)
- **Search problem:** Find a solution
- **Counting CSP:** How many solutions are there?
- **Max-CSP:** Find a map satisfying maximum number of constraints
- **Approx. Max-CSP:** Find a map satisfying \(0.7 \times Optimum \) constraints
Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{true, false\} \)).

Assignment = mapping variables \(\rightarrow \) domain

- **Decision CSP:** Is there an assignment satisfying all constraints (a solution)
- **Search problem:** Find a solution
- **Counting CSP:** How many solutions are there?
- **Max-CSP:** Find a map satisfying maximum number of constraints
- **Approx. Max-CSP:** or: Find a map satisfying 0.3-fraction of constraints given 0.6-satisfiable instance

Robust CSP: Find an almost satisfying assignment given an almost satisfiable instance
Definition

Instance of the CSP is a list of constraints – expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where \(R_i \) are relations on a common domain \(A \)

(subsets of \(A^k \) or mappings \(A^k \rightarrow \{\text{true}, \text{false}\} \)).

Assignment = mapping variables \(\rightarrow \) domain

- **Decision CSP:** Is there an assignment satisfying all constraints (a solution)
- **Search problem:** Find a solution
- **Counting CSP:** How many solutions are there?
- **Max-CSP:** Find a map satisfying maximum number of constraints
- **Approx. Max-CSP:** or: Find a map satisfying 0.3-fraction of constraints given 0.6-satisfiable instance
- **Robust CSP:** Find an almost satifying assignment given an almost satisfiable instance
Interesting subproblems ... restrict the set of allowed relations
Definition

\[\mathcal{A} = (A; R_1, R_2, \ldots) \]: relational structure with \(A \) finite

Instance of \(\text{CSP}(\mathcal{A}) \): Expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathcal{A} \).
Definition

\(\mathbb{A} = (A; R_1, R_2, \ldots) \): relational structure with \(A \) finite

Instance of \(\text{CSP}(\mathbb{A}) \): Expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

▶ What is the computational complexity for fixed \(\mathbb{A} \)?
CSP over a structure (aka constraint language)

Definition

$\mathbb{A} = (A; R_1, R_2, \ldots)$: relational structure with A finite

Instance of $CSP(\mathbb{A})$: Expression of the form

$R_1(x, y, z), R_2(t, z), R_1(y, y, z), \ldots$

where each R_i is in \mathbb{A}.

- What is the computational complexity for fixed \mathbb{A}?
- **This talk:** Mainly decision $CSP(\mathbb{A})$
CSP over a structure (aka constraint language)

Definition

\[\mathbb{A} = (A; R_1, R_2, \ldots) \]: relational structure with \(A \) finite

Instance of \(CSP(\mathbb{A}) \): Expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

- What is the computational complexity for fixed \(\mathbb{A} \)?
- **This talk**: Mainly decision \(CSP(\mathbb{A}) \)
- **Other interesting problems**:
 - restrict something else than the set of allowed relations
 - allow infinite \(A \)
 - allow weighted relations: mappings \(A^k \to Q \cup \{\infty\} \)
 - (approximate) counting, Max-CSP, Approx Max-CSP
Definition

\[\mathbb{A} = (A; R_1, R_2, \ldots) \]: relational structure with \(A \) finite

Instance of CSP(\(\mathbb{A} \)): Expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

Examples:

- **3-SAT**: \(\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots) \)
CSP over a structure (aka constraint language)

Definition

\[\mathbb{A} = (A; R_1, R_2, \ldots) \]: relational structure with \(A \) finite

Instance of CSP(\(\mathbb{A} \)): Expression of the form

\[R_1(x, y, z), R_2(t, z), R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

Examples:

- **3-SAT**: \(\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots) \)
- **3-COL**: \(\mathbb{A} = (\{0, 1, 2\}; x \neq y) \)
CSP over a structure (aka constraint language)

Definition

\(\mathbb{A} = (A; R_1, R_2, \ldots) \): relational structure with \(A \) finite

Instance of CSP(\(\mathbb{A} \)): Expression of the form

\[R_1(x, y, z), R_2(t, z), R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

Examples:

- **3-SAT**: \(\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots) \)
- **3-COL**: \(\mathbb{A} = (\{0, 1, 2\}; x \neq y) \)
- **HORN-3-SAT**: \(\mathbb{A} = (\{0, 1\}; x, \neg x, x \land y \rightarrow z) \)
CSP over a structure (aka constraint language)

Definition

\[\mathbb{A} = (A; R_1, R_2, \ldots) \]: relational structure with \(A \) finite

Instance of CSP(\(\mathbb{A} \)): Expression of the form

\[R_1(x, y, z), \: R_2(t, z), \: R_1(y, y, z), \: \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

Examples:

- 3-SAT: \(\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots) \)
- 3-COL: \(\mathbb{A} = (\{0, 1, 2\}; x \neq y) \)
- HORN-3-SAT: \(\mathbb{A} = (\{0, 1\}; x, \neg x, x \land y \rightarrow z) \)
- q-LIN: \(\mathbb{A} = (GF(q); \text{affine subspaces}) \).
CSP over a structure (aka constraint language)

Definition

\[\mathbb{A} = (A; R_1, R_2, \ldots) : \text{relational structure with } A \text{ finite} \]

Instance of \(\text{CSP}(\mathbb{A}) \): Expression of the form

\[
R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots
\]

where each \(R_i \) is in \(\mathbb{A} \).

Examples:

- **3-SAT:** \(\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots) \)
- **3-COL:** \(\mathbb{A} = (\{0, 1, 2\}; x \neq y) \)
- **HORN-3-SAT:** \(\mathbb{A} = (\{0, 1\}; x, \neg x, x \land y \rightarrow z) \)
- **q-LIN:** \(\mathbb{A} = (\text{GF}(q); \text{affine subspaces}) \).
- Digraph reachability: \(\mathbb{A} = (\{0, 1\}; x, \neg x, x \leq y) \)
- Graph reachability: \(\mathbb{A} = (\{0, 1\}, x, \neg x, x = y) \)
CSP over a structure (aka constraint language)

Definition

\[\mathbb{A} = (A; R_1, R_2, \ldots) : \text{relational structure with } A \text{ finite} \]

Instance of \(\text{CSP}(\mathbb{A}) \): Expression of the form

\[R_1(x, y, z), \ R_2(t, z), \ R_1(y, y, z), \ldots \]

where each \(R_i \) is in \(\mathbb{A} \).

Examples:

- (NP-c) 3-SAT: \(\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots) \)
- (NP-c) 3-COL: \(\mathbb{A} = (\{0, 1, 2\}; x \neq y) \)
- (P-c) HORN-3-SAT: \(\mathbb{A} = (\{0, 1\}; x, \neg x, x \land y \rightarrow z) \)
- \(q\)-LIN: \(\mathbb{A} = (GF(q); \text{affine subspaces}) \).
- (NL-c) Digraph reachability: \(\mathbb{A} = (\{0, 1\}; x, \neg x, x \leq y) \)
- (L-c) Graph reachability: \(\mathbb{A} = (\{0, 1\}, x, \neg x, x = y) \)
Decision CSP as model checking problem

CSP(\(\mathbb{A}\)) :

Instance: Sentence \(\phi\) in the language of \(\mathbb{A}\) with \(\exists\) and \(\land\)

Question: Is \(\phi\) true in \(\mathbb{A}\)?

From 27 cases only 3 interesting (others reduce to these or are boring)

▶ \(\{\exists, \land, (=)\}\) (CSP) open

▶ \(\{\exists, \forall, \land, (=)\}\) (qCSP) open

▶ \(\{\exists, \forall, \land, \lor\}\) (Positive equality free) solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c

B. Martin, F. Madelaine 11
Decision CSP as model checking problem

\[CSP(\mathbb{A}) : \]

Instance: Sentence \(\phi \) in the language of \(\mathbb{A} \) with \(\exists \) and \(\land \)

Question: Is \(\phi \) true in \(\mathbb{A} \)?

What about: Allow some other combination of \(\{\exists, \forall, \land, \lor, \neg, =, \neq\} \).
Decision CSP as model checking problem

$CSP(\mathbb{A})$:

Instance: Sentence ϕ in the language of \mathbb{A} with \exists and \land

Question: Is ϕ true in \mathbb{A}?

What about: Allow some other combination of $
\{\exists, \forall, \land, \lor, \neg, =, \neq\}.
$

From 2^7 cases only 3 interesting (others reduce to these or are boring)

- $\{\exists, \land, (\neq)\}$ (CSP) open
- $\{\exists, \forall, \land, (\neq)\}$ (qCSP) open
- $\{\exists, \forall, \land, \lor\}$ (Positive equality free) solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c

B. Martin, F. Madelaine 11
The dichotomy conjecture

A largest natural class of problems with a dichotomy?
The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every \mathcal{A}, decision $\text{CSP}(\mathcal{A})$ is either in P or NP-complete.
A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)
For every \mathbb{A}, decision $\text{CSP}(\mathbb{A})$ is either in P or NP-complete.

- Evidence (in 93):
 - True for $|\mathbb{A}| = 2$ Schaefer’78
 - True if $\mathbb{A} = (\mathbb{A}; R)$, R is binary and symmetric
 Hell and Nešetřil’90
A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi'93)

For every \mathbb{A}, decision $\text{CSP}(\mathbb{A})$ is either in P or NP-complete.

- Evidence (in 93):
 - True for $|\mathbb{A}| = 2$ Schaefer’78
 - True if $\mathbb{A} = (A; R)$, R is binary and symmetric
 Hell and Nešetřil’90
 - Feder and Vardi suggested that tractability is tied to “closure properties”
The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, decision $\text{CSP}(A)$ is either in P or NP-complete.

- Evidence (in 93):
 - True for $|A| = 2$ Schaefer’78
 - True if $A = (A; R)$, R is binary and symmetric Hell and Nešetřil’90

- Feder and Vardi suggested that tractability is tied to “closure properties”

- → algebraic approach Bulatov, Jeavons, Krokhin’00
Most of the definitions will be imprecise

Almost no theorem is true as stated
PP and UA
If A “can simulate” B then \(CSP(A) \) is at least as hard as \(CSP(B) \).
If A “can simulate” B then $CSP(A)$ is at least as hard as $CSP(B)$.

What does simulate mean?
If A “can simulate” B then $CSP(A)$ is at least as hard as $CSP(B)$.

What does simulate mean?

(Slightly imprecise) answer:
“can simulate” means “positively primitively (pp) interprets”
Simulation

- If A “can simulate” B then $CSP(A)$ is at least as hard as $CSP(B)$.
- **What does simulate mean?**
 - (Slightly imprecise) answer: “can simulate” means “positively primitively (pp) interprets”
 - Special case of pp-interpretability is pp-definability
If \mathcal{A} “can simulate” \mathcal{B} then $CSP(\mathcal{A})$ is at least as hard as $CSP(\mathcal{B})$.

What does simulate mean?

(Slightly imprecise) answer:

“can simulate” means “positively primitively (pp) interprets”

Special case of pp-interpretability is pp-definability

Assume \mathcal{A}, \mathcal{B} have the same domain.

\mathcal{A} **pp-defines** $\mathcal{B} = \text{relations in } \mathcal{B} \text{ definable using relations in } \mathcal{A}, \text{ and } \exists, =, \land.$
Example of pp-definability

\[\mathbb{A} = (A; R), \text{ where } R \text{ is ternary} \]
Example of pp-definability

- $\mathcal{A} = (A; R)$, where R is ternary
- $\mathcal{B} = (B; S, T)$, where S is binary and T is unary
 - $S(x, y)$ iff $(\exists z) R(x, y, z) \land R(y, y, x)$
 - $T(x)$ iff $R(x, x, x)$
Example of pp-definability

- $\mathbb{A} = (A; R)$, where R is ternary
- $\mathbb{B} = (B; S, T)$, where S is binary and T is unary
 - $S(x, y)$ iff $(\exists z) R(x, y, z) \land R(y, y, x)$
 - $T(x)$ iff $R(x, x, x)$
- Each instance of CSP(\mathbb{B}), eg.

$$T(z), \ S(x, y)$$
Example of pp-definability

- $\mathbb{A} = (A; R)$, where R is ternary
- $\mathbb{B} = (B; S, T)$, where S is binary and T is unary
 - $S(x, y)$ iff $(\exists z) R(x, y, z) \land R(y, y, x)
 - $T(x)$ iff $R(x, x, x)$
- Each instance of CSP(\mathbb{B}), eg.
 \[
 T(z), \ S(x, y)
 \]
- can be rewritten to an equivalent instance of CSP(\mathbb{A})
 \[
 R(z, z, z), \ R(x, y, w), \ R(y, y, x)
 \]
Example of pp-definability

- $\mathbb{A} = (A; R)$, where R is ternary
- $\mathbb{B} = (B; S, T)$, where S is binary and T is unary
 - $S(x, y)$ iff $(\exists z) \ R(x, y, z) \land R(y, y, x)$
 - $T(x)$ iff $R(x, x, x)$
- Each instance of $\text{CSP}(\mathbb{B})$, eg.

 $$T(z), \ S(x, y)$$

- can be rewritten to an equivalent instance of $\text{CSP}(\mathbb{A})$

 $$R(z, z, z), \ R(x, y, w), \ R(y, y, x)$$

- Thus $\text{CSP}(\mathbb{A})$ is at least as hard as $\text{CSP}(\mathbb{B})$
pp-interpretation, the borderline?

- A pp-interprets B if

The domain of B is a pp-definable subset of A modulo a pp-definable equivalence.

The relations of B are "pp-definable" from A (m-ary relation on B is defined as a km-ary relation on A).

If A pp-interprets the structure corresponding to 3-SAT then CSP(A) is NP-complete.

This explains NP-completeness for all known NP-complete CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov, Jeavons, Krokhin)
If A does not interpret 3-SAT then CSP(A) is in P.

Similar conjectures and hardness results about L, NL, Larose, Tesson
pp-interpretation, the borderline?

- A pp-interprets B if
 - The domain of B is a pp-definable subset of A^k modulo a pp-definable equivalence
A pp-interprets B if

- The domain of B is a pp-definable subset of A^k modulo a pp-definable equivalence
- The relations of B are “pp-definable” from A

(m-ary relation on B is defined as a km-ary relation on A)
pp-interpretation, the borderline?

- \(\mathbb{A} \) pp-interpret \(\mathbb{B} \) if
 - The domain of \(\mathbb{B} \) is a pp-definable subset of \(A^k \) modulo a pp-definable equivalence
 - The relations of \(\mathbb{B} \) are “pp-definable” from \(\mathbb{A} \)
 - \((m\text{-ary relation on } B \text{ is defined as a } km\text{-ary relation on } A)\)
- If \(\mathbb{A} \) pp-interprets the structure corresponding to 3-SAT then \(\text{CSP}(\mathbb{A}) \) is NP-complete \(\text{BJK} \)
A pp-interprets B if

- The domain of B is a pp-definable subset of A^k modulo a pp-definable equivalence
- The relations of B are “pp-definable” from A
 (m-ary relation on B is defined as a km-ary relation on A)

If A pp-interprets the structure corresponding to 3-SAT
then CSP(A) is NP-complete BJK

This explains NP-completeness for all known NP-complete CSPs...
pp-interpretation, the borderline?

- A pp-interprets B if
 - The domain of B is a pp-definable subset of A^k modulo a pp-definable equivalence
 - The relations of B are “pp-definable” from A
 (m-ary relation on B is defined as a km-ary relation on A)
- If A pp-interprets the structure corresponding to 3-SAT then CSP(A) is NP-complete BJK
- This explains NP-completeness for all known NP-complete CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov, Jeavons, Krokhin)

If A does not interpret 3-SAT then CSP(A) is in P.
pp-interpretation, the borderline?

- A pp-interprets B if
 - The domain of B is a pp-definable subset of A^k modulo a pp-definable equivalence
 - The relations of B are “pp-definable” from A
 (m-ary relation on B is defined as a km-ary relation on A)
- If A pp-interprets the structure corresponding to 3-SAT then $CSP(A)$ is NP-complete BJK
- This explains NP-completeness for all known NP-complete CSPs...

Conjecture (The algebraic dichotomy conjecture Bulatov, Jeavons, Krokhin)

If A does not interpret 3-SAT then $CSP(A)$ is in P.

Similar conjectures and hardness results about L, NL Larose, Tesson
Operation $t : A^k \rightarrow A$ is compatible with relation $R \subseteq A^n$, if R is closed under coordinate-wise application of t.
Operation $t : A^k \rightarrow A$ is compatible with relation $R \subseteq A^n$, if R is closed under coordinate-wise application of t.

Operation $t : A^k \rightarrow A$ is a polymorphism of A if it is compatible with every relation in A

- polymorphism with $k = 1 =$ endomorphism
- polymorphism with $k > 1 =$ higher arity symmetry
PP and UA

- Operation $t : A^k \to A$ is **compatible** with relation $R \subseteq A^n$, if R is closed under coordinate-wise application of t.

- Operation $t : A^k \to A$ is a **polymorphism** of A if it is compatible with every relation in A.

 polymorphism with $k = 1$ = endomorphism
 polymorphism with $k > 1$ = higher arity symmetry

- $\text{Pol}(A) = (A; \text{all polymorphisms of } A)$... the algebra of polymorphisms
Operation $t : A^k \to A$ is compatible with relation $R \subseteq A^n$, if R is closed under coordinate-wise application of t.

Operation $t : A^k \to A$ is a polymorphism of A if it is compatible with every relation in A.

Pol(A) = (A; all polymorphisms of A) ... the algebra of polymorphisms

Old theorem: A pp-defines B iff Pol(A) \subseteq Pol(B)

Geiger'68, Bondarchuk, Kaluznin, Kotov, Romov'69
Operation $t : A^k \to A$ is compatible with relation $R \subseteq A^n$, if R is closed under coordinate-wise application of t.

Operation $t : A^k \to A$ is a polymorphism of A if it is compatible with every relation in A.

Pol(A) = (A; all polymorphisms of A) ... the algebra of polymorphisms.

Old theorem: A pp-defines B iff $Pol(A) \subseteq Pol(B)$

Geiger'68, Bondarchuk, Kaluznin, Kotov, Romov'69

More generally: A pp-interprets B iff $Pol(B)$ interprets $Pol(A)$

Birkhoff'35, Bodirsky'08
Operation $t : A^k \rightarrow A$ is compatible with relation $R \subseteq A^n$, if R is closed under coordinate-wise application of t.

Operation $t : A^k \rightarrow A$ is a polymorphism of A if it is compatible with every relation in A.

polymorphism with $k = 1 = \text{endomorphism}$

polymorphism with $k > 1 = \text{higher arity symmetry}$

$\text{Pol}(A) = (A; \text{all polymorphisms of } A) \ldots \text{the algebra of polymorphisms}$

Old theorem: A pp-defines B iff $\text{Pol}(A) \subseteq \text{Pol}(B)$

Geiger'68, Bondarchuk, Kaluznin, Kotov, Romov'69

More generally: A pp-interprets B iff $\text{Pol}(B)$ interprets $\text{Pol}(A)$

Birkhoff'35, Bodirsky'08

Interpretations closely connected to central objects of study in UA: varieties and Mal’tsev conditions
Interpretations closely connected to central objects of study in UA: varieties and Mal’tsev conditions
On the algebraic approach

Interpretations closely connected to central objects of study in UA: varieties and Mal’tsev conditions

- Important conditions on \mathbb{A} correspond to previously studied conditions for $\text{Pol}(\mathbb{A})$

Theorem

The following are equivalent.

1. \mathbb{A} does not interpret (=cannot simulate) 3-SAT
2. . . .
33. . . .
34. $\text{Pol}(\mathbb{A})$ contains an operation t such that $t(a, a, \ldots, a) = a$ and $t(a_1, a_2, \ldots, a_k) = t(a_2, \ldots, a_k, a_1)$ for all $a, a_i \in \mathbb{A}$
On the algebraic approach

Interpretations closely connected to central objects of study in UA: varieties and Mal’tsev conditions

- Important conditions on \(\mathbb{A} \) correspond to previously studied conditions for \(\text{Pol}(\mathbb{A}) \)
- We can use UA to identify interesting special cases

Theorem

The following are equivalent.

1. \(A \) does not interpret (=cannot simulate) 3-SAT
2. ...
3. \(\text{Pol}(A) \) contains an operation \(t \) such that \(t(a, a, \ldots, a) = a \) and \(t(a_1, a_2, \ldots, a_k) = t(a_2, \ldots, a_k, a_1) \) for all \(a, a_i \in A \)

B, Kozik’10
On the algebraic approach

Interpretations closely connected to central objects of study in UA: varieties and Mal’tsev conditions

- Important conditions on \mathbb{A} correspond to previously studied conditions for $\text{Pol}(\mathbb{A})$
- We can use UA to identify interesting special cases
- Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. \mathbb{A} does not interpret (=cannot simulate) 3-SAT
2. . . .
33. . . .
34. $\text{Pol}(\mathbb{A})$ contains an operation t such that $t(a, a, \ldots, a) = a$ and $t(a_1, a_2, \ldots, a_k) = t(a_2, \ldots, a_k, a_1)$ for all $a, a_i \in \mathbb{A}$

B, Kozik’10
On the algebraic approach

Interpretations closely connected to central objects of study in UA: varieties and Mal’tsev conditions

- Important conditions on \mathbb{A} correspond to previously studied conditions for $\text{Pol}(\mathbb{A})$
- We can use UA to identify interesting special cases
- Sometimes operations are directly used in algorithms

Theorem

The following are equivalent.

1. \mathbb{A} does not interpret (=cannot simulate) 3-SAT
2. . . .
... Taylor, Hobby, McKenzie, Bulatov, Maróti, Siggers, . . .
33. . . .
34. $\text{Pol}(\mathbb{A})$ contains an operation t such that $t(a, a, \ldots, a) = a$ and $t(a_1, a_2, \ldots, a_k) = t(a_2, \ldots, a_k, a_1)$ for all $a, a_i \in A$

B, Kozik’10
Results
Better understanding of pre-algebraic results
Better understanding of pre-algebraic results

Far broader special cases solved. The dichotomy conjecture is true:

- if $|A| = 3$ Bulatov’06
- if $|A| = 4$ Marković et al.
- if A contains all unary relations Bulatov’03, Barto’11
- if $A = (A; R)$ where R is binary, without sources or sinks Barto, Kozik, Niven’09

Results
Results

- Better understanding of pre-algebraic results
- Far broader special cases solved. The dichotomy conjecture is true:
 - if $|A| = 3$ Bulatov’06
 - if $|A| = 4$ Marković et al.
 - if A contains all unary relations Bulatov’03, Barto’11
 - if $A = (A; R)$ where R is binary, without sources or sinks Barto, Kozik, Niven’09
- Applicability of known algorithmic principles understood
Better understanding of pre-algebraic results

Far broader special cases solved. The dichotomy conjecture is true:

- if $|A| = 3$ Bulatov’06
- if $|A| = 4$ Marković et al.
- if A contains all unary relations Bulatov’03, Barto’11
- if $A = (A; R)$ where R is binary, without sources or sinks Barto, Kozik, Niven’09

Applicability of known algorithmic principles understood

- Describing all solutions Idziak, Markovic, McKenzie, Valeriote, Willard’07
Better understanding of pre-algebraic results

Far broader special cases solved. The dichotomy conjecture is true:

- if $|A| = 3$ Bulatov'06
- if $|A| = 4$ Marković et al.
- if A contains all unary relations Bulatov’03, Barto’11
- if $A = (A; R)$ where R is binary, without sources or sinks Barto, Kozik, Niven’09

Applicability of known algorithmic principles understood

- Describing all solutions Idziak, Markovic, McKenzie, Valeriote, Willard’07
- Local consistency (constraint propagation) Barto, Kozik’09, Bulatov
Better understanding of pre-algebraic results

Far broader special cases solved. The dichotomy conjecture is true:

- if $|A| = 3$ Bulatov’06
- if $|A| = 4$ Marković et al.
- if \mathbb{A} contains all unary relations Bulatov’03, Barto’11
- if $\mathbb{A} = (A; R)$ where R is binary, without sources or sinks Barto, Kozik, Niven’09

Applicability of known algorithmic principles understood

- Describing all solutions Idziak, Markovic, McKenzie, Valeriote, Willard’07
- Local consistency (constraint propagation) Barto, Kozik’09, Bulatov
- All known tractable cases solvable by a combination of these two
Local consistency

Roughly: A has **bounded width** iff \(\text{CSP}(A) \) can be solved by checking local consistency
Local consistency

Roughly: \(A \) has **bounded width** iff CSP\((A)\) can be solved by checking local consistency

More precisely:
- Fix \(k \leq l \) (integers)
Local consistency

Roughly: \mathcal{A} has **bounded width** iff CSP(\mathcal{A}) can be solved by checking local consistency

More precisely:

- Fix $k \leq l$ (integers)
- (k, l)-algorithm: Derive the strongest constraints on k variables which can be deduced by “considering” l variables at a time.
Local consistency

Roughly: A has **bounded width** iff $\text{CSP}(A)$ can be solved by checking local consistency

More precisely:

- Fix $k \leq l$ (integers)
- (k, l)-algorithm: Derive the strongest constraints on k variables which can be deduced by “considering” l variables at a time.
- If a contradiction is found, answer “no” otherwise answer “yes”
Local consistency

Roughly: A has **bounded width** iff CSP(Å) can be solved by checking local consistency

More precisely:
- Fix \(k \leq l \) (integers)
- \((k, l)\)-algorithm: Derive the strongest constraints on \(k \) variables which can be deduced by “considering” \(l \) variables at a time.
- If a contradiction is found, answer “no” otherwise answer “yes”
- “no” answers are always correct
Local consistency

Roughly: A has **bounded width** iff CSP(A) can be solved by checking local consistency

More precisely:
- Fix $k \leq l$ (integers)
- (k, l)-algorithm: Derive the strongest constraints on k variables which can be deduced by “considering” l variables at a time.
- If a contradiction is found, answer “no” otherwise answer “yes”
- “no” answers are always correct
- if “yes” answers are correct for every instance of CSP(A) we say that A has **width** (k, l).
Local consistency

Roughly:

A has bounded width \((k, l) \) for some \(k \), \(l \) then \(A \) has bounded width \((k, l) \).

We say that \(A \) has width \((k, l) \).

If "yes" answers are correct for every instance of \(\text{CSP}(A) \), "no" answers are always correct.

Otherwise answer "yes".

If a contradiction is found, answer "no".

If a contradiction is found, answer "no".

a time.

variables which can be deduced by "considering" \(k \) variables at a time.

(\(k, l \)-algorithm: Derive the strongest constraints on \(k \) \(\geq l \)) (integers)

Fix \(k \geq l \) (integers)

More precisely:

Checking local consistency can be solved by

Roughly:

A has bounded width \(\iff \text{CSP}(A) \) can be solved by

Fix \(k \geq l \) (integers)
Local consistency

Roughly: \(\mathcal{A}\) has **bounded width** iff \(\text{CSP}(\mathcal{A})\) can be solved by checking local consistency

More precisely:

- Fix \(k \leq l\) (integers)
- \((k, l)\)-algorithm: Derive the strongest constraints on \(k\) variables which can be deduced by “considering” \(l\) variables at a time.
- If a contradiction is found, answer “no” otherwise answer “yes”
- “no” answers are always correct
- if “yes” answers are correct for every instance of \(\text{CSP}(\mathcal{A})\) we say that \(\mathcal{A}\) has **width** \((k, l)\).
- if \(\mathcal{A}\) has width \((k, l)\) for some \(k, l\) then \(\mathcal{A}\) has **bounded width**

Various equivalent formulations (bounded tree width duality, definability in Datalog)
Example of (2, 3)-consistency

Let \(\mathbb{A} = (\{0, 1\}; x = y, x \neq y) \)

Consider the instance

\[x = y, y = z, z = w, x \neq w \]
Example of $(2, 3)$-consistency

Let $\mathbb{A} = (\{0, 1\}; x = y, x \neq y)$

Consider the instance

$$x = y, \ y = z, \ z = w, \ x \neq w$$

- By looking at $\{x, y, z\}$ we see (using $x = y$ and $y = z$) that $x = z$.
Example of \((2, 3)\)-consistency

Let \(\mathbb{A} = (\{0, 1\}; x = y, x \neq y)\)

Consider the instance

\[x = y, \ y = z, \ z = w, \ x \neq w\]

- By looking at \(\{x, y, z\}\) we see (using \(x = y\) and \(y = z\)) that \(x = z\).
- By looking at \(\{x, z, w\}\) we see (using \(x = z\) and \(z = w\)) that \(x = w\).
Example of (2, 3)-consistency

Let $\mathbb{A} = (\{0, 1\}; x = y, x \neq y)$

Consider the instance

\[x = y, \; y = z, \; z = w, \; x \neq w \]

- By looking at $\{x, y, z\}$ we see (using $x = y$ and $y = z$) that $x = z$.
- By looking at $\{x, z, w\}$ we see (using $x = z$ and $z = w$) that $x = w$.
- By looking at $\{x, w\}$ we now see a contradiction
Example of \((2, 3)\)-consistency

Let \(\mathbb{A} = (\{0, 1\}; x = y, x \neq y)\)

Consider the instance

\[x = y, \ y = z, \ z = w, \ x \neq w\]

\(\triangleright\) By looking at \(\{x, y, z\}\) we see (using \(x = y\) and \(y = z\)) that \(x = z\).

\(\triangleright\) By looking at \(\{x, z, w\}\) we see (using \(x = z\) and \(z = w\)) that \(x = w\).

\(\triangleright\) By looking at \(\{x, w\}\) we now see a contradiction

In fact, \(\mathbb{A}\) has width \((2, 3)\), that is, such reasoning is always sufficient for an instance of \(\text{CSP}(\mathbb{A})\).
Bounded width

The problems q-LIN do not have bounded width
Feder, Vardi‘93
Bounded width

- The problems \(q\text{-LIN} \) do not have bounded width
 Feder, Vardi‘93
- If \(A \) can simulate \(q\text{-LIN} \) then \(A \) does not have bounded width
 Larose, Zádori’07
▶ The problems q-LIN do not have bounded width
Feder, Vardi‘93

▶ If A can simulate q-LIN then A does not have bounded width
Larose, Zádori’07

▶ Thus the “obvious” necessary condition for bounded width is that A cannot simulate q-LIN.
Bounded width

- The problems q-LIN do not have bounded width
 Feder, Vardi‘93

- If A can simulate q-LIN then A does not have bounded width
 Larose, Zádori’07

- Thus the “obvious” necessary condition for bounded width is that A cannot simulate q-LIN.

- It is sufficient:
Bounded width

- The problems \(q\text{-LIN} \) do not have bounded width
 Feder, Vardi'93
- If \(A \) can simulate \(q\text{-LIN} \) then \(A \) does not have bounded width
 Larose, Zádori’07
- Thus the “obvious” necessary condition for bounded width is that \(A \) cannot simulate \(q\text{-LIN} \).
- It is sufficient:

 Theorem

 The following are equivalent.

 1. \(A \) cannot simulate \(q\text{-LIN} \)
 2. \(A \) has bounded width \(B \), Kozik’09
 3. \(A \) has width \((2, 3)\) \(B \); Bulatov
Task: Find an almost satisfying assignment given an almost satisfiable instance
Task: Find an almost satisfying assignment given an almost satisfiable instance.

More precisely: Find an assignment satisfying at least
\((1 - g(\varepsilon))\) fraction of the constraints given an instance which
is \((1 - \varepsilon)\) satisfiable, where \(g(\varepsilon) \to 0\) as \(\varepsilon \to 0\) (\(g\) should only
depend on \(A\)).
Task: Find an almost satisfying assignment given an almost satisfiable instance

More precisely: Find an assignment satisfying at least $(1 - g(\varepsilon))$ fraction of the constraints given an instance which is $(1 - \varepsilon)$ satisfiable, where $g(\varepsilon) \to 0$ as $\varepsilon \to 0$ (g should only depend on A).

Algorithms for 2-SAT and HORN-SAT based on linear programming and semidefinite programming Zwick’98
Task: Find an almost satisfying assignment given an almost satisfiable instance

More precisely: Find an assignment satisfying at least $(1 - g(\varepsilon))$ fraction of the constraints given an instance which is $(1 - \varepsilon)$ satisfiable, where $g(\varepsilon) \to 0$ as $\varepsilon \to 0$ (g should only depend on \mathbb{A}).

Algorithms for 2-SAT and HORN-SAT based on linear programming and semidefinite programming Zwick’98

q-LIN has no robust polynomial algorithm (assuming $P \neq NP$) Hastad’01
Task: Find an almost satisfying assignment given an almost satisfiable instance

More precisely: Find an assignment satisfying at least \((1 - g(\varepsilon))\) fraction of the constraints given an instance which is \((1 - \varepsilon)\) satisfiable, where \(g(\varepsilon) \to 0\) as \(\varepsilon \to 0\) (\(g\) should only depend on \(A\)).

- Algorithms for 2-SAT and HORNSAT based on linear programming and semidefinite programming [Zwick’98]
- \(q\)-LIN has no robust polynomial algorithm (assuming \(P \neq NP\)) [Hastad’01]
- If \(A\) can simulate \(q\)-LIN then CSP\((A)\) has no robust algorithm [Dalmau, Krokhin’11]
If A can simulate q-LIN then $\text{CSP}(A)$ has no robust algorithm \cite{Dalmau, Krokhin’11}
If A can simulate q-LIN then $\text{CSP}(A)$ has no robust algorithm [Dalmau, Krokhin’11]

Conjecture of Guruswami and Zhou: this is the only obstacle
If A can simulate q-LIN then $\text{CSP}(A)$ has no robust algorithm Dalmau, Krokhin’11

Conjecture of Guruswami and Zhou: this is the only obstacle

Theorem (B, Kozik’12)

The following are equivalent (assuming $P \neq NP$)
- A cannot simulate q-LIN
- $\text{CSP}(A)$ has a robust polynomial algorithm
- canonical semidefinite programming relaxation correctly decides $\text{CSP}(A)$
Bonus 2: Counting CSP

- The complexity is also controlled by $\text{Pol}(A)$
Bonus 2: Counting CSP

- The complexity is also controlled by $\text{Pol}(A)$
- A necessary condition for tractability found
 Bulatov, Dalmau’03
 (inspiration: the other algorithm for decision CSPs)
The complexity is also controlled by $\text{Pol}(\mathbb{A})$.

- A necessary condition for tractability found by Bulatov and Dalmau (2003) (inspiration: the other algorithm for decision CSPs).
- A stronger necessary condition for tractability found by Bulatov and Grohe (2005).
The complexity is also controlled by $\text{Pol}(\mathbb{A})$.

A necessary condition for tractability found:
Bulatov, Dalmau'03
(inspiration: the other algorithm for decision CSPs)

A stronger necessary condition for tractability found:
Bulatov, Grohe'05

The stronger condition is sufficient:
Bulatov'08, Dyer and Richerby'10
Final remarks

For decision CSPs

- Easy criterion for hardness
- Theory gives generic reduction between any two NP-complete CSPs (instead of ad hoc reductions)
- Applicability of known algorithms understood
- The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)

- Universal algebra also relevant (Cohen, Cooper, Creed, Jeavons, ˇZivn´ y; Raghavendra; Bodirsky, Pinsker)
- More or less the same criterion for easiness/hardness
- Easiness comes from "symmetry"
- One needs symmetry of higher arity (e.g. polymorphisms) rather than just automorphisms or endomorphisms

Beyond CSPs

- ???
- There is ≥1 examples (Raghavendra)
Final remarks

For decision CSPs
- Easy criterion for hardness
- Theory gives generic reduction between any two NP-complete CSPs (instead of ad hoc reductions)
- Applicability of known algorithms understood
- The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)
- Universal algebra also relevant Cohen, Cooper, Creed, Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
- More or less the same criterion for easiness/hardness
- Easiness comes from “symmetry”
- One needs symmetry of higher arity (e.g. polymorphisms) rather than just automorphisms or endomorphisms
Final remarks

For decision CSPs
 ▶ Easy criterion for hardness
 ▶ Theory gives generic reduction between any two NP-complete CSPs (instead of ad hoc reductions)
 ▶ Applicability of known algorithms understood
 ▶ The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)
 ▶ Universal algebra also relevant Cohen, Cooper, Creed, Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
 ▶ More or less the same criterion for easiness/hardness
 ▶ Easiness comes from “symmetry”
 ▶ One needs symmetry of higher arity (e.g. polymorphisms) rather than just automorphisms or endomorphisms

Beyond CSPs
 ▶ ???
 ▶ There is ≥ 1 examples Raghavendra
We need coffee!
Thank you!