Rectangularity Theorem for Conservative Algebras

Libor Barto

2nd table Office No. 3941 **Department of Algebra** Section of Mathematics **Faculty of Mathematics and Physics** Charles University Prague 8 Prague Bohemia Czech Republic Central Europe Europe Eurasia Earth Thanks Pierre!

AAA Bedlewo 2010

CSP for algebras

Definition (CSP(A))

Let A be a finite algebra. CSP(A) is the following decision problem:

INPUT: Formula of the form

 $(x_1, x_2) \in R_1$ & $(x_3, x_1, x_3, x_4) \in R_2$ & $x_7 \in R_3$ &...

where each R_i is a subpower of **A** ($R_1 \leq \mathbf{A}^2$, $R_2 \leq \mathbf{A}^4$, $R_3 \leq \mathbf{A}$)

QUESTION: Is the formula satisfiable?

CSP for algebras

Definition (CSP(A))

Let A be a finite algebra. CSP(A) is the following decision problem:

INPUT: Formula of the form

 $(x_1, x_2) \in R_1$ & $(x_3, x_1, x_3, x_4) \in R_2$ & $x_7 \in R_3$ &...

where each R_i is a subpower of **A** ($R_1 \leq \mathbf{A}^2$, $R_2 \leq \mathbf{A}^4$, $R_3 \leq \mathbf{A}$)

QUESTION: Is the formula satisfiable?

Theorem (Bulatov, Jeavons, Krokhin '00)

If A is not a Taylor algebra, then CSP(A) is NP-complete.

Conjecture ((A stronger) algebraic dichotomy conjecture)

If A is a Taylor algebra, then CSP(A) is tractable.

A (big) theorem of Bulatov

Theorem (BJK'00)

To prove the conjecture, we can WLOG assume that ${\bf A}$ is idempotent.

A is idempotent

$$\Leftrightarrow f(a, a, \dots, a) = a \quad (\text{for all } f, a)$$
$$\Leftrightarrow \{a\} \leq \mathbf{A} \quad (\text{for all } a \in A)$$

A (big) theorem of Bulatov

Theorem (BJK'00)

To prove the conjecture, we can WLOG assume that ${\bf A}$ is idempotent.

A is idempotent

$$\Leftrightarrow f(a, a, \dots, a) = a \quad (\text{for all } f, a)$$
$$\Leftrightarrow \{a\} \le \mathbf{A} \quad (\text{for all } a \in A)$$

Theorem (Bulatov'05)

If ${\bm A}$ is a (finite) conservative Taylor algebra, then ${\rm CSP}({\bm A})$ is tractable.

A is conservative

$$\Leftrightarrow f(a_1, a_2, \dots, a_n) \in \{a_1, a_2, \dots, a_n\} \quad (\text{for all } \dots)$$

$$\Leftrightarrow B \leq \mathbf{A} \quad (\text{for all } B \subseteq \mathbf{A})$$

Bulatov's proof:

- Many cases depending on local structure of the algebra
- Difficult, long (80 pages)

Our new proof:

- Uses theory developed with Marcin Kozik (absorption, Prague strategies)
- + Rectangularity theorem
- Natural, short

Taylor algebras

Theorem

Let A be a finite idempotent algebra. TFAE

- (4) A satisfies some nontrivial idempotent Maltsev condition
- (3) HSP(**A**) contains a two element algebra, whose every operation is a projection
- (2) A is not at the bottom of the interpretability lattice

Taylor algebras

Theorem

Let A be a finite idempotent algebra. TFAE

- (4) A satisfies some nontrivial idempotent Maltsev condition
- (3) HSP(**A**) contains a two element algebra, whose every operation is a projection
- (2) **A** is not at the bottom of the interpretability lattice
- (7) Taylor 73 A has a Taylor term
- (5) Hobby, McKenzie 85 HSP(A) omits type 1
- (6) Maróti, McKenzie 06 A has a WNU
- (1) Barto, Kozik 09 A has a cyclic term
- (8) Siggers 09 A has a Siggers term

Taylor algebras

Theorem

Let A be a finite idempotent algebra. TFAE

- (4) A satisfies some nontrivial idempotent Maltsev condition
- (3) HSP(**A**) contains a two element algebra, whose every operation is a projection
- (2) **A** is not at the bottom of the interpretability lattice
- (7) Taylor 73 A has a Taylor term
- (5) Hobby, McKenzie 85 HSP(A) omits type 1
- (6) Maróti, McKenzie 06 A has a WNU
- (1) Barto, Kozik 09 A has a cyclic term
- (8) Siggers 09 A has a Siggers term

Definition

Such algebras are called Taylor.

Definition

We say that B is an absorbing subuniverse of A (A is idempotent), $B \triangleleft A$, if $B \leq A$ and $\exists t \in Clo(A)$

 $t(A, B, B, \ldots, B) \subseteq B, t(B, A, B, B, \ldots, B) \subseteq B, \ldots$

B is a minimal absorbing subuniverse (MAS) of **A**, $B \triangleleft \triangleleft \mathbf{A}$, if it is a minimal absorbing subuniverse :)

Definition

We say that B is an absorbing subuniverse of A (A is idempotent), $B \triangleleft A$, if $B \leq A$ and $\exists t \in Clo(A)$

 $t(A, B, B, \ldots, B) \subseteq B, t(B, A, B, B, \ldots, B) \subseteq B, \ldots$

B is a minimal absorbing subuniverse (MAS) of **A**, $B \triangleleft \triangleleft \mathbf{A}$, if it is a minimal absorbing subuniverse :)

Theorem (Barto, Kozik'08)

Let \mathbf{A} , \mathbf{B} be Taylor algebras (in the same idempotent variety), let $R \leq \mathbf{A} \times \mathbf{B}$ be subdirect and linked. Then $R = A \times B$, or \mathbf{A} has a proper absorbing subuniverse, or \mathbf{B} has ...

Theorem

Let $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$ be fin. conservative Taylor algs from a variety $B_i \triangleleft \triangleleft \mathbf{A}_i, R \leq \mathbf{A}_1 \times \dots \times \mathbf{A}_n$ subdirect Assume $R \cap (B_1 \times \dots \times B_n) \neq \emptyset$

Theorem

Let $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$ be fin. conservative Taylor algs from a variety $B_i \triangleleft \triangleleft \mathbf{A}_i, R \leq \mathbf{A}_1 \times \dots \times \mathbf{A}_n$ subdirect Assume $R \cap (B_1 \times \dots \times B_n) \neq \emptyset$

Define $i \sim j$ iff $\forall (a_1, \dots, a_n) \in R$ $a_i \in B_i \Leftrightarrow a_j \in B_j$ Let D_1, \dots, D_k be \sim -blocks

Theorem

Let $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$ be fin. conservative Taylor algs from a variety $B_i \triangleleft \triangleleft \mathbf{A}_i, R \leq \mathbf{A}_1 \times \dots \times \mathbf{A}_n$ subdirect Assume $R \cap (B_1 \times \dots \times B_n) \neq \emptyset$

Define $i \sim j$ iff $\forall (a_1, \dots, a_n) \in R$ $a_i \in B_i \Leftrightarrow a_j \in B_j$ Let D_1, \dots, D_k be \sim -blocks

Then

a tuple $\mathbf{b} = (b_1, \dots, b_n) \in B_1 \times \dots \times B_n$ is in R iff the restriction of \mathbf{b} to D_j is in the projection of R to D_j (for all $j = 1, \dots, k$).