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CSP for algebras

Definition (CSP(A))

Let A be a finite algebra.
CSP(A) is the following decision problem:

INPUT: Formula of the form

(x1, x2) ∈ R1 & (x3, x1, x3, x4) ∈ R2 & x7 ∈ R3 & . . .

where each Ri is a subpower of A (R1 ≤ A2, R2 ≤ A4, R3 ≤ A)

QUESTION: Is the formula satisfiable?

Theorem (Bulatov, Jeavons, Krokhin ‘00)

If A is not a Taylor algebra, then CSP(A) is NP-complete.

Conjecture ((A stronger) algebraic dichotomy conjecture)

If A is a Taylor algebra, then CSP(A) is tractable.
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A (big) theorem of Bulatov

Theorem (BJK’00)

To prove the conjecture, we can WLOG assume that A is
idempotent.

A is idempotent
⇔ f (a, a, . . . , a) = a (for all f , a)
⇔ {a} ≤ A (for all a ∈ A)

Theorem (Bulatov’05)

If A is a (finite) conservative Taylor algebra, then CSP(A) is
tractable.

A is conservative
⇔ f (a1, a2, . . . , an) ∈ {a1, a2, . . . , an} (for all . . . )
⇔ B ≤ A (for all B ⊆ A)
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A new proof

Bulatov’s proof:

I Many cases depending on local structure of the algebra

I Difficult, long (80 pages)

Our new proof:

I Uses theory developed with Marcin Kozik (absorption, Prague
strategies)

I + Rectangularity theorem

I Natural, short



Taylor algebras

Theorem

Let A be a finite idempotent algebra. TFAE

(4) A satisfies some nontrivial idempotent Maltsev condition

(3) HSP(A) contains a two element algebra, whose every
operation is a projection

(2) A is not at the bottom of the interpretability lattice

(7) Taylor 73 A has a Taylor term

(5) Hobby, McKenzie 85 HSP(A) omits type 1

(6) Maróti, McKenzie 06 A has a WNU

(1) Barto, Kozik 09 A has a cyclic term

(8) Siggers 09 A has a Siggers term

Definition

Such algebras are called Taylor.
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Absorption

Definition

We say that B is an absorbing subuniverse of A (A is idempotent),
B / A, if B ≤ A and ∃t ∈ Clo(A)

t(A, B, B, . . . , B) ⊆ B, t(B, A, B, B, . . . , B) ⊆ B, . . .

B is a minimal absorbing subuniverse (MAS) of A, B // A, if it is
a minimal absorbing subuniverse :)

Theorem (Barto, Kozik’08)

Let A, B be Taylor algebras (in the same idempotent variety), let
R ≤ A× B be subdirect and linked. Then R = A× B, or A has a
proper absorbing subuniverse, or B has . . .
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Rectangularity Theorem

Theorem

Let A1, A2, . . . , An be fin. conservative Taylor algs from a variety
Bi // Ai , R ≤ A1 × · · · × An subdirect

Assume R ∩ (B1 × · · · × Bn) 6= ∅

Define i ∼ j iff ∀(a1, . . . , an) ∈ R ai ∈ Bi ⇔ aj ∈ Bj

Let D1, . . . , Dk be ∼-blocks

Then
a tuple b = (b1, . . . , bn) ∈ B1 × · · · × Bn is in R

iff
the restriction of b to Dj is in the projection of R to Dj

(for all j = 1, . . . , k).
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