Universal Algebra Today Part III

Libor Barto

Charles University, Prague

55th Summer School on Algebra and Ordered Sets Nový Smokovec, 3–8 Sep 2017

Summary of the last talk and an outline

Summary of the last talk:

- ▶ properties of congruences ↔ connectivity properties of relations ↔ equational conditions
- 3 levels of abstraction the last one is trivial for permutation groups!
- theories in today's UA
 - commutator theory: everywhere
 - mostly algebraic: tame congruence theory, Bulatov's theory
 - mostly relational: absorption, Zhuk's theory
- ► Abelianness, Fundamental Theorem (Abelian + Mal'tsev ⇒ module)
- Taylor = idempotent and equationally nontrivial; $HSP \rightarrow HS$

Today:

- ▶ Absorption: (1) absorbs connectivity and (2) is everywhere
- Absorption and Abelianness
- Directions

L. Barto (CUNI)

Absorption

 \mathbb{K}_{3}^{c} (the undirected triangle with singletons):

- ▶ domain *A* = {0, 1, 2}
- ▶ binary relation $R = \{(a, b) \in A^2 : a \neq b\}$ and singletons $C_i = \{i\}$

We will show: $A := Pol(\mathbb{K}_3^c) = projections$

Step 1: $(\forall f \in \mathbf{A}, a_i \in A) \ f(a_1, ..., a_n) \in \{a_1, ..., a_n\}$

- Each singleton is a subuniverse of A
- Neighbors of 0 are $1, 2 \Rightarrow \{1, 2\} \leq \mathbf{A}$
- Similarly $\{0,2\}$, $\{0,1\}$ are subuniverses as well

Example: $Pol(\mathbb{K}_3^c)$, part 2/4

Step 1:
$$(\forall f \in A, a_i \in A) f(a_1, ..., a_n) \in \{a_1, ..., a_n\}$$

Step 2: The only unary and binary operations in A are projections

From Step 1,
$$f(0,1) \in \{0,1\}$$
. Assume $f(0,1) = 0$.

• f(0,1) = 0, $f(2,2) = 2 + \text{compatibility with } R \Rightarrow f(1,0) = 1$.

•
$$f(0,1) = 0$$
, $f(1,1) = 1 + \text{compatibility with } R \Rightarrow f(2,0) = 2$.

▶ ...

f is the first projection

Step 3: Take *n*-ary $f \in \mathbf{A}$ and consider $f_i(x, y) := f(x, ..., x, y, x, ..., x)$ By Step 2, for each *i*

• either
$$(\forall x, y \in A) f_i(x, y) = x$$

• or
$$(\forall x, y \in A) f_i(x, y) = y$$

Step 1:
$$(\forall f \in \mathbf{A}, a_i \in A) f(a_1, \dots, a_n) \in \{a_1, \dots, a_n\}$$

Step 2: The only unary and binary operations in **A** are projections
Step 3: Take *n*-ary $f \in \mathbf{A}$ and consider $f_i(x, y) := f(x, \dots, x, y, x, \dots, x)$
Step 4a: Assume $(\exists i) f_i(x, y) = y$, say $i = 1$

• aim:
$$f = \pi_1$$

▶
$$f(0,1,...,1) = 0 + \text{compatibility with } R + \text{Step } 1 \Rightarrow f(0, \{0,2\}, \{0,2\},..., \{0,2\}) = \{0\}$$

- $f(a, \{a, b\}, \dots, \{a, b\}) = \{a\}$ for each $a, b \in A$
- Similarly $f(a, A, \ldots, A) = \{a\}$

Example: $Pol(\mathbb{K}_3^c)$, part 4/4

- **Step 1:** $(\forall f \in \mathbf{A}, a_i \in A) f(a_1, ..., a_n) \in \{a_1, ..., a_n\}$
- Step 2: The only unary and binary operations in A are projections
- **Step 3:** Take *n*-ary $f \in \mathbf{A}$ and consider $f_i(x, y) := f(x, \dots, x, y, x, \dots, x)$
- **Step 4b:** Assume $(\forall i) f_i(x, y) = x \Rightarrow f$ is a near unanimity operation
 - ► $f(0,2,...,2) = 2 + \text{compatibility} \Rightarrow f(\{1,2\},\{0,1\},...,\{0,1\}) \subseteq \{0,1\}$
 - ► + Step 1 \Rightarrow $f(A, \{0,1\}, \ldots, \{0,1\}) \subseteq \{0,1\}$
 - Similarly if "A" is at a different coordinate
 - Draw R as a bipartite graph
 - ▶ The following path links 0 and 1 "on the left", within {0,1}:

$$f(0,0,\ldots,0), f(2,1,\ldots,1),$$

$$f(1,0,0,\ldots,0), f(0,2,1,\ldots,1),$$

$$f(1,1,0,\ldots,0), f(0,0,2,1,\ldots,1),$$

$$f(1,1,\ldots,1)$$

Absorption and Absorption Theorem

Definition

Subuniverse B of A is absorbing, if $(\exists f \in A)$ such that $f(A, B, B, \ldots, B), f(B, A, B, \ldots, B), \ldots f(B, B, \ldots, B, A) \subseteq B$

- ▶ Step 4b used that {0,1} was absorbing
- Absorption "absorbs connectivity properties of relations"
- Recall: connectivity properties of relations are important (permutability, congruence distributivity)
- Absorption "behaves nicely" w.r.t. pp-definitions
- Absorption is not rare:

Theorem (Absorption Theorem, [Barto,Kozik])

If **A** is finite Taylor, $R \leq_{sd} \mathbf{A}^2$, R is linked, $R \neq A^2$, then **A** has a proper absorbing subuniverse.

Loop Lemma

Theorem (Baby Loop Lemma)

If **A** is finite Taylor and $R \leq_{sd} \mathbf{A}^2$, R is linked, then $(\exists a \in A) \ (a, a) \in R$

Proof.

- By induction on |A|. Draw R as a bipartite graph and a digraph.
- Absorption Theorem \Rightarrow there exists a proper absorbing subuniverse B
- By walking obtain a proper absorbing C such that there is an infinitely long path within C (in digraph sense)
 - Use the bipartite graph picture of R
 - Start with $B_0 = B$ on the left. Take B_1 neighbors of B_0 on the right, B_2 neighbors of B_1 on the left, ...
 - $B_n = A$ for sufficiently large n
 - Say B_i is still proper, WLOG on the left, $B_{i+1} = A$
 - B_i is absorbing (absorption behaves nicely w.r.t pp-definitions)
 - Each element of A on the right (in particular in B_i) has a neighbor in B_i on the left \Rightarrow there is a circle in B_i (in digraph sense)

L. Barto (CUNI)

UA Today III

SSAOS 2017 9 / 22

Loop Lemma

Theorem (Baby Loop Lemma)

If **A** is finite Taylor and $R \leq_{sd} \mathbf{A}^2$, R is linked, then $(\exists a \in A) (a, a) \in R$

Proof.

- ▶ By induction on |A|. Draw R as a bipartite graph and a digraph.
- Absorption Theorem \Rightarrow there exists a proper absorbing subuniverse *B*
- By walking obtain a proper absorbing C such that there is an infinitely long path within C (in digraph sense)
- ▶ Take *D* all the elements in infinitely long paths within *C*
- ▶ D is nonempty, absorbing, $S := R \cap (D \times D)$ is subdirect in $D \times D$
- ► *S* is linked (absorption absorbs connectivity, see Step 4b).
- Use induction hypothesis for S.

Sigger's operation

Theorem (Loop Lemma [Barto, Kozik, Niven])

If **A** is finite Taylor, $R \leq_{sd} \mathbf{A}^2$, $R \circ R \dots$ is linked, then $(\exists a \in A)(a, a) \in R$

Theorem ([Kearnes, Marković,McKenzie])

If **A** is finite Taylor, then $(\exists s \in \mathbf{A}) \ s(r, a, r, e) = s(a, r, e, a)$

Proof.

• denote
$$a := \pi_1^3$$
, $e := \pi_2^3$, $r := \pi_3^3$

- Consider subuniverse R of Free_A(3) × Free_A(3) generated by (r, a), (a, r), (r, e), (e, a)
- ▶ $R = \{(f(r, a, r, e), f(a, r, e, a)) : f \in A \text{ 4-ary}\}$
- Free_A(3) is finite Taylor, $R \circ R$ is linked (because of generators)
- ▶ By the Loop Lemma, R contains a loop ⇒ f(r, a, r, e) = f(a, r, e, a) for some f

L. Barto (CUNI)

Theorem (Loop Lemma [Barto,Kozik,Niven])

If **A** is finite Taylor, $R \leq_{sd} \mathbf{A}^2$, $R \circ R \dots$ is linked, then $(\exists a \in A)(a, a) \in R$

Theorem ([Kearnes, Marković,McKenzie])

If **A** is finite Taylor, then $(\exists s \in \mathbf{A}) \ s(r, a, r, e) = s(a, r, e, a)$

- \blacktriangleright The same proof idea as for eg. "rectangularity \Rightarrow Mal'tsev"
- The weakest nontrivial idempotent identity for finite algebras!

Absorption and Abelianness

Theorem (Hobby,McKenzie?)

If **A** is a finite Taylor Abelian clone, then $\mathbf{A} \subseteq \text{Clo}(\mathbf{M} + \text{consts})$ for some module \mathbf{M} (M = A) over a ring **R**

- finiteness necessary in this version
- original proof very complicated
- proof via absorption:
 - By the 1st version of Fundamental Theorem, enough to show that A has a Mal'tsev operation
 - Abelian \Rightarrow avoids absorption
 - Avoids absorption \Rightarrow avoids absorption in a stronger sense
 - $\blacktriangleright \Rightarrow$ avoids absorption in free algebra + Absorption Theorem \Rightarrow Mal'tsev

Proposition

If A is a finite Taylor Abelian clone, then no $B \leq A$ has a proper absorbing subuniverse

Proof.	
Short	

Proposition

If **A** is idempotent and no **B** \leq **A** has a proper absorbing subuniverse, then no **B** \leq **A**ⁿ has a proper absorbing subuniverse

Proof.

Similar to the Bulatov's "getting rid of powers" proposition

Proposition

If A is a finite Taylor Abelian clone, then A has a Mal'tsev operation

Proof.

- Previous proposition \Rightarrow **Free**_A(2) is absorption free
- Consider (again) the subuniverse R of Free_A(2) × Free_A(2) generated by (π₂, π₁), (π₁, π₁), (π₁, π₂)
- It is linked
- ▶ By Absorption Theorem, $R = (Free_A(2))^2$. In particular $(\pi_2, \pi_2) \in R$
- ► Then m has a Mal'tsev term (as in the "rectangularity ⇒ Mal'tsev", again)

Directions

- Connection to tame congruence theory?
- Concepts are different, some results are almost the same
- Bulatov's theory is very technical
- Bulatov (and partly Zhuk) doesn't apply to all Taylor clones, taking reducts is necessary

14 days with Bulatov, Kozik, and Zhuk this summer:

- There are very tight links among the 3 theories for Taylor minimal clones
 - **Def:** A is Taylor minimal if it is Taylor and no reduct is Taylor
 - **Fact:** Each finite Taylor clone has a finite Taylor minimal reduct
 - Inspiration from the work of [Zarathustra Brady]
- (At least parts of) Bulatov can be simplified if we take a more relational approach

$\mathsf{Finite} \to \mathsf{Infinite}$

Surprisingly, some results from finite UA generalize to infinite

- commutator theory [Kearnes, Kiss]
- stronger Malt'sev condition for CD and CM

Theorem ([Kazda, Kozik, McKenzie, Moore] Classic formulation)

A variety is congruence distributive iff it has directed Jónsson terms p_1, \ldots, p_n ie.

 $p_1(x, x, y) = x, p_n(x, y, y) = y, (\forall i) p_i(x, y, x) = x$ like Jónsson $(\forall i) p_i(x, y, y) = p_{i+1}(x, x, y)$

there is a weakest nontrivial idempotent equational condition

Theorem ([OIšák])

A clone is Taylor iff it has a 6-ary operation t such that

$$t(y,x,x,x,y,y) = t(x,y,x,y,x,y) = t(x,x,y,y,y,x)$$

L. Barto (CUNI)

UA Today III

Generalizations and many more levels of abstraction

"reasonably" infinite clones [Bodirsky, Pinsker]

- they capture complexity of many decision problems (including undecidable)
- todo: use, incorporate, and algebraize techniques in topology, model theory, Ramsey theory
- eg. topological Birkhoff theorem [Bodirsky, Pinsker]
- ▶ eg. Ramsey theory via group actions [Kechris, Pestov, Todorcevic]
- eg. cores for infinite structures via Fraissé argument on the algebraic side [Barto, Kompatscher, Van Pham, Pinsker]
- ▶ weighted clones [Cohen, Cooper, Creed, Jeavons, Živný]
 - they capture complexity of optimization problems
 - success full complexity classification of "valued CSPs" [Kolmogorov, Krokhin, Rolínek]
 - use and incorporate probabilistic and analytical techniques
 - eg. correlation decay → some form of Absorption Theorem [Brown-Cohen, Raghavendra]
- minor closed sets [Pöschel], [Aichinger], [Brakensiek,Guruswami]
 - they capture complexity of promise problems
 - Inear Birkhoff theorem [Barto, Opršal, Pinsker]

L. Barto (CUNI)

UA Today III

δ -approximation of 3-SAT:

INPUT: 3-SAT instance, eg. $(x_1 \lor \neg x_5 \lor x_3) \land (\neg x_3 \lor x_2 \lor \neg x_9) \land \dots$ **OUTPUT**: assignment satisfying at least δ -fraction of clauses for satisfiable instances

- ► (∃δ < 1) this problem is NP-hard ... the PCP theorem Gödel Prize [Arora, Feige, Goldwasser, Lund, Lovász, Motwani, Safra, Sudan, Szegedy]
- (∀δ > 7/8) this problem is NP-hard ... tight!
 Gödel Prize [Hastad]
 based on hardness of approximating "Label Cover"
- "Label Cover is the mother of strong inapproximability results" [Guruswami]

Label Cover is a UA problem about linear identities! [Bulin] INPUT: finite set of linear identities OUTPUT: are they trivial (satisfiable in **Proj**) or nontrivial?

Approximate version (depending on δ):

OUTPUT: are they trivial or δ -robustly nontrivial?

Other fun facts in complexity:

- ▶ essential tool: Long code ... code $i \in [n]$ by π_i^n
- complexity of approximation depends on "approximate polymorphisms" assuming the Unique Games Conjecture [Khot] (Nevanlinna Prize for this conjecture)
- convex programming is "based on" polymorphisms

Summary

This is the most exciting period of time for universal algebra

- Ist substantial application outside (in computational complexity)
- many new directions (topology, analysis), connections and potential applications (in the CS mainstream)
 - semigroups? Some questions in automata are UA, they look different [Bojanczyk]
- new theories (Absorption, Bulatov, Zhuk, higher commutators): calls for simplification, unification, improvements
- new fundamental concepts and basic results (eg. minor closed set, topological clone, weighted clone, variants of Birkhoff)
- older parts are getting stronger (eg. CD, Olšák) and simpler (eg. Fundamental Theorem on Abelian Clones)