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Summary of the last talk and an outline

Summary of the last talk:

I properties of congruences ↔ connectivity properties of relations
↔ equational conditions

I 3 levels of abstraction
the last one is trivial for permutation groups!

I theories in today’s UA
I commutator theory: everywhere
I mostly algebraic: tame congruence theory, Bulatov’s theory
I mostly relational: absorption, Zhuk’s theory

I Abelianness, Fundamental Theorem (Abelian + Mal’tsev ⇒ module)

I Taylor = idempotent and equationally nontrivial; HSP → HS

Today:

I Absorption: (1) absorbs connectivity and (2) is everywhere

I Absorption and Abelianness

I Directions
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Absorption
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Example: Pol(Kc
3), part 1/4

Kc
3 (the undirected triangle with singletons):

I domain A = {0, 1, 2}
I binary relation R = {(a, b) ∈ A2 : a 6= b} and singletons Ci = {i}

We will show: A := Pol(Kc
3) = projections

Step 1: (∀f ∈ A, ai ∈ A) f (a1, . . . , an) ∈ {a1, . . . , an}
I Each singleton is a subuniverse of A

I Neighbors of 0 are 1, 2 ⇒ {1, 2} ≤ A

I Similarly {0, 2}, {0, 1} are subuniverses as well
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Example: Pol(Kc
3), part 2/4

Step 1: (∀f ∈ A, ai ∈ A) f (a1, . . . , an) ∈ {a1, . . . , an}

Step 2: The only unary and binary operations in A are projections

I From Step 1, f (0, 1) ∈ {0, 1}. Assume f (0, 1) = 0.

I f (0, 1) = 0, f (2, 2) = 2 + compatibility with R ⇒ f (1, 0) = 1.

I f (0, 1) = 0, f (1, 1) = 1 + compatibility with R ⇒ f (2, 0) = 2.

I . . .

I f is the first projection

Step 3: Take n-ary f ∈ A and consider fi (x , y) := f (x , . . . , x , y , x , . . . , x)

By Step 2, for each i

I either (∀x , y ∈ A) fi (x , y) = x

I or (∀x , y ∈ A) fi (x , y) = y
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Example: Pol(Kc
3), part 3/4

Step 1: (∀f ∈ A, ai ∈ A) f (a1, . . . , an) ∈ {a1, . . . , an}
Step 2: The only unary and binary operations in A are projections
Step 3: Take n-ary f ∈ A and consider fi (x , y) := f (x , . . . , x , y , x , . . . , x)
Step 4a: Assume (∃i) fi (x , y) = y , say i = 1

I aim: f = π1

I f (0, 1, . . . , 1) = 0 + compatibility with R + Step 1 ⇒
f (0, {0, 2}, {0, 2}, . . . , {0, 2}) = {0}

I f (a, {a, b}, . . . , {a, b}) = {a} for each a, b ∈ A

I Similarly f (a,A, . . . ,A) = {a}
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Example: Pol(Kc
3), part 4/4

Step 1: (∀f ∈ A, ai ∈ A) f (a1, . . . , an) ∈ {a1, . . . , an}
Step 2: The only unary and binary operations in A are projections
Step 3: Take n-ary f ∈ A and consider fi (x , y) := f (x , . . . , x , y , x , . . . , x)
Step 4b: Assume (∀i) fi (x , y) = x ⇒ f is a near unanimity operation

I f (0, 2, . . . , 2) = 2 + compatibility ⇒
f ({1, 2}, {0, 1}, . . . {0, 1}) ⊆ {0, 1}

I + Step 1 ⇒ f (A, {0, 1}, . . . , {0, 1}) ⊆ {0, 1}
I Similarly if “A” is at a different coordinate
I Draw R as a bipartite graph
I The following path links 0 and 1 “on the left”, within {0, 1}:

f (0, 0, . . . , 0), f (2, 1, . . . , 1),

f (1, 0, 0, . . . , 0), f (0, 2, 1, . . . , 1),

f (1, 1, 0, . . . , 0), f (0, 0, 2, 1, . . . , 1),

. . .

f (1, 1, . . . , 1)
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Absorption and Absorption Theorem

Definition

Subuniverse B of A is absorbing, if (∃f ∈ A) such that
f (A,B,B, . . . ,B), f (B,A,B, . . . ,B), . . . f (B,B, . . . ,B,A) ⊆ B

I Step 4b used that {0, 1} was absorbing

I Absorption “absorbs connectivity properties of relations”

I Recall: connectivity properties of relations are important
(permutability, congruence distributivity)

I Absorption “behaves nicely” w.r.t. pp-definitions

I Absorption is not rare:

Theorem (Absorption Theorem, [Barto,Kozik])

If A is finite Taylor, R ≤sd A2, R is linked, R 6= A2,
then A has a proper absorbing subuniverse.
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Loop Lemma

Theorem (Baby Loop Lemma)

If A is finite Taylor and R ≤sd A2, R is linked, then (∃a ∈ A) (a, a) ∈ R

Proof.

I By induction on |A|. Draw R as a bipartite graph and a digraph.

I Absorption Theorem ⇒ there exists a proper absorbing subuniverse B
I By walking obtain a proper absorbing C such that there is an

infinitely long path within C (in digraph sense)
I Use the bipartite graph picture of R
I Start with B0 = B on the left. Take B1 – neighbors of B0 on the right,

B2 – neighbors of B1 on the left, . . .
I Bn = A for sufficiently large n
I Say Bi is still proper, WLOG on the left, Bi+1 = A
I Bi is absorbing (absorption behaves nicely w.r.t pp-definitions)
I Each element of A on the right (in particular in Bi ) has a neighbor in

Bi on the left ⇒ there is a circle in Bi (in digraph sense)

I Take D – all the elements in infinitely long paths within C

I D is nonempty, absorbing, S := R ∩ (D × D) is subdirect in D × D

I S is linked (absorption absorbs connectivity, see Step 4b).

I Use induction hypothesis for S .
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Sigger’s operation

Theorem (Loop Lemma [Barto,Kozik,Niven])

If A is finite Taylor, R ≤sd A2, R ◦R . . . is linked, then (∃a ∈ A)(a, a) ∈ R

Theorem ([Kearnes, Marković,McKenzie])

If A is finite Taylor, then (∃s ∈ A) s(r , a, r , e) = s(a, r , e, a)

Proof.

I denote a := π3
1, e := π3

2, r := π3
3

I Consider subuniverse R of FreeA(3)× FreeA(3) generated by
(r , a), (a, r), (r , e), (e, a)

I R = {(f (r , a, r , e), f (a, r , e, a)) : f ∈ A 4-ary}
I FreeA(3) is finite Taylor, R ◦ R is linked (because of generators)

I By the Loop Lemma, R contains a loop ⇒ f (r , a, r , e) = f (a, r , e, a)
for some f

L. Barto (CUNI) UA Today III SSAOS 2017 10 / 22



Sigger’s operation

Theorem (Loop Lemma [Barto,Kozik,Niven])

If A is finite Taylor, R ≤sd A2, R ◦R . . . is linked, then (∃a ∈ A)(a, a) ∈ R

Theorem ([Kearnes, Marković,McKenzie])

If A is finite Taylor, then (∃s ∈ A) s(r , a, r , e) = s(a, r , e, a)

I The same proof idea as for eg. “rectangularity ⇒ Mal’tsev”

I The weakest nontrivial idempotent identity for finite algebras!
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Absorption and Abelianness
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Fundamental Theorem on Abelian Algebras, 2nd version

Theorem (Hobby,McKenzie?)

If A is a finite Taylor Abelian clone,
then A ⊆ Clo(M + consts) for some module M (M = A) over a ring R

I finiteness necessary in this version

I original proof very complicated
I proof via absorption:

I By the 1st version of Fundamental Theorem, enough to show that A
has a Mal’tsev operation

I Abelian ⇒ avoids absorption
I Avoids absorption ⇒ avoids absorption in a stronger sense
I ⇒ avoids absorption in free algebra + Absorption Theorem ⇒ Mal’tsev
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Abelianness prevents absorption

Proposition

If A is a finite Taylor Abelian clone, then no B ≤ A has a proper absorbing
subuniverse

Proof.

Short

Proposition

If A is idempotent and no B ≤ A has a proper absorbing subuniverse,
then no B ≤ An has a proper absorbing subuniverse

Proof.

Similar to the Bulatov’s “getting rid of powers” proposition
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No absorption implies Mal’tsev

Proposition

If A is a finite Taylor Abelian clone, then A has a Mal’tsev operation

Proof.

I Previous proposition ⇒ FreeA(2) is absorption free

I Consider (again) the subuniverse R of FreeA(2)× FreeA(2) generated
by (π2, π1), (π1, π1), (π1, π2)

I It is linked

I By Absorption Theorem, R = (FreeA(2))2. In particular (π2, π2) ∈ R

I Then m has a Mal’tsev term (as in the “rectangularity ⇒ Mal’tsev”,
again)
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Directions
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Absorption, Bulatov, Zhuk

I Connection to tame congruence theory?

I Concepts are different, some results are almost the same

I Bulatov’s theory is very technical

I Bulatov (and partly Zhuk) doesn’t apply to all Taylor clones,
taking reducts is necessary

14 days with Bulatov, Kozik, and Zhuk this summer:

I There are very tight links among the 3 theories
for Taylor minimal clones

I Def: A is Taylor minimal if it is Taylor and no reduct is Taylor
I Fact: Each finite Taylor clone has a finite Taylor minimal reduct
I Inspiration from the work of [Zarathustra Brady]

I (At least parts of) Bulatov can be simplified if we take a more
relational approach
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Finite → Infinite

Surprisingly, some results from finite UA generalize to infinite
I commutator theory [Kearnes, Kiss]

I stronger Malt’sev condition for CD and CM

Theorem ([Kazda, Kozik, McKenzie, Moore] Classic formulation)

A variety is congruence distributive iff it has directed Jónsson terms
p1, . . . , pn ie.

p1(x , x , y) = x , pn(x , y , y) = y , (∀i) pi (x , y , x) = x like Jónsson

(∀i) pi (x , y , y) = pi+1(x , x , y)

I there is a weakest nontrivial idempotent equational condition

Theorem ([Oľsák])

A clone is Taylor iff it has a 6-ary operation t such that

t(y , x , x , x , y , y) = t(x , y , x , y , x , y) = t(x , x , y , y , y , x)
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Generalizations and many more levels of abstraction

I “reasonably” infinite clones [Bodirsky, Pinsker]

I they capture complexity of many decision problems (including
undecidable)

I todo: use, incorporate, and algebraize techniques in topology, model
theory, Ramsey theory

I eg. topological Birkhoff theorem [Bodirsky, Pinsker]

I eg. Ramsey theory via group actions [Kechris, Pestov, Todorcevic]

I eg. cores for infinite structures via Fraissé argument on the algebraic
side [Barto, Kompatscher, Van Pham, Pinsker]

I weighted clones [Cohen, Cooper, Creed, Jeavons, Živný]

I they capture complexity of optimization problems
I success – full complexity classification of “valued CSPs”

[Kolmogorov, Krokhin, Roĺınek]

I use and incorporate probabilistic and analytical techniques
I eg. correlation decay → some form of Absorption Theorem

[Brown-Cohen, Raghavendra]

I minor closed sets [Pöschel], [Aichinger], [Brakensiek,Guruswami]

I they capture complexity of promise problems
I linear Birkhoff theorem [Barto, Opřsal, Pinsker]
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Approximation and Label Cover

δ-approximation of 3-SAT:

INPUT: 3-SAT instance, eg. (x1 ∨ ¬x5 ∨ x3) ∧ (¬x3 ∨ x2 ∨ ¬x9) ∧ . . .
OUTPUT: assignment satisfying at least δ-fraction of clauses

for satisfiable instances

I (∃δ < 1) this problem is NP-hard ... the PCP theorem
Gödel Prize [Arora, Feige, Goldwasser, Lund, Lovász, Motwani, Safra, Sudan,

Szegedy]

I (∀δ > 7/8) this problem is NP-hard ... tight!
Gödel Prize [Hastad]

based on hardness of approximating “Label Cover”

I “Label Cover is the mother of strong inapproximability results”
[Guruswami]
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Label Cover and others

Label Cover is a UA problem about linear identities! [Buĺın]

INPUT: finite set of linear identities
OUTPUT: are they trivial (satisfiable in Proj) or nontrivial?

Approximate version (depending on δ):

OUTPUT: are they trivial or δ-robustly nontrivial?

Other fun facts in complexity:

I essential tool: Long code ... code i ∈ [n] by πni
I complexity of approximation depends on “approximate

polymorphisms” assuming the Unique Games Conjecture [Khot]

(Nevanlinna Prize for this conjecture)

I convex programming is “based on” polymorphisms
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Summary
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Summary

This is the most exciting period of time for universal algebra

I 1st substantial application outside (in computational complexity)
I many new directions (topology, analysis), connections and potential

applications (in the CS mainstream)
I semigroups? Some questions in automata are UA, they look different

[Bojanczyk]

I new theories (Absorption, Bulatov, Zhuk, higher commutators): calls
for simplification, unification, improvements

I new fundamental concepts and basic results (eg. minor closed set,
topological clone, weighted clone, variants of Birkhoff)

I older parts are getting stronger (eg. CD, Oľsák) and simpler (eg.
Fundamental Theorem on Abelian Clones)
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