Universal Algebra Today Part II

Libor Barto

Charles University, Prague

55th Summer School on Algebra and Ordered Sets Nový Smokovec, 3–8 Sep 2017

Yesterday:

- Today: Universal Algebra yesterday
- Tommorow: Universal Algebra today
- **Thursday**: Universal Algebra tommorow

Today:

- **Today**: Universal Algebra today
- **Thursday**: Universal Algebra tommorow

- Yesterday: Universal algebra yesterday
- Today: Universal Algebra yeasterday and today
- Thursday: Universal Algebra today and tommorow

- (function) clones are generalizations of (permutation) groups
- ▶ important object: {*n*-ary operations in **A**} it is an invariant relation
- theorems
 - $\blacktriangleright \ \mathsf{clones} \leftrightarrow \mathsf{coclones}$
 - homomorphisms $\leftrightarrow \mathsf{EHSP}$
- theorems talk about 2 levels of abstraction

Subdirect representation properties of congruences \leftrightarrow properties of relations

For $\alpha, \beta, \gamma \in \mathsf{Con}(\mathbf{A})$, consider

- $\blacktriangleright \ \alpha \circ \beta = \beta \circ \alpha$
- $\blacktriangleright \ \alpha \land (\beta \lor \gamma) = (\alpha \land \beta) \lor (\alpha \land \gamma)$

My questions

- Why should I care about such properties of congruences?
- Why is it important for a variety to have these properties, not so much for a single algebra?

Clone + *n*-congruences meeting to 0 \leftrightarrow subdirect product + projection kernels

(←) Assume R ≤_{sd} A × B.
 η₁ ∈ Con(R): (a, b), (a', b') ∈ R are in η₁ iff a = a'
 η₂ similarly
 R/η₁ ≅ A, R/η₂ ≅ B, η₁ ∧ η₂ = 0
 (→) Consider C, α, β ∈ Con(C), α ∧ β = 0
 then

$$\mathbf{C} \cong \mathbf{R} \leq_{sd} \mathbf{C}/lpha imes \mathbf{C}/eta \ c \mapsto ([c]_{lpha}, [c]_{eta})$$

 \blacktriangleright projection kernels correspond to α,β

Remember: congruences are \pm projection kernels

L. Barto (CUNI)

►
$$R \subseteq_{sd} A \times B$$
, $A = \{0, 1\}, B = \{2, 3\}$
 $R = \{c, d, e\} = \{(0, 2), (0, 3), (1, 3)\}$

•
$$\eta_1 = cd|e, \eta_2 = c|de,$$

- ▶ blocks *cd*, *e* of η_1 correspond to 0, 1
- blocks *c*, *de* of η_2 correspond to 2,3

►
$$C = \{c, d, e\}, \alpha = cd|e, \beta = c|de$$

► denote α -blocks cd, e by 0, 1; β -blocks c, de by 2, 3
► $A := C/\alpha = \{0, 1\}, B := C/\beta = \{2, 3\}$
► $c \mapsto (0, 2), d \mapsto (0, 3), e \mapsto (1, 3)$ is the isomorphism with $R \leq_{sd} A \times B$

Projection kernels permute

Consider $R \subseteq_{sd} A \times B$, $\alpha = \eta_1, \beta = \eta_2$ Draw it as a bipartite graph.

What does $\alpha \circ \beta = \beta \circ \alpha$ mean?

- ▶ Consider $(a, b), (a', b') \in R$ in the equivalence on the left
- ▶ ie. there is $(a'', b'') \in R$ such that $(a, b) \sim_{\beta} (a'', b'') \sim_{\alpha} (a', b')$

• ie.
$$b'' = b$$
, $a'' = a'$

- ▶ ie. $(a, b') \in R$
- similarly on the right $\dots (a', b) \in R$
- It means "no Z" ... rectangularity

Definition

 $R \subseteq A_1 \times A_2 \times \cdots \times A_n$ is rectangular if $\mathbf{ab}, \mathbf{a'b'}, \mathbf{ab'} \in R \Rightarrow \mathbf{a'b} \in R$ (should hold also for permuted coordinates of R)

Join of projection kernels

Consider $R \subseteq_{sd} A \times B$, $\alpha = \eta_1, \beta = \eta_2$ Draw it as a bipartite graph.

What is $\alpha \lor \beta$?

- it is $\alpha \cup (\alpha \circ \beta) \cup (\alpha \circ \beta \circ \alpha) \cup \dots$
- ▶ ie. (a, b) and (a', b') are equivalent if a, a' are connected in the bipartite graph (equivalently, b, b' are connected) ... they are linked

Definition

 $R \subseteq_{sd} A \times B$ $a, a' \in A$ are linked if they are connected in the bipartite graph picture. R is linked if each pair $a, a' \in A$ is linked

Note: *R* is linked iff $\alpha \lor \beta = 1$

Projection kernels distribute

Consider $R \subseteq_{sd} A \times B \times C$, $\alpha = \eta_1, \beta = \eta_2, \gamma = \eta_3$ Draw it as a colored bipartite graph: draw (a, b, c) as (b, c) colored by a. What does $\alpha \wedge (\beta \lor \gamma) = (\alpha \land \beta) \lor (\alpha \land \gamma)$ mean?

- ▶ Consider $(a, b, c), (a', b', c') \in R$ in the equivalence on the left
- ▶ ie. there a = a' (the edges (b, c) and (b', c') have the same color)
- ▶ and *b*, *b*′ are linked by edges of arbitrary colors
- ▶ Consider $(a, b, c), (a', b', c') \in R$ in the equivalence on the right
- ▶ ie. a = a' and b, b' (equivalently c, c') are linked by edges colored by a
- ▶ ⊇ is always true
- It means "If b, b' are both incident to an a-colored edge and they are linked, then they are linked by a-colored edges ... "CD property"

Mal'tsev conditions

Mal'tsev's Mal'tsev condition

Theorem

- A ... clone, A finite. TFAE
 - All relations in Inv A are rectangular
 - A contains a Mal'tsev operation f(y, x, x) = f(x, x, y) = y

Proof of \Rightarrow .

- Consider subuniverse R of $Free_A(2) \times Free_A(2)$ generated by $(\pi_2, \pi_1), (\pi_1, \pi_1), (\pi_1, \pi_2)$
- ▶ It is a subset of $A^{A^2} \times A^{A^2}$ an invariant relation of arity $2A^2$
- ► $R = \{(f(\pi_2, \pi_1, \pi_1), f(\pi_1, \pi_1, \pi_2)) : f \in A \text{ ternary}\}$ = $\{((x, y) \mapsto f(y, x, x), (x, y) \mapsto f(x, x, y)) : f \in A \text{ ternary}\}$
- *R* is rectangular \Rightarrow $(\pi_2, \pi_2) = ((x, y) \mapsto y, (x, y) \mapsto y) \in R$

Theorem

- A ... clone, A finite. TFAE
 - All relations in Inv A are rectangular
 - If $\mathbf{A} \to \mathbf{B}$ and $\alpha, \beta \in \mathsf{Con}(\mathbf{B})$, then $\alpha \circ \beta = \beta \circ \alpha$
 - A contains a Mal'tsev operation f(y, x, x) = f(x, x, y) = y
 - The rest follows easily from subdirect representation
 - Equivalence of 2nd and 3rd: no finiteness needed

Theorem (Jónsson)

- A ... clone, A finite. TFAE
 - All relations in Inv A have "Property CD"
 - If $\mathbf{A} \to \mathbf{B}$ and $\alpha, \beta, \gamma \in \mathsf{Con}(\mathbf{B})$, then $\alpha \land (\beta \lor \gamma) = (\alpha \land \beta) \lor (\alpha \land \gamma)$
 - A contains Jónsson operations (too complicated to put it here)

Proof.

The same

Definition (For this talk)

Equational condition ... condition (for a clone) of the form "there exist f_1, f_2, \ldots satisfying identities ...

- Neither the number of operations nor equations needs to be finite
- A bit different than strong Mal'tsev condition or Mal'tsev condition
- Does it have a name?
- \blacktriangleright If $\textbf{A} \rightarrow \textbf{B}$ and A satisfies an equational condition, then so does B
- Actually, for fixed **A**, " $\mathbf{A} \rightarrow \mathbf{B}$ " is an equational condition

Definition ([Neumann])

Homomorphism order of clones ... define $A \leq B$ if $A \rightarrow B,$ glue A,B if $A \leq B \leq A$

- It is the lattice of interpretability types of varieties
- It is the lattice of strength of equational conditions
- Clones are now organized

Three levels of abstraction

- Function clone
- (Abstract) clone ... remember only identities
- Equational condition ... remember only position in this lattice Trivial for permutation groups!

Summary: Universal algebra yesterday

- (function) clones are generalizations of (permutation) groups
- ▶ important object: {*n*-ary operations in **A**} it is an invariant relation
- ▶ properties of congruences (± = projection kernels) → connectivity properties of relations
- theorems
 - $\blacktriangleright \ clones \leftrightarrow coclones$
 - homomorphisms $\leftrightarrow \mathsf{EHSP}$
 - \blacktriangleright properties of all invariant relations \leftrightarrow equational conditions
- theorems talk about 3 levels of abstraction

Universal algebra today

Classic:

- ► Commutator theory [Smith], ...
- ► Tame congruence theory [Hobby, McKenzie], ...

More recent:

- ► Absorption theory [Barto, Kozik], ...
- Bulatov's theory [Bulatov]
- Zhuk's theory [Zhuk]

- Concepts from commutator theory important in all others
- Absorption, Bulatov, Zhuk concern mostly (but not exclusively) finite, idempotent, equationally nontrivial algebras
- and they are related (how closely?)
- Tame congruence theory, Bulatov mostly on the algebraic side Absorption, Zhuk – mostly on the relational side

Outline

- Abelianness (the simplest concept from commutator theory)
- Idempotent equationally nontrivial clones

Abelian clones

The Term Condition

Definition

A clone **A** is Abelian if $\forall f \in \mathbf{A}$ *n*-ary $\forall x, y \in A, \mathbf{u}, \mathbf{v} \in A^{n-1}$

$$f(x, \mathbf{u}) = f(x, \mathbf{v}) \Rightarrow f(y, \mathbf{u}) = f(y, \mathbf{v})$$

Example:

▶ If **R** is a ring, **M** is an **R**-module, then Clo(**M**) is Abelian

$$\blacktriangleright \operatorname{Clo}(\mathsf{M}) = \{(x_1, \ldots, x_n) \mapsto r_1 x_1 + \cdots + r_n x_n : \ldots\}$$

▶ We will also need: $Clo(\mathbf{M} + constants) = \{(x_1, ..., x_n) \mapsto r_1x_1 + \cdots + r_nx_n + m : ...\}$

Facts:

- Clone of a group **G** is Abelian \Leftrightarrow **G** is commutative
- Clone of a ring **R** is Abelian \Leftrightarrow **R** has zero multiplication

Relational definition of Abelian clones

Proposition

Clone **A** is Abelian iff $\Delta = \{(a, a) : a \in A\}$ is a congruence block of A^2 .

Proof.

Hint: the congruence generated by some set can be described by unary polynomials, this translates to the Term Condition

Example:

► Take A with A = {0,1,2} and assume that the following relation is in Inv(A):

$$R = \{(a, b, c) \in A^3 : a - b + c = 2 \mod 3\}$$

Is A necessarily Abelian?

Relational definition of Abelian clones

Proposition

Clone **A** is Abelian iff $\Delta = \{(a, a) : a \in A\}$ is a congruence block of A^2 .

Proof.

Hint: the congruence generated by some set can be described by unary polynomials, this translates to the Term Condition

Example:

► Take A with A = {0,1,2} and assume that the following relation is in Inv(A):

$$R = \{(a, b, c) \in A^3 : a - b + c = 2 \mod 3\}$$

- Is A necessarily Abelian?
- Hint: consider

 $\alpha := \{((\textit{a},\textit{b}),(\textit{a}',\textit{b}')) \in \textit{A}^2 \times \textit{A}^2 : (\exists c) \textit{ }\textit{R}(\textit{a},\textit{b},\textit{c}) \textit{ and } \textit{R}(\textit{a}',\textit{b}',\textit{c})\}$

Relational definition of Abelian clones

Proposition

Clone **A** is Abelian iff $\Delta = \{(a, a) : a \in A\}$ is a congruence block of A^2 .

Proof.

Hint: the congruence generated by some set can be described by unary polynomials, this translates to the Term Condition

Example:

► Take A with A = {0,1,2} and assume that the following relation is in Inv(A):

$$R = \{(a, b, c) \in A^3 : a - b + c = 2 \mod 3\}$$

- Is A necessarily Abelian?
- Hint: consider

 $\alpha := \{((a,b),(a',b')) \in A^2 \times A^2 : (\exists c) \ R(a,b,c) \text{ and } R(a',b',c)\}$

• It is a congruence, the block corresponding to c = 2 is Δ

Fundamental Theorem on Abelian Clones, 1st version

Theorem (Smith)

If **A** is Abelian and contains a Mal'tsev operation m, then $\mathbf{A} \subseteq \text{Clo}(\mathbf{M} + \text{consts})$ for some module \mathbf{M} (M = A) over a ring \mathbf{R}

Proof.

Need to define group operations on A, ring **R** and the ring action. How? Preparation:

Assume the conclusion is true. What is m?

•
$$m(x_1, x_2, x_3) = r_1 x_1 + r_2 x_2 + r_3 x_3 + a$$
 for some $r_1, r_2, r_3 \in R$, $a \in M$

- ► $m(y, x, x) = r_1y + r_2x + r_3x + a = y$, $m(x, x, y) = r_1x + r_2x + r_3y + a = y$ for each $x, y \in M$
- ▶ Plug in $x = y = 0 \Rightarrow a = 0$. Plug $x = 0 \Rightarrow r_1y = y$. Similarly $r_3y = y$. Finally $r_2x = -x$.
- The unique Maltsev operation is $m(x_1, x_2, x_3) = x_1 x_2 + x_3$.

Theorem (Smith)

If **A** is Abelian and contains a Mal'tsev operation m, then $\mathbf{A} \subseteq Clo(\mathbf{M} + consts)$ for some module \mathbf{M} (M = A) over a ring \mathbf{R}

Proof.

- Select 0 ∈ A arbitrarily
- Define x + y := m(x, 0, y), -x := m(0, x, 0) (it must work!)
- Similar considerations lead to $R := \{\text{unary polynomials } f \text{ with } f(0) = 0\}$, and ring operations
- Term Condition \Rightarrow **R** is a ring, **M** an **R**-module
- Similarly, A ⊆ Clo(M + consts)

Taylor clones

Definition

```
Clone A is idempotent
if f(x, x, ..., x) = x for each f in A
\Leftrightarrow unary part of A is trivial
\Leftrightarrow all singleton unary relations are in Inv(A)
```

Why this assumption?

- Complementary to group/semigroup theory
- Many useful equational conditions are idempotent
- Gives some information about general clones

Definition

Proj ... the clone of projections on (say) 2-element set.

A is equationally nontrivial if $A \not\rightarrow Proj$

Equivalently:

- Not at the bottom of the homomorphism order
- Satisfies some nontrivial equational (Mal'tsev) condition
- ▶ Proj ∉ HSP(A)

Definition

A is Taylor if it is equationally nontrivial and idempotent.

Getting rid of powers

Proposition (Bulatov)

If **A** is finite and not Taylor (ie. $Proj \in HSP(A)$), then $Proj \in HS(A)$.

Proof.

- \blacktriangleright By the proof of Birkhoff, $\textbf{Proj}\in \mathrm{HSP}^{\mathrm{fin}}(\textbf{A})$
- For simplicity, assume $Proj \in HS(A^2)$
- ▶ ie. **R** is binary in Inv(A), $\alpha \in Con(R)$, $R/\alpha \cong Proj$
- Draw R as a bipartite graph, colored by blocks of α (2 colors)
- ► Case 1: $(\exists a, b, c \in A)$ $(a, b) \not\sim_{\alpha} (a, c)$
- ► Then neighbors of a (ie. X = {x : (a, x) ∈ R}) form a subuniverse, since it is pp-definable (using the singleton {a} and R)
- ► The "image of α " is a congruence β of X (again, pp-definable), X/ β \cong Proj

L. Barto (CUNI)

Getting rid of powers

Proposition (Bulatov)

If A is finite and not Taylor (ie. $Proj \in HSP(A)$), then $Proj \in HS(A)$.

Proof.

- ▶ By the proof of Birkhoff, $\mathsf{Proj} \in \mathrm{HSP}^{\mathrm{fin}}(\mathsf{A})$
- For simplicity, assume $Proj \in HS(A^2)$
- ▶ ie. **R** is binary in Inv(A), $\alpha \in Con(R)$, $R/\alpha \cong Proj$
- Draw R as a bipartite graph, colored by blocks of α (2 colors)
- ▶ Case 2: $(\forall a, b, c \in A)$ $(a, b) \sim_{\alpha} (a, c)$
- The projection of R to the 1st coordinate form a subuniverse X,
- ▶ The "projection of α " is a congruence β of X, X/ β ≅ Proj