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Original plan

Yesterday:

I Today: Universal Algebra yesterday

I Tommorow: Universal Algebra today

I Thursday: Universal Algebra tommorow

Today:

I Today: Universal Algebra today

I Thursday: Universal Algebra tommorow
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Reality

I Yesterday: Universal algebra yesterday

I Today: Universal Algebra yeasterday and today

I Thursday: Universal Algebra today and tommorow
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Summary of yesterday

I (function) clones are generalizations of (permutation) groups

I important object: {n-ary operations in A} – it is an invariant relation
I theorems

I clones ↔ coclones
I homomorphisms ↔ EHSP

I theorems talk about 2 levels of abstraction
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Subdirect representation
properties of congruences ↔ properties of relations
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My old problem

For α, β, γ ∈ Con(A), consider

I α ◦ β = β ◦ α
I α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

My questions

I Why should I care about such properties of congruences?

I Why is it important for a variety to have these properties, not so
much for a single algebra?
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Subdirect representation

Clone + n-congruences meeting to 0
↔

subdirect product + projection kernels

I (←) Assume R ≤sd A× B.
I η1 ∈ Con(R): (a, b), (a′, b′) ∈ R are in η1 iff a = a′

I η2 similarly
I R/η1 ∼= A, R/η2 ∼= B, η1 ∧ η2 = 0

I (→) Consider C, α, β ∈ Con(C), α ∧ β = 0
I then

C ∼= R ≤sd C/α× C/β

c 7→ ([c]α, [c]β)

I projection kernels correspond to α, β

Remember: congruences are ± projection kernels
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Example (without operations)

I R ⊆sd A× B, A = {0, 1},B = {2, 3}
R = {c , d , e} = {(0, 2), (0, 3), (1, 3)}

I η1 = cd |e, η2 = c |de,
I blocks cd , e of η1 correspond to 0, 1
I blocks c , de of η2 correspond to 2, 3

I C = {c , d , e}, α = cd |e, β = c |de
I denote α-blocks cd ,e by 0, 1; β-blocks c , de by 2, 3
I A := C/α = {0, 1}, B := C/β = {2, 3}
I c 7→ (0, 2), d 7→ (0, 3), e 7→ (1, 3) is the isomorphism with R ≤sd A×B
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Projection kernels permute

Consider R ⊆sd A× B, α = η1, β = η2
Draw it as a bipartite graph.

What does α ◦ β = β ◦ α mean?

I Consider (a, b), (a′, b′) ∈ R in the equivalence on the left

I ie. there is (a′′, b′′) ∈ R such that (a, b) ∼β (a′′, b′′) ∼α (a′, b′)

I ie. b′′ = b, a′′ = a′

I ie. (a, b′) ∈ R

I similarly on the right . . . (a′, b) ∈ R

I It means “no Z” ... rectangularity

Definition

R ⊆ A1 × A2 × · · · × An is rectangular if ab, a′b′, ab′ ∈ R ⇒ a′b ∈ R
(should hold also for permuted coordinates of R)
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Join of projection kernels

Consider R ⊆sd A× B, α = η1, β = η2
Draw it as a bipartite graph.

What is α ∨ β?
I it is α ∪ (α ◦ β) ∪ (α ◦ β ◦ α) ∪ . . .
I ie. (a, b) and (a′, b′) are equivalent if a, a′ are connected in the

bipartite graph (equivalently, b, b′ are connected) ... they are linked

Definition

R ⊆sd A× B

a, a′ ∈ A are linked if they are connected in the bipartite graph picture.

R is linked if each pair a, a′ ∈ A is linked

Note: R is linked iff α ∨ β = 1
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Projection kernels distribute

Consider R ⊆sd A× B × C , α = η1, β = η2, γ = η3
Draw it as a colored bipartite graph: draw (a, b, c) as (b, c) colored by a.

What does α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) mean?

I Consider (a, b, c), (a′, b′, c ′) ∈ R in the equivalence on the left

I ie. there a = a′ (the edges (b, c) and (b′, c ′) have the same color)

I and b, b′ are linked by edges of arbitrary colors

I Consider (a, b, c), (a′, b′, c ′) ∈ R in the equivalence on the right

I ie. a = a′ and b, b′ (equivalently c , c ′) are linked by edges colored by a

I ⊇ is always true

I It means “If b, b′ are both incident to an a-colored edge and
they are linked, then they are linked by a-colored edges
... “CD property”
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Mal’tsev conditions
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Mal’tsev’s Mal’tsev condition

Theorem

A ... clone, A finite. TFAE

I All relations in InvA are rectangular

I A contains a Mal’tsev operation f (y , x , x) = f (x , x , y) = y

Proof of ⇒.

I Consider subuniverse R of FreeA(2)× FreeA(2) generated by
(π2, π1), (π1, π1), (π1, π2)

I It is a subset of AA2 × AA2
– an invariant relation of arity 2A2

I R = {(f (π2, π1, π1), f (π1, π1, π2)) : f ∈ A ternary}
= {((x , y) 7→ f (y , x , x), (x , y) 7→ f (x , x , y)) : f ∈ A ternary}

I R is rectangular ⇒ (π2, π2) = ((x , y) 7→ y , (x , y) 7→ y) ∈ R
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Mal’tsev’s Mal’tsev condition, more traditionally

Theorem

A ... clone, A finite. TFAE

I All relations in InvA are rectangular

I If A→ B and α, β ∈ Con(B), then α ◦ β = β ◦ α
I A contains a Mal’tsev operation f (y , x , x) = f (x , x , y) = y

I The rest follows easily from subdirect representation

I Equivalence of 2nd and 3rd: no finiteness needed
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Jónsson’s Mal’tsev condition

Theorem (Jónsson)

A ... clone, A finite. TFAE

I All relations in InvA have “Property CD”

I If A→ B and α, β, γ ∈ Con(B), then α ∧ (β ∨ γ) = (α ∧ β)∨ (α ∧ γ)

I A contains Jónsson operations (too complicated to put it here)

Proof.

The same
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Equational conditions

Definition (For this talk)

Equational condition ... condition (for a clone) of the form
“there exist f1, f2, . . . satisfying identities ...

I Neither the number of operations nor equations needs to be finite

I A bit different than strong Mal’tsev condition or Mal’tsev condition

I Does it have a name?

I If A→ B and A satisfies an equational condition, then so does B

I Actually, for fixed A, “A→ B” is an equational condition
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Three levels of abstraction

Definition ([Neumann])

Homomorphism order of clones ... define A ≤ B if A→ B,
glue A,B if A ≤ B ≤ A

I It is the lattice of interpretability types of varieties

I It is the lattice of strength of equational conditions

I Clones are now organized

Three levels of abstraction

I Function clone

I (Abstract) clone ... remember only identities

I Equational condition ... remember only position in this lattice
Trivial for permutation groups!
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Summary: Universal algebra yesterday
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Summary

I (function) clones are generalizations of (permutation) groups

I important object: {n-ary operations in A} – it is an invariant relation

I properties of congruences (± = projection kernels)
→ connectivity properties of relations

I theorems
I clones ↔ coclones
I homomorphisms ↔ EHSP
I properties of all invariant relations ↔ equational conditions

I theorems talk about 3 levels of abstraction
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Universal algebra today
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Tools for general algebras

Classic:

I Commutator theory [Smith], . . .

I Tame congruence theory [Hobby, McKenzie], . . .

More recent:

I Absorption theory [Barto, Kozik], . . .

I Bulatov’s theory [Bulatov]

I Zhuk’s theory [Zhuk]
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Comments and outline

I Concepts from commutator theory important in all others

I Absorption, Bulatov, Zhuk concern mostly (but not exclusively) finite,
idempotent, equationally nontrivial algebras

I and they are related (how closely?)

I Tame congruence theory, Bulatov – mostly on the algebraic side
Absorption, Zhuk – mostly on the relational side

Outline

I Abelianness (the simplest concept from commutator theory)

I Idempotent equationally nontrivial clones
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Abelian clones

L. Barto (CUNI) UA Today II SSAOS 2017 23 / 30



The Term Condition

Definition

A clone A is Abelian if ∀f ∈ A n-ary ∀x , y ∈ A,u, v ∈ An−1

f (x ,u) = f (x , v) ⇒ f (y ,u) = f (y , v)

Example:

I If R is a ring, M is an R-module, then Clo(M) is Abelian

I Clo(M) = {(x1, . . . , xn) 7→ r1x1 + · · ·+ rnxn : . . . }
I We will also need:

Clo(M + constants) = {(x1, . . . , xn) 7→ r1x1 + · · ·+ rnxn + m : . . . }

Facts:

I Clone of a group G is Abelian ⇔ G is commutative

I Clone of a ring R is Abelian ⇔ R has zero multiplication
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Relational definition of Abelian clones

Proposition

Clone A is Abelian iff ∆ = {(a, a) : a ∈ A} is a congruence block of A2.

Proof.

Hint: the congruence generated by some set can be described by unary
polynomials, this translates to the Term Condition

Example:
I Take A with A = {0, 1, 2} and assume that the following relation is in

Inv(A):
R = {(a, b, c) ∈ A3 : a− b + c = 2 mod 3}

I Is A necessarily Abelian?

I Hint: consider

α := {((a, b), (a′, b′)) ∈ A2 × A2 : (∃c) R(a, b, c) and R(a′, b′, c)}
I It is a congruence, the block corresponding to c = 2 is ∆
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Relational definition of Abelian clones

Proposition

Clone A is Abelian iff ∆ = {(a, a) : a ∈ A} is a congruence block of A2.

Proof.

Hint: the congruence generated by some set can be described by unary
polynomials, this translates to the Term Condition

Example:
I Take A with A = {0, 1, 2} and assume that the following relation is in

Inv(A):
R = {(a, b, c) ∈ A3 : a− b + c = 2 mod 3}

I Is A necessarily Abelian?
I Hint: consider

α := {((a, b), (a′, b′)) ∈ A2 × A2 : (∃c) R(a, b, c) and R(a′, b′, c)}

I It is a congruence, the block corresponding to c = 2 is ∆
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Relational definition of Abelian clones

Proposition

Clone A is Abelian iff ∆ = {(a, a) : a ∈ A} is a congruence block of A2.

Proof.

Hint: the congruence generated by some set can be described by unary
polynomials, this translates to the Term Condition

Example:
I Take A with A = {0, 1, 2} and assume that the following relation is in

Inv(A):
R = {(a, b, c) ∈ A3 : a− b + c = 2 mod 3}

I Is A necessarily Abelian?
I Hint: consider
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Fundamental Theorem on Abelian Clones, 1st version

Theorem (Smith)

If A is Abelian and contains a Mal’tsev operation m,
then A ⊆ Clo(M + consts) for some module M (M = A) over a ring R

Proof.

Need to define group operations on A, ring R and the ring action. How?

Preparation:

I Assume the conclusion is true. What is m?

I m(x1, x2, x3) = r1x1 + r2x2 + r3x3 + a for some r1, r2, r3 ∈ R, a ∈ M

I m(y , x , x) = r1y + r2x + r3x + a = y ,
m(x , x , y) = r1x + r2x + r3y + a = y for each x , y ∈ M

I Plug in x = y = 0 ⇒ a = 0. Plug x = 0 ⇒ r1y = y . Similarly
r3y = y . Finally r2x = −x .

I The unique Maltsev operation is m(x1, x2, x3) = x1 − x2 + x3.
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Fundamental Theorem on Abelian Clones, 1st version

Theorem (Smith)

If A is Abelian and contains a Mal’tsev operation m,
then A ⊆ Clo(M + consts) for some module M (M = A) over a ring R

Proof.

I Select 0 ∈ A arbitrarily

I Define x + y := m(x , 0, y), −x := m(0, x , 0) (it must work!)

I Similar considerations lead to
R := {unary polynomials f with f (0) = 0}, and ring operations

I Term Condition ⇒ R is a ring, M an R-module

I Similarly, A ⊆ Clo(M + consts)
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Taylor clones
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Idempotent clones

Definition

Clone A is idempotent

if f (x , x , . . . , x) = x for each f in A

⇔ unary part of A is trivial
⇔ all singleton unary relations are in Inv(A)

Why this assumption?

I Complementary to group/semigroup theory

I Many useful equational conditions are idempotent

I Gives some information about general clones
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Taylor clones

Definition

Proj ... the clone of projections on (say) 2-element set.

A is equationally nontrivial if A 6→ Proj

Equivalently:

I Not at the bottom of the homomorphism order

I Satisfies some nontrivial equational (Mal’tsev) condition

I Proj 6∈ HSP(A)

Definition

A is Taylor if it is equationally nontrivial and idempotent.
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Getting rid of powers

Proposition (Bulatov)

If A is finite and not Taylor (ie. Proj ∈ HSP(A)),
then Proj ∈ HS(A).

Proof.

I By the proof of Birkhoff, Proj ∈ HSPfin(A)

I For simplicity, assume Proj ∈ HS(A2)

I ie. R is binary in Inv(A), α ∈ Con(R), R/α ∼= Proj

I Draw R as a bipartite graph, colored by blocks of α (2 colors)

I Case 1: (∃a, b, c ∈ A) (a, b) 6∼α (a, c)

I Then neighbors of a (ie. X = {x : (a, x) ∈ R}) form a subuniverse,
since it is pp-definable (using the singleton {a} and R)

I The “image of α” is a congruence β of X (again, pp-definable),
X/β ∼= Proj
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Getting rid of powers

Proposition (Bulatov)

If A is finite and not Taylor (ie. Proj ∈ HSP(A)),
then Proj ∈ HS(A).

Proof.

I By the proof of Birkhoff, Proj ∈ HSPfin(A)

I For simplicity, assume Proj ∈ HS(A2)

I ie. R is binary in Inv(A), α ∈ Con(R), R/α ∼= Proj

I Draw R as a bipartite graph, colored by blocks of α (2 colors)

I Case 2: (∀a, b, c ∈ A) (a, b) ∼α (a, c)

I The projection of R to the 1st coordinate form a subuniverse X ,

I The “projection of α” is a congruence β of X, X/β ∼= Proj
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