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Outline

I Today: Universal Algebra yesterday

I Tommorow: Universal Algebra today

I Thursday: Universal Algebra tommorow
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About the tutorial

I I will give you my (present) opinions on
I What is Universal Algebra = UA (Part I)
I Basic concepts and ideas in UA (Part I)
I More advanced concepts and ideas (Part II)
I Directions (Part III)

I I will concentrate on concepts and proofs.
This is not a survey of the most important results.

I Interrupt me!

I Apologies: typos, ugly slides, incorrect theorems and proofs, . . .
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UA = study of general algebraic structures

I Algebras in mathematics

I Classic algebras – fields, rings, modules (geometry, analysis, number
theory)

I Groups as symmetries (algebra, geometry, combinatorics)
I Lattices (combinatorics, logic, semantics in CS)
I Semigroups (combinatorics, automata and languages)
I Quasigroups, . . . (combinatorics, geometry)

I GM: What do you do in UA?

I UA: Generalize (HSP, iso theorems, decompositions)
I UA: Organize (Mal’tsev conditions)
I UA: Study particular classes above – not this tutorial
I UA: Develop complicated, monumental, deep, great theories for large

classes (commutator theory, TCT)

I GM: Why?
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Why?

I GM: Why do you develop general theories?

I UA: To answer complicated questions . . . in UA
For some reason, we are especially excited about identities =
universally quantified equations (GM: “hmm, interesting . . . ”)

I UA: To understand computational complexity
I GM: Tell me more
I UA: . . . CSP . . . associated algebra . . . variety . . . BlahBlah . . .
I GM: Convoluted approach, one of many
I UA: But we have great results, eg...
I UA: ... [Bulatov],[Zhuk] solved the dichotomy conjecture
I UA: ... many consequences, new directions, etc. etc.

I GM: Why is this approach successful?
GM: Where else can it be applied?
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Too popular viewpoint

Group theory, Semigroup theory

I group: algebraic structure G = (G ; ·,−1, 1) satisfying . . .
I permutation group: when G happens to be a set of bijections, · is

composition, . . .

I monoid: algebraic structure M = (M; ·, 1) satisfying . . .
I transformation monoid: . . .

Universal algebra
I algebra: any algebraic structure Z = (Z ; some operations )

Rants
I Model theorist: models of purely algebraic signature, why do you

avoid relations?
I Algebraist: groups are complicated enough, nothing interesting can be

said about general algebras
I All: have you ever seen a 37-ary operation? You shouldn’t study such

a nonsense
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Alternative viewpoint

concrete abstract

unary invert. symmetries permutation group group
unary symmetries transformation monoid monoid

higher arity symmetries function clone abstract clone

I permutation group: Subset of {f : A→ A} closed under composition
and idA and inverses. . .

can be given by a generating unary algebra

I group: Forget concrete mappings, remember composition

I function clone: Subset of {f : An → A : n ∈ N} closed under
composition

can be given by a generating algebra

I abstract clone: Forget concrete mappings, remember composition
aka variety, finitary monad over SET, Lawvere theory
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What is UA? Traditionally

I UA = study of general algebraic structures, identities

I ie. generalization of classical algebra

I Concepts: algebras + homomorphisms, H,S,P, identity, variety, free
algebra

I Insights:
I identities ↔ HSP
I subdirect representation
I properties of congruences ↔ Mal’tsev conditions

I Low level: compose operations
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What is UA? Really

I UA = study of higher arity symmetries

I ie. generalization of group theory from arity 1

I Concepts: clones + homomorphisms (different!), H,S,P, free clone
(name?)

I Insights
I operations ↔ relations
I homomorphisms ↔ HSP ↔ pp-interpretations
I subdirect representation
I properties of relations ↔ Mal’tsev conditions

I Low level: pp-define relations, compose operations
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operations ↔ relations
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Notation etc

I Typographical
I A . . . set (domain, universe, base set, . . . )
I A . . . set of operations on A (will write f ∈ A)
I R ≤ A . . . subuniverse, R ≤ A . . . subalgebra
I A . . . set of relations on A

I Operation is f : An → A, n ≥ 1
I Superposition f (g1, . . . , gm) (f is m-ary, gi ’s n-ary)

(x1, . . . , xn) 7→ f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

I Relation
I n-ary: R ⊆ An

I X -ary: R ⊆ AX (X will be often finite)
I pictures for binary

I list of pairs (rows of a |R| × 2 matrix)
I subset of the square A2

I digraph
I bipartite graph

I pictures for higher arities
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Function clone

Definition

Function clone on A = set of operations on A closed under forming term
operations

For each clone A on A:

I for each i ≤ n
πni : (x1, . . . , xn) 7→ xi

is in A

I if f ,g are binary operations from A, then

(x , y , z) 7→ f (g(f (z , x), y), g(x , x))

is in A

Notation: For algebra A, Clo(A) = all term operations of A
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Compatibility

Definition

f : An → A is compatible with R ⊆ Ak

(f is a symmetry of R, f is a polymorphism of R,
R is invariant under f )

if f (a1, . . . an) ∈ R whenever a1, . . . , an ∈ R

Notation: For a set of relations A, a set of operations A

I Pol(A) = all operations compatible with all relations in A
I Inv(A) = all (finitary) relations invariant under all operations in A

Fact: Pol(A) is a clone. Inv(A) is a coclone (TBD)
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Compute Pol(A)

I ({0, 1}; x ∧ y → z , x ∧ y → ¬z)

I ({0, 1}; ≤)

I ({0, 1}; all binary relations)

I ({0, 1, 2}; 6=)

I (Zp; vector subspaces of Z3
p)

I (Zp; affine subspaces of Z3
p)
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Compute Inv(A)

I ({0, 1};∨)

I ({0, 1};∨,∧)

I ({0, 1};majority)

I ({0, 1};∨,∧,¬)

I (Zp; x + y)

I (Zp; x − y + z)

L. Barto (CUNI) UA Today I SSAOS 2017 15 / 26



New clones from old

New clones from old

I B ∈ P(A) (power) if B = AX

I B ∈ Pfin(A) (finite power) if B = An (or AX for finite X )

I B ∈ S(A) (subalgebra) if B ≤ A

I B ∈ H(A) (quotient) if α ∈ Con(A), B ∼= A/α

I B ∈ E(A) (expansion) if B ⊇ A

Remarks

I R ∈ SPfin(A) (finite subpower) ie. R ≤ An iff R ∈ Inv(A)

I products of different clones do not make sense for now
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FREE CLONE!!!!!!!

Definition

A . . . clone

FreeA(n) = {all n-ary members of A}

I It is a subset of AAn

I ie. An-ary relation on A [the list picture]
I It is invariant under all operations of A:

I Consider m-ary f ∈ A and g1, . . . , gm ∈ FreeA(n)
I What is f (g1, . . . , gm) applied component-wise?

I It is f (g1, . . . , gm) – the superposition!

I ie. subuniverse of AAn
(subpower of A), ie. FreeA(n) makes sense

I It is generated by πn1 , . . . , π
n
n

Remark: If A is an algebra, FreeA(n) is the clone of the n-generated free
algebra in the variety generated by A.
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Clones determined by relations

Theorem ([Geiger],[Bodnarčuk, Kalužnin, Kotov, Romov])

A clone, A finite, f : An → A

If f is compatible with each R ∈ Inv(A), then f ∈ A

Proof.

I In particular, f is compatible with FreeA(n)

I πn1 , . . . , π
n
n ∈ FreeA(n), thus f (πn1 , . . . , π

n
n) (= f ) ∈ FreeA(n)
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Coclone

Fact: Inv(A) is a coclone

Definition

Coclone on A = set of (nonempty) relations on A closed under
pp-definitions = 1st order definitions using ∃,=, and

Example: If binary R,S in Inv(A), then T in Inv(A)

T = {(x , y , z) : (∃u)(∃v) R(x , u) and S(u, v) and R(y , y)}

What can we do with pp-definitions

I intersect, eg. T (x , y , z) := R(x , y , z) and S(x , y , z)

I introduce dummy variables, permute coordinates, glue coordinates
eg. T (x , y , z) := R(y , x , x)

I project onto some coordinates, eg. T (x , y) := (∃z) R(x , y , z)

I compose binary relations, eg. T (x , y) := (∃z) R(x , z) and S(z , y)
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Coclones determined by operations

Theorem ([Geiger],[Bodnarčuk, Kalužnin, Kotov, Romov])

A coclone, A finite, R ⊆ Am

If R is invariant under every f ∈ Pol(A), then R ∈ A

Proof.

I A := Pol(A)

I Say A = {1, . . . , k}, m = 2, n = |R|, R = {(a1, b1), . . . , (an, bn)}
I FreeA(n) is pp-definable from A (without ∃)

FreeA(n)(x11...1, x11...2, . . . xkk...k) = . . .

I Existentially quantify all variables but xa1a2...an and xb1b2...bn

I Call the relation S

I R ⊆ S because of projections

I R ⊇ S because of compatibility
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Clones ↔ Coclones

Theorem ([Geiger]; [Bodnarčuk, Kalužnin, Kotov, Romov])

For finite A, Pol, Inv are (mutually inverse) bijections

Clones on A ↔ Coclones on A

Remarks:

I Clo(A) = Pol(Inv(A)), Coclo(A) = Inv(Pol(A))

I Clones determined by invariant relations

I Coclones determined by polymorphisms (symmetries)

I Understanding clones = understanding coclones
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Birkhoff’s HSP
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Clone homomorphism

Definition

A,B . . . clones. Mapping ξ : A→ B is a clone homomorphism if it
preserves arities and terms.

Examples of preserving terms:

I if f , g ∈ A, h(a, b, c) := f (a, g(b, c)), then
ξh(a, b, c) = ξf (a, ξg(b, c))

I sends πni (on A) to πni (on B)

Note: preserves terms = preserves identities

Examples of homomorphisms ξ : A→ B

I B ∈ P(A) ie. B = AX , ξ(f ) = f X (componentwise)

I B ∈ S(A) ie. B ≤ A, ξ(f ) = f|X
I B ∈ H(A) ie. α ∈ Con(A), B ∼= A/α, ξ(f ) = f /α

I B ∈ E(A) ie. B ⊇ A, ξ(f ) = f
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Birkhoff

Theorem (Birkhoff)

A,B ... clones

If ∃ξ : A→ B, then B ∈ EHSP(A)

Proof.

I Say B = {1, . . . , n}
I Take FreeA(n) ∈ SP(A)

I Define α: (f , g) ∈ α iff ξf (1, 2, . . . , n) = ξg(1, 2, . . . , n)

I α ∈ Con(FreeA(n)) since ξ is a homomorphism

I FreeA(n)/α ∼= image of ξ
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Relational Birkhoff

Recall: If A,B relational structures with the same domain A = B, then
B is pp-definable from A iff Pol(B) ∈ E(Pol(A))

Theorem ([Birkhoff])

A,B . . . relational structures, A,B finite, A = Pol(A), B = Pol(B)

TFAE

I ∃ξ : A→ B

I B ∈ EHSP(A)

I B is pp-interpretable in A

Remarks:

I first two items don’t require finiteness

I classic Birkhoff ≈ this Birkhoff

I variant with onto homomorphism (remove E in the second item)
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Abstract clones

Abstract clone:

I To decide whether ξ : A→ B is a homomorphism, we do not need all
information about the clone. . .

I . . . we only need to know how the operations compose (the identities)
→ (abstract) clone

I Formalization is not important

Algebras in a variety ∼ clone actions

I group Z acting on a set A → permutation group on A
(ξ : Z→ full permutation group on A)→ ξ(Z)

I clone Z acting on a set A → clone on A
(ξ : Z→ full clone on A)→ ξ(Z)

I product of two clone actions of Z is defined naturally

I usually we work with clone actions of a single clone Z – we have
products of clones
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