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Abstract. In this paper we study rate of convergence to equilibrium for
solutions of abstract gradient-like systems and second order ODEs with
damping. The estimates of rate of convergence are based on Łojasiewicz
inequality and its generalizations. We prove sharpness of recently derived
decay estimates for gradient-like systems with or without the angle con-
dition and give sufficient conditions for optimality of these estimates for
particular problems (in terms of inverse Łojasiewicz type inequalities). We
also derive new decay estimates for second order problems with weak
damping under additional assumptions on the second gradient of the po-
tential and we discuss optimality of these estimates.

1. Introduction

In this paper we study long-time behavior for solutions of ordinary dif-
ferential equations of first order with a gradient-like structure

(GLS) u̇ + F (u) = 0

and damped second order problems

(SOP) ü + g(u̇) + ∇E(u) = 0.

In particular, we estimate rate of convergence to equilibrium or rate of
energy decay for solutions and we investigate sharpness and optimality
of these estimates. By sharpness we mean that the estimates are the best
possible in the class of problems satisfying the assumptions (e.g. for gradient
systems satisfying the Łojasiewicz gradient inequality with the exponent
θ, for gradient-like systems satisfying the Kurdyka–Łojasiewicz gradient
inequality with function Θ and the angle and comparability conditions, for
second order equations with E and g satisfying certain conditions, etc.).
By optimality we mean that the estimates are the best possible for every
particular problem which satisfies the assumptions.
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Gradient systems.
In 1962 Łojasiewicz has shown (see [20]) that any analytic function E :

Ω ⊂ Rn
→ R satisfies the gradient inequality (now called Łojasiewicz gradient

inequality)

(LI) |E(u) − E(ϕ)|1−θ ≤ C‖∇E(u)‖

on a neighborhood of any stationary pointϕwith someθ ∈ (0, 1
2 ]. Since then,

this inequality (and its generalizations) was applied to many problems (some
classes of ODEs, PDEs, Evolution equations) in order to show convergence
of solutions to an equilibrium. See e.g. [9], [10], [12], [15], [16], [17], [21],
[22].

Later, it was observed that the convergence proofs based on (LI) allow to
estimate the rate of convergence. In 2001, Haraux and Jendoubi [17] proved
decay estimate

(1) ‖u(t) − ϕ‖ =

{
O(e−ct) if θ = 1

2 ,
O(t−θ/(1−2θ)) if θ < 1

2

for t→ +∞

for solutions of a gradient system in Rn

(GS) u̇ + ∇E(u) = 0

with E satisfying (LI). In 2006, Chill and Fiorenza [11] generalized the result
to energy functions satisfying Kurdyka–Łojasiewicz gradient inequality

(KLI) Θ(|E(u) − E(ϕ)|) ≤ ‖∇E(u)‖

on a neighborhood of an equilibrium ϕwith a non-negative function Θ such
that 1

Θ
∈ L1

loc([0,+∞)). They proved for the gradient system (GS) the decay
estimate

(2) |E(u(t)) − E(ϕ)| = O(ψ−1(t − t0)), for t→ +∞

(3) ‖u(t) − ϕ‖ = O(Φ(ψ−1(t − t0))), for t→ +∞

where ψ is a primitive function to −1/Θ2, ψ−1 the inverse function to ψ and
Φ(s) =

∫ s

0
1

Θ(s) ds. If we take Θ(s) = s1−θ, (KLI) becomes (LI) and (3) becomes
(1).

Gradient-like systems, linear damping.
Motivated by damped second order problems (SOP), gradient-like sys-

tems have been studied. We call (GLS) a gradient-like system on M ⊂ Rn if
there exists a function E ∈ C1(M) such that 〈∇E(u),F (u)〉 > 0 on M excluding
points where F(u) = 0 (where the inequality cannot be strict). Such a func-
tion E is called a strict Lyapunov function. Of course, for a gradient system
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(GS) the function E is a strict Lyapunov function. It was shown that for
proving convergence to equilibrium, so called angle condition

(AC) 〈∇E(u),F (u)〉 ≥ α‖F (u)‖ ‖∇E(u)‖,

(α being a positive constant) plays an important role and for decay estimates
so called comparability condition

(C) c‖∇E(u)‖ ≤ ‖F (u)‖ ≤ C‖∇E(u)‖

(with positive constants c, C) is important (see [2], [3], [6], [19]). These two
conditions together are equivalent to

(AC+C) 〈∇E(u),F (u)〉 ≥ c(‖∇E(u)‖2 + ‖F (u)‖2)

(with a positive constants c). Condition (AC+C) means that the vectorsF (u)
and ∇E(u) are of comparable sizes and the angle between them is bounded
above by a constant strictly less than π

2 .
A second order problem (SOP) can be rewritten as a first order problem

(4)
(
u̇
v̇

)
+

(
−v

g(v) + ∇E(u)

)
= 0.

The function
E1(u, v) =

1
2
‖v‖2 + E(u)

is a (not strict) Lyapunov function for this problem (if 〈g(v), v〉 ≥ 0) and
often it becomes a strict Lyapunov function after adding a small term, e.g.
ε〈∇E(u), v〉. Morever, if the damping function is linear, i.e. g(u̇) = cu̇, then
the corresponding first order problem with

E(u, v) = E1(u, v) + ε〈∇E(u), v〉

satisfies (AC+C).
In 2015, Begout, Bolte and Jendoubi [3] proved that the decay estimates

(3) are valid also for gradient-like systems satisfying (KLI), (AC+C) and for
second order problems with linear damping with E satisfying (KLI), and
that they are sharp in the class of gradient-like systems satisfying (KLI),
(AC+C). We show that the decay estimate is valid also for second order
problems with linear-like damping, i.e. if g satisfies

(5) 〈g(v), v〉 ≥ c‖v‖2, c1‖v‖ ≤ g(v) ≤ c2‖v‖

Further, we show that the estimates are sharp in the class of second order
problems with linear-like (resp. linear) damping. We also show that the
decay estimate is optimal for every gradient-like system with (AC+C) where
E satisfies the inverse inequality to (KLI).
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Gradient-like systems without (AC+C), weak damping

The fact, that second order problems (SOP) with weak damping, i.e. if
g′(0) = 0, do not satisfy (AC+C), leads to studying more general gradient-
like systems. In particular, conditions (KLI) and (AC+C) were in [6] replaced
by generalized Łojasiewicz inequality

(GLI) Θ(E(u) − E(ϕ)) ≤
1

‖F (u)‖
〈∇E(u),F (u)〉.

It is easy to see that (KLI) and (AC+C) together imply (GLI). The converse
is not true, (GLI) is valid e.g. for second order problems with g(u̇) = c‖u̇‖αu̇,
α ∈ (0, 1), where (AC+C) does not hold.

Convergence to equilibrium for gradient-like systems satisfying (GLI) was
proved in [6]. In [4] it was shown that the decay estimates (3) are not valid
in this case (in general) and some other decay estimates were derived. Here
we show that the decay estimate for E derived in [4] is sharp in the class
of gradient-like systems satisfying (GLI) and that it is optimal whenever
the gradient-like systems satisfies the inverse inequality to (GLI) with a
multiplicative constant C. Sharpness (and optimality) of the estimates of
‖u(t) − ϕ‖ remains open.

Decay estimates for second order problems with weak damping were
derived in [9], [8]. Their sharpness and optimality remain open. Here we
show better decay estimates under additional assumptions on ‖∇2E‖ and
in some cases also their optimality if E satisfies the inverse (KLI). Similar
results were obtained by Haraux in [14] under different assumptions.

This paper is organized as follows. In Section 2 we present notations,
definitions and settings. Section 3 is devoted to the relation of (KLI) resp.
inverse (KLI) and the growth of E in a neighborhood of a critical point.
Section 4 contains results on gradient-like systems with (AC+C) and sec-
ond order problems with linear-like damping (decay estimate for (SOP)
with linear-like damping and its sharpness, and optimality for gradient-like
systems with (AC+C) if the inverse (KLI) holds). Section 5 is devoted to
gradient-like systems satisfying (GLI) (sharpness for estimates of E and u
and optimality of estimate of E for systems satisfying inverse (GLI)). In Sec-
tion 6 we derive decay estimates for weakly damped (SOP) under additional
assumptions on ∇2E and their optimality in some special cases. In Section
7 we present two examples of (SOP), one showing that in one-dimensional
case we obtain optimality for all analytic functions E, second showing that
in higher dimensions there is a large class of nice functions where optimal
decay estimates are still unknown.
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2. Basic definitions and notations

By ‖ · ‖ and 〈·, ·〉 we denote the usual norm and scalar product on Rd

and B(ϕ, r) denotes the open ball of radius r > 0 centered at ϕ ∈ Rd. For
a differentiable function E : G ⊂ Rd

→ Rk we denote by Cr(E) = {x ∈
G : ∇E(x) = 0} the set of critical points. For nonnegative functions f ,
g : G ⊂ Rd

→ R and a point a ∈ Rd we write f ∼ g for x→ a, if there exist ε,
c, C > 0 such that c f (x) ≤ g(x) ≤ C f (x) for all x ∈ B(a, ε). If g(x) ≤ C f (x) for
all x ∈ B(a, ε) for some ε, C > 0, we write g(x) = O( f (x)) for x→ a.

We say that a function f : R+ → R+

• has property (K) if for every K > 0 there exists C(K) > 0 such that
f (Ks) ≤ C(K) f (s) holds for all s > 0.

• is C-sublinear if there exists C > 0 such that f (t + s) ≤ C( f (t) + f (s))
holds for all t, s > 0.

It is easy to see that for nondecreasing functions these two properties coin-
cide and that every concave function f : R+ → R+ satisfies these properties.

In this paper we study two types of equations (GLS) and (SOP). When-
ever we consider the equation (GLS), we assume that F is a continuously
differentiable vector field defined on an open connected set M ⊂ Rn and
with values inRn and that there exists a strict Lyapunov function E ∈ C2(M)
to (GLS). If we speak about (SOP) we assume that E is a scalar function de-
fined on an open connected set Ω ⊂ Rm and E ∈ C2(Ω) and g ∈ C1(Rm,Rm).
By a solution to (GLS) or (SOP) we always mean a classical solution defined
on [0,+∞).

For a function u : [0,+∞)→ Rd we define the omega-limit set by

ω(u) = {ϕ ∈ Rd : ∃tn ↗ +∞, u(tn)→ ϕ}.

We say, that ϕ ∈ Ω is an asymptotically stable equilibrium for

(GSE) u̇ + ∇E(u) = 0

ifϕ ∈ Cr(E) and for every ε > 0 there exists δ > 0 such that for any u0 ∈ B(ϕ, δ)
the solution u to (GSE) with u(0) = u0 satisfies u(t) ∈ B(ϕ, ε) for all t ≥ 0 and
limt→+∞ u(t) = ϕ.

Our basic tool are Łojasiewicz type inequalities. In the introduction, we
have introduced (LI), (KLI), (GLI). For optimality results, inverse inequali-
ties play a crucial role: inverse Łojasiewicz inequality

(ILI) |E(u) − E(ϕ)|1−θ1 ≥ c‖∇E(u)‖,

inverse Kurdyka–Łojasiewicz inequality

(IKLI) Θ1(|E(u) − E(ϕ)|) ≥ ‖∇E(u)‖,
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and inverse generalized Łojasiewicz inequality

(IGLI) Θ1(E(u) − E(ϕ)) ≥
1

‖F (u)‖
〈∇E(u),F (u)〉.

When we say that inequality (LI) (resp. (KLI), (GLI), (ILI), (IKLI), (IGLI))
holds on a set U it means that the inequality holds for all u ∈ U with a given
fixed ϕ and Θ (resp. Θ1, θ, θ1, c).

A continuous function Θ : [0,+∞) → [0,+∞) is called a KL-function if
Θ(0) = 0, Θ(s) > 0 for all s > 0, and 1

Θ
∈ L1

loc([0,+∞)). If a KL-function
is nondecreasing and satisfies property (K), then we call it a KLS-function.
When we consider a gradient-like system (GLS), we usually assume that
functions Θ, Θ1 from (KLI), (GLI) are KL-function, for (SOP) we usually
assume they are KLS-function. For a KL-function Θ we define ΦΘ =

∫ t

0
1
Θ

.

We often write Φ instead of ΦΘ. We also defineψΘ = −
∫ t

1/2
1

Θ2 and often write
ψ instead of ψΘ. These functions appear in the decay estimates (2), (3). Let
us mention that due to [3, Theorem 2.8], if a function E ∈ C2(Ω) satisfies (KLI)
with a KL-function Θ on a neighborhood ofϕ, then necessarily Θ(s) = O(

√
s)

as s→ 0+. Since (GLI) implies (KLI), we also have Θ(s) = O(
√

s) whenever
(GLI) holds.

By c, C, C̃ we denote generic constants, their values can change from line
to line or from expression to expression.

3. Relation of Łojasiewicz type inequalities and growth of E

In this section we derive some relations between (Kurdyka–)Łojasiewicz
inequality resp. its inverse and the growth of E. Basic motivation for doing
this is that a typical example of a function E satisfying (LI) with θ = 1

p
on a neighborhood of zero is E(u) = ‖u‖p and that sharp decay estimates
obtained in [14] are formulated for E satisfying certain growth conditions
(instead of a Łojasiewicz type inequality). So, the following statements are
useful for comparison of the results of the present paper and the results
from [14], but also they are of help for deriving some decay estimates and
for simplifying the assumptions of some theorems. A characterization of
functions satisfying (KLI) in terms of level sets can be found in [7].

Proposition 1. Let E ∈ C1(Ω), ϕ ∈ Cr(E) and u be a solution to (GSE) such that
ϕ ∈ ω(u). Let E satisfy (KLI) on U = {u(t) : t ≥ 0} with a KL-function Θ. Then

(6) Φ(E(x) − E(ϕ)) ≥ ‖x − ϕ‖

for all x ∈ U.



SHARP AND OPTIMAL DECAY ESTIMATES 7

Proof. By the well known convergence theorem (see [18, Theorem 2]) we
have limt→+∞ u(t) = ϕ. Then we can compute

−
d
dt

E(u(t)) = −∇E(u(t))u̇(t) = ‖∇E(u(t))‖ · ‖u̇(t)‖ ≥ Θ(E(u(t) − E(ϕ)) · ‖u̇(t)‖,

hence

−
d
dt

Φ(E(u(t)) − E(ϕ)) = −
1

Θ(E(u(t) − E(ϕ))
d
dt

E(u(t)) ≥ ‖u̇(t)‖

and integrating from 0 to +∞we obtain

Φ(E(x) − E(ϕ)) = −

∫ +∞

0

d
dt

Φ(E(u(t)) − E(ϕ)) dt

≥

∫ +∞

0
‖u̇(t)‖ dt

≥

∥∥∥∥∥∥
∫ +∞

0
u̇(t) dt

∥∥∥∥∥∥
=

∥∥∥∥ lim
t→+∞

u(t) − x
∥∥∥∥

= ‖ϕ − x‖.

�

Corollary 2. Let E ∈ C2(Ω), ϕ ∈ Cr(E) be an asymptotically stable equilibrium
for (GSE). Let E satisfy (KLI) on a neighborhood of ϕ with a KL-function Θ. Then
(6) holds on a neighborhood of ϕ.

Remark 3. In particular, if ϕ is an isolated point of Cr(E) and E has a local
minimum in ϕ, then ϕ is an asymptotically stable equilibrium for (GSE).

Proposition 4. Let ϕ ∈ Rm, ε > 0 and B = B(ϕ, ε). Assume that E ∈ C2(B)
satisfy (IKLI) on B with a KL-function Θ. Then Φ(E(x) − E(ϕ)) ≤ ‖x − ϕ‖ for all
x ∈ B.

Proof. For x ∈ B and s ∈ (0, 1) we have
d
ds

E(ϕ+s(x−ϕ)) ≤ ‖∇E(ϕ+s(x−ϕ))‖·‖x−ϕ‖ ≤ Θ(E(ϕ+s(x−ϕ))−E(ϕ))‖x−ϕ‖.

Hence,
d
ds

Φ(E(ϕ+s(x−ϕ))−E(ϕ)) =
1

Θ(E(ϕ + s(x − ϕ)) − E(ϕ))
·

d
ds

E(ϕ+s(x−ϕ)) ≤ ‖x−ϕ‖.

Integrating from 0 to 1 we obtain

Φ(E(x) − E(ϕ)) ≤
∫ 1

0
‖x − ϕ‖ dt = ‖x − ϕ‖.



8 TOMÁŠ BÁRTA

�

From the previous propositions we immediately have.

Corollary 5. Let E ∈ C2(Ω) and ϕ ∈ Cr(E). Let E satisfy (KLI) with a KL-
function Θ and (IKLI) with a KL-function CΘ for some C ≥ 1 on a neighborhood
of ϕ. Assume that ϕ is an asymptotically stable equilibrium of (GSE). Then

Φ(E(x) − E(ϕ)) ∼ ‖x − ϕ‖ as x→ ϕ.

If Θ(s) = s1−θ, θ ∈ (0, 1
2 ] in previous propositions and corollaries, we obtain

Corollary 6. 1. Let E ∈ C2(Ω) satisfies (LI) with θ = 1
p ∈ (0, 1

2 ] on a neighborhood
of ϕ, with ϕ being an asymptotically stable equilibrium of (GSE). Then

E(x) − E(ϕ) ≥ c‖x − ϕ‖p

on a neighborhood of ϕ. 2. Let E ∈ C2(Ω) satisfies (ILI) with θ = 1
p ∈ (0, 1

2 ] on
B = B(ϕ, ε) for some ε > 0 and ϕ ∈ Cr(E). Then

E(x) − E(ϕ) ≤ C‖x − ϕ‖p for all x ∈ B.

In the results on second order equations, we employ some estimates of
the second gradient of E. The following results will be of help. It follows
immediately when we apply Proposition 4 to the function ∇E instead of E.

Corollary 7. Let E ∈ C2(B) with B = B(ϕ, ε) for some ε > 0 and ϕ ∈ Cr(E) and
let

(7) ‖∇
2E(x)‖ ≤ Γ(‖∇E(x)‖)

hold on B with a KL-function Γ. Then ΦΓ(‖∇E(x)‖) ≤ ‖x − ϕ‖ on B. In particular,
if

(8) ‖∇
2E(x)‖ ≤ C‖∇E(x)‖γ

on B, then ‖∇E(x)‖ ≤ C̃‖x − ϕ‖
1

1−γ on B.

Proposition 8. Let a nonconstant function E ∈ C2(Ω) satisfy (KLI) with a KLS-
function Θ and (7) with a KL-function Γ on a neighborhood of ϕ ∈ Cr(E). Let ϕ
be an asymptotically stable equilibrium for (GSE). Then for some δ > 0 we have
ΦΓ(s) ≤ Φ(Θ−1(s)) for all s ∈ (0, δ). Moreover, if Φ(Θ−1(s)) ≤ CΦΓ(s) for some C ≥
1, then Φ(|E(x)−E(ϕ)|) ∼ ‖x−ϕ‖ and ΦΓ(‖∇E(x)‖) ∼ Φ(Θ−1(‖∇E(x)‖)) ∼ ‖x−ϕ‖
on a neighborhood of ϕ (in particular, if Φ−1 has property (K), then (IKLI) holds
with C̃Θ for some C̃ > 1 on a neighborhood of ϕ).

Proof. By Proposition 1 we have

‖x − ϕ‖ ≤ Φ(E(x) − E(ϕ)) ≤ Φ(Θ−1(‖∇E(x)‖)).
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By Corollary 7 we have

‖x − ϕ‖ ≥ ΦΓ(‖∇E(x)‖).

Since both inequalities hold on a neigborhood ofϕ, we have ΦΓ(s) ≤ Φ(Θ−1(s))
for all s ∈ (0, δ), δ > 0 chosen appropriately. The asymptotic equivalence
follows immediately from the chain of inequalities

‖x − ϕ‖ ≤ Φ(E(x) − E(ϕ)) ≤ Φ(Θ−1(‖∇E(x)‖)) ≤ CΦΓ(‖∇E(x)‖) ≤ C‖x − ϕ‖

and (IKLI) follows from

‖∇E(x)‖ ≤ Θ(Φ−1(C‖x − ϕ‖)) ≤ C̃Θ(Φ−1(‖x − ϕ‖)) ≤ C̃Θ(E(x) − E(ϕ)),

where we used property (K) in the second step and inequality ‖x − ϕ‖ ≤
Φ(E(x) − E(ϕ)) in the last step. �

Corollary 9. Let a nonconstant function E ∈ C2(Ω) satisfy (LI) with θ ∈ (0, 1
2 ] and

(8) with γ ≥ 0 on a neighborhood of ϕ ∈ Cr(E). Let ϕ be an asymptotically stable
equilibrium for (GSE). Then γ ≤ 1−2θ

1−θ . If the equality holds, then ‖E(x)‖ ∼ ‖x−ϕ‖
1
θ

and ‖∇E(x)‖ ∼ ‖x−ϕ‖
1−θ
θ (in particular, (ILI) holds with θ1 = θ) on a neighborhood

of ϕ.

Due to the Łojasiewicz’s result, every analytic function E : Rn
→ R

satisfies (LI) on a neighborhood of every critical pointϕwith some θ ∈ (0, 1
2 ].

As the following proposition shows, if n = 1, then (ILI) is satisfied with the
same exponent θ1 = θ and the growth of E on the neighborhood of ϕ is
uniquely determined by θ (it follows from Corollary 6 or directly from the
proof below). On the other hand, for n ≥ 2 there are analytic functions with
θ1 > θ, a simple example is

E(x, y) = |x|p + |y|q.

If p > q ≥ 2, then (LI) holds with θ ≤ 1
p and (ILI) holds with θ1 ≥

1
q (see

Example 26)

Proposition 10. Let E : R → R be analytic and ϕ ∈ Cr(E). Then there exists
θ ∈ (0, 1

2 ] such that (LI), (ILI) with θ1 = θ and (8) with γ = 1−2θ
1−θ are satisfied on a

neighborhood of ϕ.

Proof. We have

E(x) = E(ϕ) +

∞∑
n=k

an(x − ϕ)n = E(ϕ) + ak(x − ϕ)k + o((x − ϕ)k)

on a neigborhood of ϕ for appropriate an ∈ R, k ∈N, k ≥ 2. It follows that

E′(x) =

∞∑
n=k

nan(x − ϕ)n−1 = kak(x − ϕ)k−1 + o((x − ϕ)k−1)
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on a neighborhood of ϕ. Hence,

|E(x) − E(ϕ)| ≤ 2|ak||x − ϕ|k = C
(1
2

k|ak||x − ϕ|k−1
) k

k−1

≤ C|E′|
k

k−1 .

So, (LI) holds with 1 − θ = k−1
k , i.e. θ = 1

k . Similarly, we have (ILI). Further,

E′′(x) =

∞∑
n=k

n(n − 1)an(x − ϕ)n−2 = k(k − 1)ak(x − ϕ)k−2 + o((x − ϕ)k−2)

and therefore (8) holds with γ = k−2
k−1 = 1−2θ

1−θ . �

4. Gradient-like systems with (AC+C) and (SOP) with linear damping

In this section we study gradient-like systems with (AC+C). It was shown
in [3] that (SOP) with linear damping can be rewritten as a gradient like
system satisfying (AC+C) and that these systems satisfy the same decay
estimate as gradient systems. We first show that also (SOP) with linear-
like damping belongs to the same category. Then we turn our attention to
sharpness and optimality of the decay estimates.

Theorem 11. Let us consider (SOP) and let ϕ ∈ Cr(E). Let E satisfy (KLI) on a
neighborhood of ϕ with a KLS-function Θ and let g satisfy (5). Let u be a bounded
solution to (SOP) with ϕ ∈ ω(u). Then the decay estimate (3) holds.

Proof. Let us rewrite the equation as a first order system and define

E(u, v) =
1
2
‖v‖2 + E(u) + ε〈∇E(u), v〉

where ε > 0 is small. We show that E is a strict Lyapunov function for the
first order system and (KLI), (AC+C) are satisfied. Then (3) follows from [3,
Theorem 3.7] and the statement is proved.

Let us denote v(t) = u̇(t) and compute

d
dt
E(u(t), v(t)) = 〈v, v̇〉 + ∇E(u)u̇ + ε〈∇2E(u)u̇, v〉 + ε〈∇E(u), v̇〉

= −〈v, g(v)〉 + ε〈∇2E(u)v, v〉 − ε〈∇E(u), g(v)〉 − ε〈∇E(u),∇E(u)〉

≤ −c‖v‖2 + εC‖v‖2 + εc2‖∇E(u)‖‖v‖ − ε‖∇E(u)‖2

≤ −(c − εC −
ε
2

c2
2)‖v‖2 −

ε
2
‖∇E(u)‖2

≤ −c(‖v‖2 + ‖∇E(u)‖2),

where we used the definition of E in the first equality, the equation (SOP)
in the second equality, boundedness of ∇2E, estimates for g, and Cauchy-
Schwarz inequality in the third line, Young inequality in the fourth line and
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we have taken ε small enough in the last line. In the following let us write
∇E instead of ∇E(u, v) and similarly for E, F . Since

∇E =

(
∇E(u) + ε∇2E(u)v

v + ε∇E(u)

)
, F =

(
−v

−g(v) − ∇E(u)

)
,

we have

(9) ‖∇E‖
2
≤ C(‖v‖2 + ‖∇E(u)‖2), ‖F ‖

2
≤ C(‖v‖2 + ‖∇E(u)‖2)

and (AC+C) follows from

(10) 〈∇E,F 〉 = −
d
dt
E(u(t), v(t)) ≥ c(‖v‖2 + ‖∇E(u)‖2) ≥ c(‖∇E‖2 + ‖F ‖2).

It remains to show (KLI). By Cauchy-Schwarz and Young inequalities,
monotonicity and C-sublinearity of Θ, property (K), Θ(s) ≤ C

√
s and Θ(E) ≤

‖∇E‖we have

Θ(E) ≤ Θ
(1
2
‖v‖2 + E(u) + ε‖∇E(u)‖2 + ε‖v‖2

)
≤ C

(
Θ(

1
2
‖v‖2) + Θ(E(u)) + Θ(‖∇E(u)‖2) + Θ(‖v‖2)

)
≤ C (‖v‖ + ‖∇E(u)‖ + ‖∇E(u)‖ + ‖v‖) .

To complete the proof we show that ‖v‖ + ‖∇E(u)‖ ≤ C‖∇E‖. Assume that
ε < 1

2 is so small that ε‖∇2E(u)‖ < 1
2 on a neighborhood ofϕ. If ‖v‖ ≤ ‖∇E(u)‖,

then we consider the first coordinate of ∇E to get

‖∇E‖ ≥ ‖∇E(u) + ε∇2E(u)v‖ ≥ ‖∇E(u)‖ −
1
2
‖v‖ ≥

1
2
‖∇E(u)‖ ≥

1
4

(‖v‖+ ‖∇E(u)‖).

If ‖v‖ ≥ ‖∇E(u)‖, then we take the second coordinate of ∇E and we obtain

‖∇E‖ ≥ ‖v + ε∇E(u)‖ ≥ ‖v‖ −
1
2
‖∇E(u)‖ ≥

1
2
‖v‖ ≥

1
4

(‖v‖ + ‖∇E(u)‖).

�

In [3, Section 3.2] it was shown that the decay estimates (3) are sharp
in the class of gradient systems (therefore they are sharp in the class of
gradient-like systems with (AC+C) as well). In fact, the gradient system on
Rwith E(u) = Φ−1(|u|) satisfies (KLI) with a KL-function Θ and the solutions
u(t) = ±Φ(ψ−1(t − t0)) have the decay equal to the upper estimate (3). Now,
we show that the decay estimates (3) are sharp in the class of (SOP) with
linear damping (resp. linear-like damping).

Proposition 12 (Sharpness for (SOP) with linear damping). For every dif-
ferentiable KLS-function Θ satisfying Θ(s) = O(

√
s) as s → 0+ there exists
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B = B(0, ε) ⊂ Rm, α > 0 and E ∈ C2(B) satisfying (KLI) on B such that (SOP)
with linear damping g(v) = αv has a solution u satisfying

lim
t→+∞

‖u(t)‖
Φ(ψ−1(t))

> 0.

Proof. We find such an equation for n = 1, for n ≥ 1 it is enough to consider
the corresponding radially symmetric system. For n = 1 let us find α and E
such that u(t) = Φ(ψ−1(t)) be a solution to (SOP). We have

u̇(t) = Φ′(ψ−1(t)) ·
1

ψ′(ψ−1(t))
=

1
Θ(ψ−1(t))

· −Θ2(ψ−1(t)) = −Θ(ψ−1(t))

and
ü(t) = −Θ′(ψ−1(t))Θ2(ψ−1(t)).

Set α = 1 and

E1(u) = Φ−1(u), then E′1(u) =
1

Φ′(Φ−1(u))
= Θ(Φ−1(u)) = Θ(ψ−1(t)).

Then we have (setting z = ψ−1(t))

ü + αu̇ + ∇E1(u) = −Θ′(z)Θ2(z) −Θ(z) + Θ(z) = −Θ′(z)Θ2(z).

It is enough to take E = E1+E2 with E2(u) satisfying∇E2(u(t)) = ∇E2(Φ(ψ−1(t))) =
Θ′(ψ−1(t))Θ2(ψ−1(t)), i. e.,

∇E2(w) = Θ′(Φ−1(w))Θ2(Φ−1(w)) = Θ′(Φ−1(w))Θ2(Φ−1(w))
Φ′(Φ−1(w))
Φ′(Φ−1(w))

.

Since Φ′ = 1/Θ, we have

∇E2(w) =
Θ′(Φ−1(w))Θ(Φ−1(w))

Φ′(Φ−1(w))
=

d
dw

1
2

Θ2(Φ−1(w)),

so

E2(w) =
1
2

Θ2(Φ−1(w)).

It remains to show that E(u) = Φ−1(|u|) + 1
2Θ2(Φ−1(|u|)) satisfies (KLI). Since

Θ is small on a neighborhood of zero, we have E(u) ≤ CΦ−1(|u|). By property
(K), we have Θ(E(u)) ≤ C̃Θ(Φ−1(|u|)). On the other hand, it holds that

|∇E(u)| = Θ(Φ−1(|u|)) +
Θ′(Φ−1(|u|))Θ(Φ−1(|u|))

Φ′(Φ−1(|u|))
= Θ(Φ−1(|u|))(1 + ΘΘ′)

≥ Θ(Φ−1(|u|))

since Θ and Θ′ are non-negative. So, we have Θ(E(u)) ≤ C̃|∇E(u)| and the
proof is complete. �
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Theorem 13 (Optimality for (GLS) with (AC+C)). Let us consider a gradient-
like system (GLS) with a strict Lyapunov function E ∈ C2(M). Let ϕ ∈ Cr(∇E)
and let E satisfy (AC+C) and (KLI) with a KL-function Θ on a neighborhood of ϕ.
If, moreover, E satisfies (IKLI) with Θ1 = CΘ for some C > 0 on a neighborhood of
ϕ, then the decay estimates (3), (2) are optimal, i.e. any solution u to (GLS) with
ϕ ∈ ω(u) satisfies

ψ−1(ct) ≤ E(u(t)) − E(ϕ) ≤ ψ−1(t)

c̃Φ(ψ−1(ct)) ≤ ‖u(t) − ϕ‖ ≤ Φ(ψ−1(t))

as t→ +∞ for appropriate constants c, c̃ > 0.

Remark 14. Here we cannot say E(u(t)) − E(ϕ) ∼ ψ−1(t) if ϕ does not have
property (K). This can happen, e.g. if Θ(s) = s1/2, then ψ−1(s) = e−s.

Proof. The upper estimates are known ([3, Theorem 3.7 and its proof]), it
remains to show the lower estimates. Let t0 be so large that u(t) is in the
neighborhood of ϕ where (IKLI) holds for all t ≥ t0. Then we can compute

d
dt
ψ(E(u(t)) − E(ϕ)) = −

1
Θ2(E(u(t)) − E(ϕ))

〈∇E(u(t)), u̇(t)〉

=
1

Θ2(E(u(t)) − E(ϕ))
〈∇E(u(t)),F(u(t))〉

≤
1

Θ2(E(u(t)) − E(ϕ))
C‖∇E(u(t))‖2

≤ C.

Integrating this inequality from t0 to t > t0 we obtain

ψ(E(u(t)) − E(ϕ)) ≤ C(t − t0) + ψ(E(u(t0)) − E(ϕ)) ≤ Ct

for large t. Hence, E(u(t)) − E(ϕ) ≥ ψ−1(Ct). Further, by Proposition 4 we
have

‖u(t) − ϕ‖ ≥ ΦΘ1(E(u(t)) − E(ϕ)) = CΦ(E(u(t)) − E(ϕ)) ≥ CΦ(ψ−1(C̃t)).

�

Similar optimality result for (SOP) with linear or linear-like damping does
not hold. It is due to the fact, that E in general does not satisfy (IKLI) with
the same function as E. In fact, since by (IKLI) we have

E(u, v) ≥ (1 − ε)‖v‖2 + E(u) − Cεθ(E(u))2
≥ (1 − ε)‖v‖2 + (1 − εC̃)E(u)

it follows that
Θ(E(u, v)) ≥ c

(
Θ(‖v‖2) + ‖∇E(u)‖

)
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instead of Θ(E) ≥ c (‖v‖ + ‖∇E(u)‖) that we need for optimality. So, the decay
estimates are optimal for (SOP) if Θ(s) = C

√
s. On the other hand, we always

have √
E(u, v) ≥ c (‖v‖ + ‖∇E(u)‖) ,

i.e. E satisfies (IKLI) with Θ1(s) = C
√

s, which implies

‖u(t) − ϕ‖ ≥ ΦΘ1(ψ
−1(Ct)) = ce−Ct.

Haraux has proved in [13] that there always exist solutions to ü+u̇+∇E(u) = 0
decaying to zero exponentially. Question, whether the decay estimate (3)
is optimal at least for some solutions of any (SOP) with E satisfying (KLI),
(IKLI), remains open. In [13] optimality for ∇E(u) = u3 is proved.

5. Optimality for gradient-like systems without (AC+C)

Motivated by second order problems with weak damping we have in-
troduced in [6] a new sufficient condition for convergence of solutions to
gradient-like systems, condition (GLI). A convergence result was proved in
[6], decay estimates were derived in [4]. In this section we first show that the
decay estimate for E derived in [4] hold under more general assumptions,
even in the case when 1

Θ
is not integrable at zero (this means that ω(u) may

contain more than one point). Then we show that the estimates of E and the
estimates of the length of the trajectory are sharp and that they are optimal
if (IGLI) and an inverse to condition (11) hold.

Let us first formulate the result on decay estimates.

Theorem 15 (Decay for (GLS) without (AC+C)). Let E ∈ C1(M) be a strict
Lyapunov function to (GLS) and let u : R+ → M be a nonconstant solution of
(GLS) andϕ ∈ ω(u). Assume that E satisfies (GLI) on a neighborhood ofω(u) with
a continuous function Θ : [0,+∞) → [0,+∞) satisfying Θ(0) = 0 and Θ(s) > 0
for all s > 0. Assume that α : (0, 1)→ (0,+∞) is nondecreasing and satisfies

(11) α(E(u(t)) − E(ϕ)) ≥ ‖F(u(t))‖ for all t large enough.

Then we have for some c > 0

(12) ‖E(u(t)) − E(ϕ)‖ = O(ψ̃−1(ct)) as t→ +∞

with

(13) ψ̃(s) :=
∫ 1

2

s

1
Θ(r)α(r)

dr.

Moreover, if 1
Θ
∈ L1

loc([0,+∞)) (i.e. Θ is a KL-function), then lim
t→+∞

u(t) = ϕ and

(14) ‖u(t) − ϕ‖ ≤
∫ +∞

t
‖u̇‖ = O(Φ(ψ̃−1(ct))) for t→ +∞.
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We can see that the decay estimates are similar to the (AC+C) case, the
only difference is that in the definition of ψ̃ we have Θα in contrast to ψΘ

where we had Θ2.

Proof. The proof is the same as in [4, Theorem 1]. In fact, we may assume
E(ϕ) = 0 to shorten the formulas and compute

(15)

d
dt
ψ̃(E(u(t))) = ψ̃′(E(u(t)))〈∇E(u(t)), u̇(t)〉

= −ψ̃′(E(u(t)))〈∇E(u(t)),F(u(t))〉

≥ −ψ̃′(E(u(t)))Θ(E(u(t)))‖F(u(t))‖

≥ −ψ̃′(E(u(t)))Θ(E(u(t)))α(E(u(t)))
= 1.

Integrating this inequality from t0 to t > t0 we obtain

ψ̃(E(u(t))) ≥ (t − t0) + ψ̃(E(u(t0))) = t − t0 + c.

Since ψ̃ is decreasing, we haveE(u(t)) ≤ ψ̃−1(t− t0 +c) ≤ ψ̃−1(ct). The estimate
(14) follows from

(16)

‖u(t) − ϕ‖ ≤
∫ +∞

t
‖u̇‖

=

∫ +∞

t
‖F (u)‖

≤

∫ +∞

t

〈∇E(u),F (u)〉
Θ(E(u))

= −

∫ +∞

t

〈∇E(u), u̇〉
Θ(E(u))

= Φ(E(u(t))) − lim
t→+∞

Φ(E(u(s)))

= Φ(E(u(t)))

≤ Φ(ψ̃−1(t − t0 + c),

if E(u(s)) > 0 for all s ≥ t0. If E(u(s)) = 0, (14) is trivial. Since Φ(0) = 0 and
lims→0+ ψ̃(s) = +∞, (14) implies limt→+∞ u(t) = ϕ. �

In the following theorem we show that the estimates of the decay of E
and the length of the trajectory

∫ +∞

t
‖u̇‖ are optimal if inverse inequalities to

(GLI) and (11) hold.

Theorem 16 (Optimality for (GLS) without (AC+C)). Let the assumptions of
Theorem 15 are satisfied. Further, we assume that there exists c > 0 such that
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(IGLI) holds on a neighborhood of ω(u) with Θ1 = 1
c Θ and

(17) cα(E(u(t)) − E(ϕ)) ≤ ‖F(u(t))‖

holds for all t large enough. Then

(18) E(u(t)) − E(ϕ) ≥ ψ̃−1(Ct) and
∫ +∞

t
‖u̇‖ ≥

1
C

Φ(ψ̃−1(Ct)))

for all t large enough with an appropriate constant C > 0 and ψ̃ defined in (13).

Proof. Let us again assume that E(ϕ) = 0. We can replace the inequalities in
(15) with the oposite ones and obtain

d
dt
ψ̃(E(u(t))) ≤ C,

so E(u(t)) ≥ ψ̃−1(C(t − t0) − ψ̃(E(u(t0)))) ≥ ψ̃−1(Ct). Reversing the inequalities
in (16) (except the first one) we prove the second inequality in (18). �

To show that the estimates for E and
∫ +∞

t
‖u̇‖ are sharp, it is enough to

find a problem satisfying the assumptions of Theorem 16.

Corollary 17 (Sharpness for (GLS) without (AC+C)). Let Θ be a KL-function
satisfying Θ(s) = O(

√
s) as s → 0+ and let α : R+ → R+ be continuous nonde-

creasing with α(0) = 0 and α(s) > 0 for s > 0. There exists F ∈ C(R2) and a strict
Lyapunov function E ∈ C2(R2) satisfying (11) and (GLI) with ϕ = 0 and there
exists a solution u : R+ →M to (GLS) such that (18) holds.

Proof. For given Θ and α let us define E(u) = ‖u‖2 for u ∈ R2 and

F (u) = β(‖u‖)
(
Θ(‖u‖2)
‖u‖

u1 − u2,u1 +
Θ(‖u‖2)
‖u‖

u2

)
with β(s) = α(s2)

s for s > 0 and β(0) = 0. Then

‖F (u)‖2 = β2(‖u‖)‖u‖2
(
1 +

Θ2(‖u‖2)
‖u‖2

)
and due to Θ(s) ≤ C

√
s we have

β(‖u‖)‖u‖ ≤ ‖F (u)‖ ≤ β(‖u‖)‖u‖
√

1 + C.

Since
〈∇E(u),F (u)〉 = 2β(‖u‖)Θ(‖u‖2)‖u‖,

(GLI) and (IGLI) hold with Θ and Θ1 = CΘ. Further, we have

α(E(u)) =
√
E(u)β(

√
E(u)) = ‖u‖β(‖u‖),
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so (11) and (17) hold. Since any solution converges to the origin (transfor-
mation to polar coordinates yields r′ = −β(r)Θ(r2)), the lower bounds (18)
follow from Theorem 16. �

It is not clear, whether the estimate for ‖u(t) − ϕ‖ in (14) is sharp (i.e.
optimal for some problems). Obviously, for the problem from the proof of
Corollary 17 we have ‖u(t)‖ =

√
E(u(t)) ≤

√
ψ−1(Ct), i.e. the estimate (14)

is optimal (for this particular problem) only if Φ(s) ∼
√

s, i.e. Θ(s) ∼ C
√

s
which corresponds to the Łojasiewicz exponent θ = 1

2 (like in the case of
linearly damped second order problems).

Obviously, if (GLI) is satisfied with a function Θ, then (KLI) holds with
the same Θ (we assume ϕ = 0, E(ϕ) = 0 in this paragraph):

Θ(E) ≤
1
‖F ‖
〈F,∇E〉 ≤ ‖∇E‖.

But sometimes (and it seems to be a typical case for equations without (AC))
E can satisfy (KLI) with a better (it means bigger) function Θ̃. In fact, if the
angle condition (AC) holds, then

Θ̃(E) ≤ ‖∇E‖ ⇒ Θ(E) ≤
1
c

1
‖F ‖
〈F ,∇E〉.

But if the angle ρ(u) between ∇E(u) and F (u) tends to π
2 as u→ 0, we have

‖∇E(u)‖ =
1

cos(ρ(u))
1

‖F (u)‖
〈F (u),∇E(u)〉 ≥

1
cos(ρ(u))

Θ(E(u)) =: Θ̃(E(u)).

If E satisfies (KLI) with Θ̃ on a neighborhood of zero, then the growth of E
on the neighborhood of zero is typically determined by Θ̃ (see Proposition
1 and its corollaries). This yields the following corollary.

Corollary 18. Let the assumptions of Theorem 15 hold. Let Φ̃(E(u) − E(ϕ)) ≥
‖u−ϕ‖ hold on a neighborhood of ϕ. Then ‖u(t)−ϕ‖ ≤ CΦ̃(ψ−1(Ct)) for t large. If,
moreover, assumptions of Theorem 16 holds and Φ̃(E(u) − E(ϕ)) ≤ C‖u −ϕ‖, then
the decay estimate CΦ̃(ψ−1(Ct)) is optimal. In particular, if E satisfies (KLI) with
Θ̃ and (IKLI) with CΘ̃ and ϕ is asymptoticaly stable for (GSE), then these decay
estimates hold and are optimal.

6. Optimal decay estimates for second order problem with weak damping

In this section we consider the second order problem (SOP) with weak
damping, i.e. g′(0) = 0. For E satisfying (LI) with θ ∈ (0, 1

2 ] and g(s) = |s|αs
convergence to a stationary point was proved by Chergui in [9] for α ∈
(0, θ

1−θ ) accompanied by decay estimates

(19) ‖u(t) − ϕ‖ + ‖u̇‖ ≤ Ct−
θ−α(1−θ)

1−2θ+α(1−θ) .
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This decay estimate was generalized to more general damping functions

(20) C‖v‖α+2
≥ 〈g(v), v〉 ≥ c‖v‖α+2

in [8] and for E satisfying (KLI) and even more general damping functions
〈g(v), v〉 ≥ h(‖v‖)‖v‖2 in [4]. The generalized decay estimates read

(21) ‖u(t) − ϕ‖ + ‖u̇‖ ≤ CΦh(ψ−1
h (Ct)),

(22) E(u, v) − E(ϕ, 0) ≤ ψ−1
h (Ct),

where E(u, v) = 1
2‖v‖

2 + E(u) + εh(‖v‖)〈∇E(u), v〉,

(23) Φh(t) = C1

∫ t

0

1
Θ(s)h(Θ(s))

ds, ψh(t) = C2

∫ 1
2

t

1
Θ2(s)h(Θ(s))

ds.

If h(s) = sα, Θ(s) = s1−θ, then (21) becomes (19). It is an open problem,
whether these estimates are sharp.

One can show that for many special cases (most common in applications),
these estimates are not optimal. In fact, Haraux has shown in [14] better
decay estimates if E satisfies

〈∇E(u),u〉 ≥ c‖u‖p, ‖E(u)‖ ≤ C‖u‖p.

For scalar equation
ü + c|u̇|αu̇ + d|u|p−2u = 0

he also showed that if α > 1 − 2
p (which corresponds to the case when the

damping force is small and the solution oscilates), then every solution has
the same decay E(t) = |v(t)|2 + E(u(t)) ∼ Ct−

2
α . If α < 1 − 2

p (the damping
force is large and the solution slows down very quickly and converges to
an equilibrium without oscilations), then there exist exactly two types of

solutions: ’slow solutions’ with E(t) ∼ Ct−
p(α+1)
p−2−α and ’fast solutions’ with

E(t) ∼ Ct−
2
α . By [1] the same is true for the vector equation

ü + c‖u̇‖αu̇ + d‖A1/2u‖p−2A1/2u = 0

with A being a symmetric, positive definite matrix.
We study (SOP) with E satisfying (LI) and (8) with a constant γ ≥ 0. We

show that if γ > 0 one obtains better estimates than (21) and if γ = 1−2θ
1−θ we

obtain the same decay estimates as in [14] and in fact, also the assumptions
formulated in terms of (LI), (ILI) are very close to those in [14].

Let us consider (SOP) and its solution u with a nonempty omega-limit set
and ϕ ∈ ω(u). In order to shorten the formulas we shall assume that ϕ = 0,
E(ϕ) = 0. We assume that E satisfies (LI) and (8) on a neighborhood of ω(u)
and that g satisfies

(24) 〈g(v), v〉 ≥ c‖v‖α+2 and |g(v)| ≤ C‖v‖δ
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on bounded sets. Then neccessarily δ ≤ α+1 (in the special case g(v) = ‖v‖αv
this holds with δ = α+ 1). Moreover, for lower bounds we shall assume that
(ILI) holds with θ1 on a neighborhood of ω(u) (obviously, we neccessarily
have θ1 ≥ θ).

Let us define

H(t) =
1
2
‖v‖2 + E(u) + ε‖∇E(u)‖β〈∇E(u), v〉

for a small ε > 0 and an appropriate β > −1 (to be specified later). If β ≤ 0,
we define ‖∇E(u)‖β〈∇E(u), v〉 to be zero for ∇E(u) = 0. Function H plays the
role of E(u, v) if we rewrite (SOP) as a first order problem.

Before we start with some estimates, let us formulate the following lemma.

Lemma 19. Let a positive decreasing function H : R+ → R satisfies

−
H′(t)
H(t)B ≥ c

(
resp. −

H′(t)
H(t)B ≤ c

)
for all t ≥ t0

with some B > 1 and c, t0 > 0. Then the following holds for some C > 0

H(t) ≤ Ct−
1

B−1

(
resp. H(t) ≥ Ct−

1
B−1

)
for all t ≥ 2t0.

Proof. Integrate the inequality in the Lemma from t0 to t and obtain

1
B − 1

(H(t)1−B
−H(t0)1−B) ≥ c(t − t0),

hence

H(t) ≤ ((B − 1)c(t − t0) + H(t0)1−B)
1

1−B ≤ Ct−
1

B−1 for all t ≥ 2t0

with C = (c(B − 1)/2)
1

1−B since H(t0) ≥ 0 and t − t0 ≥
t
2 . For the other

estimate we only replace the inequalities with the opposite ones and take
C1−B = (B − 1)c + H(t0)1−Bt−1

0 since then H(t0)1−B = t0(C1−B
− (B − 1)c) ≤

(t − t0)(C1−B
− (B − 1)c) ≤ tC1−B

− (t − t0)(B − 1)c. �

It follows that we need − H′
HB ≥ c with as small B as possible to get the best

upper estimate for the decay of H. On the contrary, if we have − H′
HB ≤ c with

as large B as possible we get the best lower estimate for the decay of H.
First of all, let us estimate

(25)

H(t) ≤
1
2
‖v‖2 + C‖∇E‖

1
1−θ + ε‖∇E‖β+1

‖v‖

≤
1
2
‖v‖2 + C‖∇E‖

1
1−θ + ε‖∇E‖2β+2 + ε‖v‖2

≤ C(‖v‖2 + ‖∇E‖
1

1−θ ),
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where the last inequality holds if

(β1) β ≥ −1 +
1

2(1 − θ)
.

Similarly, we get a lower bound using (ILI)

(26)

H(t) ≥
1
2
‖v‖2 + c‖∇E‖

1
1−θ1 − ε‖∇E‖β+1

‖v‖

≥
1
2
‖v‖2 + c‖∇E‖

1
1−θ1 + ε‖∇E‖2β+2 + ε‖v‖2

≥ c(‖v‖2 + ‖∇E‖
1

1−θ1 ),

provided

(βI1) β ≥ −1 +
1

2(1 − θ1)
.

Let us now estimate H′(t)

(27)

H′(t) = −〈g(v), v〉 − ε‖∇E(u)‖β+2

+ εβ‖∇E(u)‖β−2
〈∇E(u),∇2E(u)v〉〈∇E(u), v〉

+ ε‖∇E(u)‖β〈∇2E(u)v, v〉

+ ε‖∇E(u)‖β〈∇E(u),−g(v)〉|

Here the first line is less than

−‖v‖α+2
− ε‖∇E(u)‖β+2.

The second and third lines are less than

εc‖∇E(u)‖β+γ‖v‖2

and applying the Young inequality we obtain

εc‖∇E(u)‖β+γ‖v‖2 ≤ c‖v‖α+2 + c(ε)‖∇E(u)‖q

with q = α+2
α (β + γ). We need q ≥ β + 2, which means

(β2) β ≥ α −
1
2
γ(2 + α).

The last line in (27) is less than

εc‖∇E(u)‖β+1
‖v‖δ

and applying the Young inequality we get

εc‖∇E(u)‖β+1
‖v‖δ ≤ c‖v‖α+2 + c(ε)‖∇E(u)‖q

with q = (β + 1) α+2
α+2−δ . Again, we would like q ≥ β + 2, which means

(δ) δ ≥
α + 2
β + 2

.
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Since δ ≤ α + 1, this condition yields

(β3) β ≥ −
α

1 + α
.

So, we have

(28) −H′(t) ≥ c(‖v‖α+2 + ‖∇E(u)‖β+2),

provided (δ) and (β2).
Let us derive upper estimates for −H′(t). Starting with (27) we obtain

(29)
−H′(t) ≤ ‖v‖δ+1 + ε‖∇E‖β+2 + εβ‖∇E‖β+γ‖v‖2 + ε‖∇E‖β+γ‖v‖2 + ε‖∇E‖β+1

‖v‖δ

≤ C(‖v‖δ+1 + ‖∇E‖β+2)

provided δ ≥ 1
β+1 and

(βI2) β ≥ δ − 1 −
γ

2
(1 + δ).

These conditions are weaker than δ ≥ α+2
β+2 and (β2) since δ ≤ α + 1.

Puting together (25) and (28) we obtain for B > 0

−
H′(t)
H(t)B ≥ c

‖v‖α+2 + ‖∇E(u)‖β+2

(‖v‖2 + ‖∇E‖ 1
1−θ )B

≥ c
‖v‖α+2 + ‖∇E(u)‖β+2

‖v‖2B + ‖∇E(u)‖ B
1−θ

.

The last expression is larger than a constant (on bounded sets) if 2B ≥ α + 2
and B

1−θ ≥ β+2, i.e. B ≥ max{1+ α
2 , (β+2)(1−θ)}. To get the best possible result,

we take B as small as possible, so if 1 + α
2 ≥ (β + 2)(1 − θ), i.e. β ≤ α+2

2(1−θ) − 2,
we take B = 1 + α

2 and obtain by Lemma 19

(30) H(t) ≤ C(t − t0)−
1

B−1 = C(t − t0)−
2
α .

On the other hand, if β > α+2
2(1−θ) − 2, we take B = (β + 2)(1 − θ) and obtain

(31) H(t) ≤ C(t − t0)−
1

1−2θ+β(1−θ) .

Let us now derive lower estimates for H. Using (26) and (29) we get

−
H′(t)
H(t)B1

≤ C
‖v‖δ+1 + ‖∇E(u)‖β+2

(‖v‖2 + ‖∇E(u)‖
1

1−θ1 )B1

≤ C
‖v‖δ+1 + ‖∇E(u)‖β+2

‖v‖2B1 + ‖∇E(u)‖
B1

1−θ1

The last expression is less than a constant if B1 ≤
1
2 (δ+1) and B1 ≤ (1−θ1)(β+

2). Due to (βI2) we have 1
2 (δ + 1) ≤ (1 − θ1)(β + 2) whenever γ + 1

1−θ1
≤ 2,

δ ≥ −1. Then the best possible estimate is

(32) H(t) ≥ C(t − t0)−
1

B−1 = C(t − t0)−
2
δ−1
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and it is valid for any β large enough and also for ’the limit case β = +∞’,
i.e. for H(t) = 1

2‖v‖
2 + E(u).

If the upper bound is equal to the lower bound, we can say that the
estimate is optimal. It happens if and only if

B = max
{
1 +

α
2
, (β + 2)(1 − θ)

}
= min

{1
2

(δ + 1), (1 − θ1)(β + 2)
}

= B1.

Since we always have θ1 ≥ θ, we have B ≥ (β+2)(1−θ) ≥ (1−θ1)(β+2) ≥ B1,
hence θ1 = θ. Also, it holds that B ≥ 1

2 (2 +α) ≥ 1
2 (1 +δ) ≥ B1, hence δ = α+ 1.

Moreover, it must hold

1 +
α
2

= (β + 2)(1 − θ), i.e. β =
α + 2

2(1 − θ)
− 2

and we have

(33) c(t − t0)−
2
α ≤ H(t) ≤ C(t − t0)−

2
α .

So, this is the only case when we can say that the obtained estimates are
optimal. It remains to check the conditions (β1), (β2), (β3) (conditions (βI1),
(βI2) follow automatically). From (β3) we obtain α ≥ 1 − 2θ and from (β2)
γ ≥ 1−2θ

1−θ which by Corollary 9 yields γ = 1−2θ
1−θ if ϕ is asymptotically stable in

(GSE). We have proved the following Theorem.

Theorem 20 (Optimality for (SOP) with weak damping). Let α ∈ (0, 1) and
θ ∈ (0, 1

2 ] be such that α ≥ 1 − 2θ. Let E satisfies (LI) and (8) with γ = 1−2θ
1−θ on a

neighborhood of ϕ, ϕ being an asymptotically stable equilibrium for (GSE). Let g
satisfies (24) with δ = α + 1 on a neighborhood of zero. Then we have (33) and

(34) ct−
2
α ≤ ‖u̇‖2 + ‖u(t) − ϕ‖

1
θ ≤ Ct−

2
α

for some c, C > 0, t0 > 0 and all t ≥ t0.

Proof. By Corollary 9, (ILI) holds with θ1 = θ. Hence, the estimate (33)
follows from the derivation above. The estimate (34) follows from H(t) ∼
‖v‖2 +‖∇E(u)‖

1
1−θ (estimates (25), (26)) and ‖∇E(u)‖

1
1−θ ∼ E(u)−E(ϕ) ∼ ‖u−ϕ‖

1
θ

((LI), (ILI), Corollary 9). �

Remark 21. This result yields the same optimal decay estimate as in [14],
where the same assumptions on g and α ≥ 1− 2θ appear but (LI) and (8) are
replaced by

(35) 〈∇E(u),u〉 ≥ c‖u‖
1
θ , E(u) ≤ C‖u‖

1
θ

Conditions (LI) and (8) with γ = 1−2θ
1−θ do not imply the first inequality

in (35), so Theorem 20 is not contained in Haraux’s results [14]. However,
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examples where (35) does not hold are rather artificial: let us consider the
energy function on R2 given in polar coordinates by the formula

E(r, ϕ) = rpc(ϕ), p =
1
θ

for a smooth positive function c with small first and second derivatives and
with positive derivative on (0, π2 ). Then ∇x,yE ∼ rp−1 and ∇2

x,yE ∼ rp−2, so (LI)
and (8) are satisfied with γ = 1−2θ

1−θ . If we change E slightly on neigborhoods
of the points ( 1

k ,
1
k ) in such a way, that E becomes constant on small segments

of the line y = x but the derivative of E in these points in the direction (−1, 1)
stays large, we obtain a function satisfying (LI) and (8) with γ = 1−2θ

1−θ and
such that 〈∇E((x, y)), (x, y)〉 = 0 in some points near origin.

On the other hand, conditions (35) imply (LI) but ∇2E can be very large
on small sets, so (8) and (ILI) do not follow from (35).

In the cases not covered by Theorem 20, i.e. γ < 1−2θ
1−θ or α < 1 − 2θ

or δ < α + 1 or θ1 > θ, the upper estimates are different from the lower
estimates and it is not clear, whether they are optimal or sharp. Let us
collect the estimates in the following two theorems.

Theorem 22. Let α ∈ (0, 1) and θ ∈ (0, 1
2 ] and E satisfy (LI) and (8) on a

neighborhood of ϕ (in case α < θ
1−θ or ϕ is asymptotically stable for (GSE)), resp.

on a neighborhood of ω(u) (otherwise). Let g satisfy (24) on bounded sets. Then we
have

H(t) ≤ Ct−S

for some C > 0, t0 > 0 and all t ≥ t0 with S and β being as follows.
(1) If α ≥ 1 − 2θ, γ ≥ 1−2θ

1−θ , δ ≥ 2(1 − θ), then β = α+2
2(1−θ) − 2, S = 2

α .
(2) If γ < 1−2θ

1−θ , δ ≥ 2
2−γ , then β = α − 1

2γ(2 + α), S = 1
1−2θ−γ(1−θ)+α(1−γ/2)(1−θ) .

(3) If δ < 2(1 − θ), δ ≤ 2
2−γ , then β = α+2

δ − 2, S = δ
2−δ−2θ+α(1−θ) .

Moreover, if α < θ
1−θ we have

(36) ‖u(t) − ϕ‖ ≤
∫ +∞

t
‖u̇‖ ≤ Ct−(θ−α(1−θ))S.

Moreover, if (ILI) holds on a neighborhood of ϕ (resp. ω(u)), then

(37) ‖v‖ ≤ Ct−
S
2 , E(u) − E(ϕ) ≤ C(t − t0)

1−θ1
1−θ ·S

and if ϕ is asymptotically stable for (GSE), then

(38) ‖u(t) − ϕ‖ ≤ Ct−θS
1−θ1
1−θ .

Proof. The cases (1), (2), (3) follow from estimates (30), (31). Estimate (36)
follows by the same computations as (16). Estimates (37) follow from (26)
and (38) follows from Corollary 6, part 1. �
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Theorem 23. Let u be a solution to (SOP) with limt→+∞ u(t) = ϕ. Let E satisfy
(ILI) and (8) on a neighborhood of ϕ and 1

1−θ1
+ γ < 2. Let g satisfies (24) with

δ > 1 on bounded sets. Then we have

H(t) ≥ Ct−
2
δ−1

for some C > 0, t0 > 0 and all t ≥ t0 with any β satisfying (βI1), (βI2). Moreover,
if E satisfies (LI), then

‖v‖2 + ‖∇E‖
1

1−θ ≥ Ct−
2
δ−1 .

Proof. The estimate for H follows from (32) and the estimates for v and ∇E
from (25). �

One can see that if γ = 0, then case (2) in Theorem 22 yields the decay
estimate from [9], [8]. However, if (8) holds with γ > 0, then we have a
better estimate. Also if γ = 0 and (ILI) holds with θ1 < θ + α

θ (1 − θ)2 and
ϕ is asymptotically stable for (GSE), then (38) gives a better estimate for
‖u(t) − ϕ‖.

If α < 1 − 2θ, δ = α + 1, γ = 1−2θ
1−θ , previous Theorems give the same

upper and lower estimates as [14]. Due to [14], for δ = α + 1, γ = 1−2θ
1−θ these

estimates are sharp in the class of equations satisfying the assumptions of
the above theorems. If δ < α + 1 or γ < 1−2θ

1−θ , sharpness is an open problem.

7. Examples of second order equations with weak damping

In this section we present two examples. We first focus on the scalar case,
where we are typically able to obtain optimal decay (namely, for all analytic
functions E), at least in the oscilatory case. On the other hand, for vector
problems there is a large class of ’nice’ functions (namely functions with
different growth in different directions like E(x, y) = |x|p + |y|q, p > q > 2)
that do not satisfy (LI) and (ILI) with θ = θ1 and optimality of the decay
estimates is open.

Example 24. Let us consider a scalar (SOP) with an analytic function E : I ⊂
R→ R. Let ϕ ∈ Cr(E). Then we have E(x−ϕ)−E(ϕ) = ak(x−ϕ)k + o((x−ϕ)k)
for x in a neighborhood of ϕ and due to Proposition 10 (LI), (ILI) holds with
θ = θ1 = 1

k and (8) holds with γ = 1−2θ
1−θ . Let g satisfy (24) with δ = α + 1 (e.g.

any function of the form g(v) = |v|αvh(v) with h continuous, h(0) , 0).
In the oscilatory case α ≥ 1−2θ the results of the previous section say that

any solution u with limt→+∞ u(t) = ϕ satisfies H(t) ∼ Ct−
2
α , i.e., |v|2 + |u(t) −

ϕ|
1
θ ∼ Ct−

2
α (we do not need asymptotic stability of ϕ in Theorem 20 since we

know the growth of E). In the non-oscilatory case α < 1 − 2θ every solution
u with limt→+∞ u(t) = ϕ satisfies

ct−
2
α ≤ H(t) ≤ Ct−

θ(α+1)
1−2θ−αθ ,
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i.e.,
ct−

2
α ≤ |v|2 + |u(t) − ϕ|

1
θ ≤ Ct−

θ(α+1)
1−2θ−αθ .

Moreover, in the oscilatory case we can show that

lim sup
t→+∞

|u(t) − ϕ|t
2θ
α ∈ (0,+∞) and lim sup

t→+∞

|v(t)|t
1
α ∈ (0,+∞).

In fact, by the upper bound for |v|2 + |u(t) − ϕ|
1
θ it follows that both limsups

are finite. We show that they are positive.
Let us assume for contradiction that for every ε > 0 there exists tε > t0

such that |u(t) − ϕ| ≤ εt−
2θ
α for all t > tε. Then |E′(u(t))|

1
1−θ ≤ εCt−

2
α for t > tε.

If ε is small then due to (25) we have |v(t)|2 ≥ c(1 − ε)t−
2
α for t > tε. Hence, v

does not change sign on (tε,+∞). We can assume without loss of generality
that u(tε) − ϕ > 0. Then v cannot be positive for all t > tε, so v si negative
and −v(t) ≥ c(1 − ε)t−

1
α on (tε,+∞). Then

u(t) − ϕ = −

∫ +∞

t
v(s)ds ≥

∫ +∞

t
c(1 − ε)s−

1
αds = ct

α−1
α ≥ ct

−2θ
α

on (tε,+∞), which is a contradiction with |u(t) − ϕ| ≤ εt−
2θ
α .

Similarly, we prove the lower bound for v. If |v| ≤ εt−
1
α on (tε,+∞), then

g(v(t)) ≤ Cεt−
1+α
α and due to (25) |E′(u(t))| ≥ ct−

2
α (1−θ)

≥ ct−
1+α
α . We have (we

may assume E′(u(t)) > 0)

v(t) =

∫ +∞

t
g(v(s)) + E′(u(s))ds ≥

∫ +∞

t
(c − ε)s−

1+α
α ds = ct−

1
α ,

contradiction.

Remark 25. In the previous example we can take any function E ∈ C2(R)
satisfying E′′(x) = a(x − ϕ)p−2 + o((x − ϕ)p−2) on a neighborhood of ϕ (not
neccessarilly analytic, also p <N, p > 2 is possible).

In contrast to the scalar case, in higher dimensions there is a large class
of functions where θ1 in (ILI) must be strictly larger than θ from (LI) and
γ < 1−2θ

1−θ . In this case, the results from [14] do not apply. Theorem 22 gives a
decay estimate which is better than the one from [9], [4]. However, it is not
clear, whether this estimate is optimal (it rather seems that it is not optimal).

Example 26. Let E : R2
→ R be defined as

E(x, y) = |x|p + |y|q, p > q ≥ 2.

Then

∇E(x, y) =

(
p|x|p−2x
q|y|q−2y

)
and ∇

2E(x, y) =

(
p(p − 1)|x|p−2 0

0 q(q − 1)|y|q−2

)
.
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Hence,

‖∇E(x, y)‖ ∼ |x|p−1 + |y|q−1 and ‖∇
2E(x, y)‖ ∼ |x|p−2 + |y|q−2

on any bounded set. It follows that

|E(x, y)|
p−1

p ≤ C
(
|x|p−1 + |y|q

p−1
p

)
= C

(
|x|p−1 + |y|q−

q
p
)
≤ C

(
|x|p−1 + |y|q−1

)
,

i.e. (LI) holds with (best possible, i.e. largest) θ = 1
p . On the other hand,

|E(x, y)|
q−1

q ≥ c
(
|x|p

q−1
q + |y|q

)
= C

(
|x|p−

p
q + |y|q

)
≥ C

(
|x|p−1 + |y|q−1

)
,

i.e. (ILI) holds with (best possible, i.e. smallest) θ1 = 1
q >

1
p . Further, we

have on bounded sets

‖∇
2E(x, y)‖ ≤ C

(
|x|p−2 + |y|q−2

)
≤ C

(
|x|p−1 + |y|q−1

) q−2
q−1
,

since p − 2 ≥ (p − 1) − p−1
q−1 = (p − 1) q−2

q−1 . It means that the best possible

γ =
q−2
q−1 <

p−2
p−1 = 1−2θ

1−θ (if q = 2 we have γ = 0).
If we take g satisfying (24) with δ = α+ 1, then Theorem 22 case (2) yields

(39) H(t) ≤ C(t − t0)−S with S =
1

α
2 + (p − q) 2+α

2p(q−1)

.

Moreover, since (ILI) holds with θ1 = 1
q and zero is asymptotically stable for

(GSE) (due to the shape of E), we have

(40) ‖u(t)‖ ≤ C(t − t0)−θS
1−θ1
1−θ = C(t − t0)−S q−1

q(p−1) .

So, if q > 2 then (39) is a better estimate than in [9], [4]. If q = 2 and α is such
that 1

q <
1
p + α

p (p − 1)2, then estimate (40) is better than the one in [9].
On the other hand, if we fix x = 0 or y = 0 we obtain one-dimensional

problems studied in [14]. Hence, all solutions on the x-axis satisfy H(t) ∼
(t − t0)−

2
α (or H(t) ∼ (t − t0)−

α+1
p−2−α if α < 1 − 2

p ) and all solutions on the y-axis

satisfy H(t) ∼ (t − t0)−
2
α (or H(t) ∼ (t − t0)−

α+1
q−2−α if α < 1 − 2

q ). So, for q > 2,
α < 1 − 2

q we have solutions with three different rates of convergence. The
problem, whether there exist solutions with a forth rate of convergence and
whether their convergence can be even slower (as slow as (39)), remains
open. Even in the case α ≥ 1 − 2

p it is not clear whether all solutions behave

like (t−t0)−
2
α or whether there exist some solutions with slower convergence.
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