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Abstract

In this paper we study convergence to equilibrium and rate of convergence for
a class of abstract second order evolution equations with convolutionary damping
term. We focus on polynomially decaying convolution kernels and show how the rate
of convergence depends on the decay of the kernel, decay of the right-hand side and
the  Lojasiewicz exponent of the leading non-linear operator. Similar results were
recently shown for exponentially decaying kernels.
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1 Introduction

Integrodifferential equations of the type

utt −∆u+ f(x, u) +

∫ t

0

k(s)∆u(t− s) ds = g in R+ × Ω (1)

arise naturally in the theory of viscoelasticity, and therefore were studied by many authors
(see e.g. [6], [7], [8]).

In [9], H. Yassine proved that solutions of (1) converge to an equilibrium and estimated
the rate of convergence for a class of problems with exponentially decaying kernels k. In
particular, he has shown polynomial rate of convergence for polynomially decaying g. In the
present paper, we show similar results for polynomially decaying kernels k. In particular, if
k(t) ≤ C(1 + t)−p with p > p0 (for an explicitly computed p0 depending on decay of g and
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the  Lojasiewicz exponent of −∆ + f), then we have the same polynomial decay estimates
as for exponentially decaying kernels. For p ∈ (2, p0] the rate of convergence depends on p.
For p ≤ 2 convergence to equilibrium remains open.

Moreover, in the present paper we work in more abstract settings covering (1) as a
special case. In particular, we study the equation

ü(t) + E ′(u(t))−
∫ t

0

k(t− s)Au(s)ds = g(t) (IDE)

in a Hilbert space H, where −A is a dissipative self-adjoint operator and the operator
EA(u) = E(u) + 1

2

∫ +∞
0

k(s) ds‖A1/2u‖2 satisfies the  Lojasiewicz gradient inequality

|Eµ(u)− Eµ(φ)|1−θ ≤ C‖E ′µ(u)‖H−1(Ω).

The present results also apply to the finite-dimensional case H = Rn.
For other results based on the  Lojasiewicz inequality giving rate of convergence in a

finite-dimensional case see [10] (for completely positive kernels singular at zero). For the
infinite-dimensional case, see [4] for abstract equations containing an additional damping
term Bu̇ (which helps to stabilize the solution), and see [1] for abstract semilinear equations
with polynomially decaying kernels.

The paper is organized as follows. Section 2 contains basic definitions and settings and
formulation of the main result. Section 3 contains some preliminary results on convolutions.
Energy estimates are derived in Section 4, while in Section 5 the proof of the main result
is given in a series of Lemmas.

2 Definitions and the main result

Let V ↪→ H ↪→ V ∗ be Hilbert spaces with the scalar products 〈·, ·〉1, 〈·, ·〉, 〈·, ·〉∗ and norms
‖ · ‖1, ‖ · ‖, ‖ · ‖∗ respectively. Let the embeddings be dense and let V ∗ be the dual of V
with the duality satisfying (u, v)V ∗,V = 〈u, v〉 if u ∈ H, v ∈ V . Further, let J : V ′ → V be
the duality mapping defined by 〈h, v〉∗ = (h, Jv)V ∗,V for all h, v ∈ V ∗.

Throughout the paper c, C are general positive constants independent of t, their values
vary from expression to expression.

Let us assume

(E) E : V → R is of class C2 such that JE ′′(u) : V → V extends to a bounded linear
mapping from H to H with ‖JE ′′(u)‖ being uniformly bounded for u from a compact
subset of V .

(A) −A : V → V ∗ is a linear dissipative self-adjoint operator with A1/2 : V → H being
bounded.

(k) k : R+ → (0,+∞) is continuous and differentiable and there exist ck > 0 and p > 2
such that

k′(t) ≤ −ckk1+ 1
p (t) for all t ≥ 0. (2)
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(g) g : R+ → R+ is square integrable and there exists Cg, δ > 0 such that∫ +∞

t

‖g(s)‖2 ds ≤ Cg(1 + t)−1−δ for all t ≥ 0.

Let us observe that (k) implies k(t) ≤ C(1 + t)−p for some C > 0 and all t ≥ 0. In fact,

since k is positive we can divide (2) by k1+ 1
p (t), integrate from 0 to t and we obtain∫ t

0

k−1− 1
p (s)k′(s) ds = −p(k−

1
p (t)− k−

1
p (0)) ≤ −ckt,

which leads to

k
1
p ≤ 1

ck
p
t+ k−

1
p (0)

≤ 1

c(t+ 1)

for and appropriate c > 0 and we have k(t) ≤ C(1 + t)−p. So, k ∈ L1(R+) and we can
denote K∞ =

∫ +∞
0

k(s) ds.
Let us define EA : V → R by

EA(u) = E(u) +
1

2
K∞‖A1/2u‖2.

Then EA ∈ C2(V ) and for u ∈ V we have E ′A(u) = E ′(u) + K∞Au ∈ V ∗ and E ′′A(u) =
E ′′(u) +K∞A being a bounded linear operator from V to V ∗. We assume

(LI) EA satisfies the  Lojasiewicz gradient inequality, i.e. for every φ ∈ V there exists
θφ ∈ (0, 1

2
], ρ, C > 0 such that

|EA(u)− EA(φ)|1−θ ≤ C‖E ′A(u)‖∗ for all u with ‖u− φ‖1 ≤ ρ.

Condition (E) appears in other works dealing with abstract second order equations (see
e.g. [5] and [3]) and it is satisfied for

E(u) =
1

2

∫
Ω

‖∇u(x)‖2 dx+

∫
Ω

∫ u

0

f(x, s) ds dx

which is the energy corresponding to (1). Condition (E) allows to define 〈E ′′(u)v, v〉∗ :=
〈JE ′′(u)v, v〉 for v ∈ H and estimate this expression (we use it in the proof of (15)). Let
us mention that also the remaining assumptions generalize those of [9] and the operator
EA corresponds to Eµ from [9].

We say that u ∈ C(R+, V ) ∩ C1(R+, H) is a weak solution to (IDE) if (IDE) holds in
V ∗ for every t > 0. If u ∈ C1(R+, V ) ∩ C2(R+, H) and (IDE) holds in H for every t > 0,
then we call u a strong solution.
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Theorem 2.1. Let (E), (A), (k), (g), (LI) hold and let u be a strong solution to (IDE)
such that {(u(t), u̇(t)), t ≥ 0} is bounded in V ×H and {u(t), t ≥ 0} is relatively compact
in V . Then there exists φ ∈ V such that

lim
t→+∞

‖ut(t)‖+ ‖u(t)− φ‖1 = 0.

Moreover, for every ε > 0 there exists C > 0 such that

‖u(t)− φ‖ ≤ C(1 + t)−µ, ∀ t ≥ 0, (3)

where µ = min{ θ
1−2θ

, p−2−ε
2

, δ
2
}, θ = θφ.

Proposition 2.2. Let the assumptions of Theorem 2.1 hold. If

‖A1/2(u(t)− φ)‖ ≤ C(t+ 1)−ω (4)

for some C, ω > 0 and all t > 0, then (3) holds with µ = min{ θ
1−2θ

, p−1
2
, δ

2
}.

Condition (4) holds, e.g., if {‖Au(t)‖, t > 0} is bounded.

Remark 2.3. If every weak solution can be approximated by strong solutions, then Theo-
rem 2.1 and Proposition 2.2 hold also for weak solutions. In fact, we need a strong solution
to derive (9) only. From Lemma 4.2 on, everything holds for weak solutions.

3 Preliminaries

Let us denote

K(t) =

∫ t

0

k(s) ds and K(t) =

∫ t

0

k1− 1
p (s) ds.

Further, for a function l ∈ L2
loc(R+) we define

(k ◦ l)(t) =

∫ t

0

k(t− s)‖l(s)− l(t)‖2 ds.

Lemma 3.1. Let (k) hold. Then

K∞ −K(t) =

∫ +∞

t

k(s) ds ≤ Ck(t)1− 1
p

for some C > 0 and all t ≥ 0.

Proof. Since both sides of the inequality tend to zero as t→ +∞, it is sufficient to compare
derivatives, i.e. to show

−k(t) ≥ Ck(t)−
1
pk′(t)

or, equivalently, k′(t) ≤ − 1
C
k(t)1+ 1

p . This is true by (k).
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Lemma 3.2. If k ∈ L1
loc([0,+∞)) is non-negative and f ∈ L1

loc([0,+∞), H), then∥∥∥∥∫ t

0

k(t− s)(f(s)− f(t)) ds

∥∥∥∥2

≤ K(t)(k1+ 1
p ◦ f)(t)

holds for all t ≥ 0. If, moreover, (2) holds with p > 2, then there exists C > 0 such that∥∥∥∥∫ t

0

k(t− s)(f(s)− f(t)) ds

∥∥∥∥2

≤ C(k1+ 1
p ◦ f)(t) ∀ t ≥ 0.

If k′ ∈ L1
loc([0,+∞)) is non-positive and f ∈ L1

loc([0,+∞), H), then∥∥∥∥∫ t

0

k′(t− s)(f(s)− f(t)) ds

∥∥∥∥2

≤ (k(0)− k(t))(k′ ◦ f)(t)

Proof. The first part follows easily by Hölder inequality since(∫ t

0

k
1
2

(1− 1
p

)(t− s) · k
1
2

(1+ 1
p

)(t− s)‖f(s)− f(t)‖ ds

)2

≤
∫ t

0

k1− 1
p (t− s) ds (k1+ 1

p ◦ f)(t).

(5)

Moreover, (2) implies that k(t) ≤ c(1+t)−p, so k1− 1
p ≤ c(1+t)−p+1 is integrable. Therefore,

K is bounded and the second part follows.
Similarly, the third part follows by writing k′ =

√
−k′
√
−k′, applying Hölder inequality

as in (5) and using
∫ t

0
−k′(t− s) ds = k(0)− k(t).

The following lemma is taken from [2, Lemma 2.4].

Lemma 3.3. Let p > 1 and σ ≥ 0. Assume that k(t) ≤ C1(1 + t)−p and ‖u(t)‖2 ≤
C2(1 + t)−σ for some C1, C2 > 0 and all t ≥ 0. If 0 ≤ σ ≤ 1, then for every 1 > r > 1−σ

p

there exists K > 0 such that

k ◦ u ≤ K
(
k1+ 1

p ◦ u
) (1−r)p

1+(1−r)p
for all t ≥ 0.

If σ > 1, then there exists K > 0 such that

k ◦ u ≤ K
(
k1+ 1

p ◦ u
) p

1+p
for all t ≥ 0.

4 Energy estimates

For a fixed strong solution u to (IDE) and v = u̇(t) let us define

E1(t) =
1

2
‖v(t)‖2 + E(u(t)) +

∫ +∞

t

〈g(s), v(s)〉 ds.
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Using (IDE) we have

d

dt
E1(t) =

∫ t

0

k(t− s)
〈
A1/2u(s), A1/2v(t)

〉
ds. (6)

Further, we define

E(t) =E1(t)− 1

2
K(t)‖A1/2u(t)‖2 +

1

2
k ◦ A1/2u(t)

=
1

2
‖v(t)‖2 + EA(u(t)) +

1

2
(K∞ −K(t))‖A1/2u(t)‖2

+
1

2
(k ◦ A1/2u)(t) +

∫ +∞

t

〈g(s), v(s)〉 ds.

(7)

Lemma 4.1. The inequalities

E(t) ≤1

2
‖v(t)‖2 + EA(u(t)) +

1

2
(K∞ −K(t))‖A1/2u(t)‖2

+
1

2
(k ◦ A1/2u)(t) +

∫ +∞

t

〈g(s), v(s)〉 ds
(8)

and
d

dt
E(t) =

1

2
(k′ ◦ A1/2u)(t)− 1

2
k(t)‖A1/2u(t)‖2 ≤ 0 (9)

hold for every t > 0. Moreover, limt→+∞ E(t) exists and we denote it E∞.

Proof. Estimate (8) is obvious. The equality in (9) follows from (6),(
−1

2
K(t)‖A1/2u(t)‖2

)′
= −1

2
k(t)‖A1/2u(t)‖2 −K(t)

〈
A1/2u(t), A1/2v(t)

〉
,(

1

2
(k ◦ A1/2u)(t)

)′
=

1

2
(k′ ◦ A1/2u)(t)−

∫ t

0

k(t− s)
〈
A1/2u(s)− A1/2u(t), A1/2v(t)

〉
ds,

and
∫ t

0
k(t − s)

〈
A1/2u(t), A1/2v(t)

〉
ds = K(t)

〈
A1/2u(t), A1/2v(t)

〉
. Since k′ ≤ 0, we have

k′ ◦ A1/2u ≤ 0 which yields the inequality in (9). Hence, E is non-increasing. Since
(u(t), v(t)) is bounded in V ×H and range of u is relatively compact in V , E(t) is bounded.
So, the limit exists and the Lemma is proved.

Let us define

I(t) = −
〈
v(t),

∫ t

0

k(t− s)(u(t)− u(s)) ds

〉
+

1

2

∫ +∞

t

‖g(s)‖2 ds,

Lemma 4.2. There exist constants ε0, CI , cI > 0, T > 0 such that for every ε ∈ (0, ε0)
the inequalities

I(t) ≤ 1

2
‖v(t)‖2 +K(t) (k ◦ u)(t) +

1

2

∫ +∞

t

‖g(s)‖2 ds. (10)
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and
d

dt
I(t) ≤− 1

2
K∞‖v(t)‖2 +

ε

8
‖E ′A(u(t))‖∗ −

cI
ε

(k′ ◦ A1/2u)(t)

+ CI(K∞ −K(t))2‖A1/2u(t)‖2 +
CI
ε
K(t)(k1+ 1

p ◦ A1/2u)(t)

(11)

hold on (T,+∞).

Proof. The inequality (10) follows immediately from Lemma 3.2. Let us prove (11). We
have

d

dt
I(t) =−

∫ t

0

k(s) ds‖v(t)‖2 −
〈
v(t),

∫ t

0

k′(t− s)(u(t)− u(s)) ds

〉
− 1

2
‖g(t)‖2

+

〈
E ′(u(t)) +

∫ t

0

k(t− s)Au(s) ds− g(t),

∫ t

0

k(t− s)(u(t)− u(s)) ds

〉 (12)

(here the second line corresponds to the derivative of v replaced by the other terms from
(IDE) and the first line contains the remaining terms). By Lemma 3.2 and ‖u‖2 ≤
C0‖A1/2u‖2 we can estimate the second term in (12) by

ε

2
‖v(t)‖2 +

C0

2ε
(k(t)− k(0))(k′ ◦ A1/2u)(t).

Further, we have∫ t

0

k(t− s)Au(s) ds =

∫ t

0

k(t− s)(Au(s)− Au(t)) ds+ Au(t)

∫ t

0

k(s) ds

=

∫ t

0

k(t− s)(Au(s)− Au(t)) ds+ Au(t)K∞ + Au(t)(K(t)−K∞),

(13)
and therefore

E ′(u(t)) +

∫ t

0

k(t− s)Au(s) ds− g(t)

= E ′A(u(t)) +

∫ t

0

k(t− s)(Au(s)− Au(t)) ds+ (K(t)−K∞)Au(t)− g(t),

By Cauchy–Schwarz and Lemma 3.2 we have〈
E ′A(u(t)),

∫ t

0

k(t− s)(u(t)− u(s)) ds

〉
≤ ε

8
‖E ′A(u(t))‖2

∗ +
2

ε
K(t)(k1+ 1

p ◦ A1/2u)(t),

〈
−Au(t)(K∞ −K(t)),

∫ t

0

k(t− s)(u(t)− u(s)) ds

〉
≤ 1

2
(K∞ −K(t))2‖A1/2u(t)‖2 +

1

2
K(t)(k1+ 1

p ◦ A1/2u)(t),
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〈
g(t),

∫ t

0

k(t− s)(u(t)− u(s)) ds

〉
≤ 1

2
‖g(t)‖2 +

C0

2
K(t) (k1+ 1

p ◦ A1/2u)(t),

and 〈∫ t

0

k(t− s)(Au(s)− Au(t)) ds,

∫ t

0

k(t− s)(u(t)− u(s)) ds

〉
=

∥∥∥∥∫ t

0

k(t− s)(A1/2u(t)− A1/2u(s) ds

∥∥∥∥2

≤ K(t)(k1+ 1
p ◦ A1/2u)(t).

Together we have

d

dt
I(t) ≤−

(
K(t)− ε

2

)
‖v(t)‖2 +

ε

8
‖E ′A(u(t))‖2

∗ +
C0

2ε
(k(t)− k(0))(k′ ◦ A1/2u)(t)

+
1

2
(K∞ −K(t))2 ‖A1/2u(t)‖2 +

(
3 + C0

2
+

2

ε

)
K(t)(k1+ 1

p ◦ A1/2u)(t),

which for large t and small ε yields (11).

Let us define

J(t) = 〈E ′A(u(t)), v(t)〉∗ + C ′0

∫ +∞

t

‖g(s)‖2 ds.

Lemma 4.3. Inequalities

J(t) ≤ 1

2
‖E ′A(u(t))‖2

∗ +
1

2
‖v(t)‖2

∗ + C ′0

∫ +∞

t

‖g(s)‖2 ds. (14)

and
d

dt
J(t) ≤− 1

4
‖E ′A(u(t))‖2

∗ + C‖v(t)‖2
∗ +

1

2
(K∞ −K(t))2‖A1/2u(t)‖2

+K(t)(k1+ 1
p ◦ A1/2u)(t)

(15)

hold.

Proof. The inequality (14) is obvious. To prove (15) let us compute

d

dt
J(t) =〈E ′A(u(t)),−E ′(u(t))−

∫ t

0

k(t− s)Au(s) ds+ g(t)〉∗

+ 〈E ′′(u(t))v(t) +K∞Av(t), v(t)〉∗ − C ′0‖g(t)‖2.

Using (13) we have

−E ′(u(t))−
∫ t

0

k(t− s)Au(s) ds =− (E ′A(u(t))) + (K∞ −K(t))Au(t)

+

∫ t

0

k(t− s)(Au(t)− Au(s)) ds.
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So,

d

dt
J(t) =− ‖E ′A(u(t))‖2

∗ + 〈E ′′(u(t))v(t) +K∞Av(t), v(t)〉∗ − C ′0‖g(t)‖2

+ 〈E ′A(u(t)), (K∞ −K(t))Au(t) +

∫ t

0

k(t− s)(Au(t)− Au(s)) ds+ g(t)〉∗

≤− 1

4
‖E ′A(u(t))‖2

∗ + C‖v(t)‖2
∗ − C ′0‖g(t)‖2

+
1

2
(K∞ −K(t))2‖A1/2u(t)‖2 +K(t)(k1+ 1

p ◦ A1/2u)(t) +
1

2
‖g(t)‖2

∗

≤− 1

4
‖E ′A(u(t))‖2

∗ + C‖v(t)‖2
∗ +

1

2
(K∞ −K(t))2‖A1/2u(t)‖2

+K(t)(k1+ 1
p ◦ A1/2u)(t)

and the lemma is proved.

Lemma 4.4. The function

H(t) = E(t) + ε2I(t) + ε3J(t)

satisfies

H(t) ≤C‖v(t)‖2 + EA(u(t)) + C‖E ′A(u(t))‖2
∗ + C(k ◦ A1/2u)(t)

+ C(K∞ −K(t))‖A1/2u(t)‖2 +

∫ +∞

t

〈g(s), v(s)〉 ds+ C

∫ +∞

t

‖g(s)‖2 ds
(16)

and

d

dt
H(t) ≤− c

(
‖v(t)‖2 + ‖E ′A(u(t))‖2

∗ + k(t)‖A1/2u(t)‖2 + (k1+ 1
p ◦ A1/2u)(t)

)
. (17)

Proof. The first inequality follows immediately by the upper bounds for E , I, J derived in
Lemmas 4.1, 4.2, 4.3, and by boundedness of K, (k ◦ u) ≤ (k ◦ A1/2u) and ‖v‖∗ ≤ C‖v‖.

9



To prove (??) let us estimate

d

dt
H(t) ≤1

2
(k′ ◦ A1/2u)(t)− 1

2
k(t)‖A1/2u(t)‖2 − ε2K∞‖v(t)‖2

+ ε2 ε

8
‖E ′A(u(t))‖2

∗ − ε2 cI
ε

(k′ ◦ A1/2u)(t)

+ ε2CI(K∞ −K(t))2‖A1/2u(t)‖2 + ε2CI
ε
K(t) (k1+ 1

p ◦ A1/2u)(t)

− ε3 1

4
‖E ′A(u(t))‖2

∗ + ε3C‖v(t)‖2
∗

+ ε3 1

2
(K∞ −K(t))2 ‖A1/2u(t)‖+ ε3K(t)(k1+ 1

p ◦ A1/2u)(t)

≤
(

1

2
− cIε

)
(k′ ◦ A1/2u)(t)− 1

2

(
k(t)− ε2(2CI − ε)(K∞ −K(t))2

)
‖A1/2u(t)‖2

− ε3(K∞ − εC)‖v(t)‖2 − ε3 1

8
‖E ′A(u(t))‖2

∗

+ ε
(
CI + ε2

)
K(t) (k1+ 1

p ◦ A1/2u)(t).

Moreover, by (2) we have for ε > 0 small enough

(k′ ◦ A1/2u)(t) + Cε(k1+ 1
p ◦ A1/2u)(t) ≤ 1

2
(k′ ◦ A1/2u)(t) ≤ −c(k1+ 1

p ◦ A1/2u)(t),

and by Lemma 3.1 (K∞ −K(t))2 ≤ Ck(t). Then, for ε > 0 small we obtain (17).

5 Proof of the main result

Using the energy estimates derived in the previous section we first prove

Proposition 5.1. The following holds.

(i) v ∈ L2(R+, H), E ′A(u(·)) ∈ L2(R+, V
∗) and k1+ 1

p ◦ A1/2u ∈ L1(R+).

(ii) For all φ ∈ ω(u) we have EA(φ) = E∞ and limt→+∞EA(u(t)) = E∞ .

(iii) limt→+∞ ‖v(t)‖ = limt→+∞(k ◦ A1/2u)(t) = 0.

(iv) limt→+∞ I(t) = limt→+∞ J(t) = 0, limt→+∞H(t) = E∞.

Proof. The function H defined in Lemma 4.4 is decreasing (by conclusions of the Lemma)
and bounded below (due to boundedness of (u(·), v(·))). So, H has a limit H∞. Then
integrating the inequality (17) over (t,+∞) yields (i).

Let φ ∈ ω(u) and tn ↗ +∞ such that u(tn) → φ in V as n → ∞. Then for any
fixed s > 0 we have u(tn + s) = u(tn) +

∫ tn+s

tn
v(r) dr → φ+ 0 in H due to (i). By relative

compactness of the trajectory we have u(tn+s)→ φ in V and by continuity of EA : V → R
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and the Lebesque dominated convergence theorem we have
∫ 1

0
EA(u(tn + s)) ds→ EA(φ).

By integrating (7) we obtain

E∞ = lim
n→∞

∫ 1

0

E(tn + s) ds = lim
n→∞

∫ 1

0

EA(u(tn + s)) ds = EA(φ),

where the second equality follows since all other terms on the right-hand side of (7) (after
integration) tend to zero by (i) and limt→+∞K(t) = K∞. We have proved that EA(φ) =
E∞. Precompact range of u then implies by standard arguements EA(u(t))→ E∞ and (ii)
is proved.

Then taking limit in (7) we have E∞ = limt→+∞
(

1
2
‖v(t)‖+ (k ◦ A1/2u)(t)

)
+ E∞ which

yields (iii). Statement (iv) follows immediately from definitions of I and J and (iii).

Lemma 5.2. Let V (t) = H(t)− E∞. Then

d

dt
V (t) ≤− c

(
‖v(t)‖+ ‖E ′A(u(t))‖∗ + k(t)

1
2‖A1/2u(t)‖+ (k1+ 1

p ◦ A1/2u)(t)
1
2

)2

. (18)

Let σ ∈ [0, 1) be such that ‖A1/2(u(t)− φ)‖2 ≤ C(1 + t)−σ and let r ∈ (1−σ
p
, 1) ∩ [0, 1) and

γ0 = min

{
1

1− θ
,

2(1− r)p
1 + (1− r)p

, 2− 2

p

}
. (19)

Then for every γ ∈ (1, γ0] there exist Cγ, Tγ > 0 such that

V (t) ≤Cγ
(
‖v(t)‖+ ‖E ′A(u(t))‖∗ + k(t)

1
2‖A1/2u(t)‖+ (k1+ 1

p ◦ A1/2u)(t)
1
2

+ (1 + t)−
1
γ

(1+δ)
)γ (20)

holds for all t ≥ Tγ.

Proof. Inequality (18) follows immediately from (17). To prove (20) we first get rid of the
term

∫ +∞
t
〈g, v〉 in (16). By (17) we have∫ +∞

t

‖v(s)‖2ds ≤ 1

c
(H(t)− E∞) =

1

c
V (t),

and therefore∫ +∞

t

〈g(s), v(s)〉 ds ≤ c

2

∫ +∞

t

‖v(s)‖2ds+C

∫ +∞

t

‖g(s)‖2ds ≤ 1

2
V (t)+C

∫ +∞

t

‖g(s)‖2ds.

Then, by (16) we have

V (t) ≤C
(
‖v(t)‖2 + EA(u(t))− E∞ + ‖E ′(u(t))‖2

∗ + (k ◦ A1/2u)(t)

+ (K∞ −K(t))‖A1/2u(t)‖2 +
1

2
V (t) + C

∫ +∞

t

‖g(s)‖2ds+

∫ +∞

t

‖g(s)‖2 ds
)

11



and by subtracting 1
2
V (t) we get

V (t) ≤C
(
‖v(t)‖2 + EA(u(t))− E∞ + ‖E ′(u(t))‖2

∗ + (k ◦ A1/2u)(t)

+ (K∞ −K(t))‖A1/2u(t)‖2 +

∫ +∞

t

‖g(s)‖2 ds
)
.

Now, applying (g), (E), 1
1−θ ≤ 2 and Lemma 3.1 we obtain

V (t) ≤C
(
‖v(t)‖2 + ‖E ′A(u(t))‖

1
1−θ
∗ + (k ◦ A1/2u)(t) + k(t)1− 1

p‖A1/2u(t)‖2 + (1 + t)−1−δ
)
.

Further, we have

k(t)1− 1
p‖A1/2u(t)‖2 ≤ Ck(t)1− 1

p‖A1/2u(t)‖2− 2
p ≤ C

(
k(t)

1
2‖A1/2u(t)‖

)2− 2
p

and by Lemma 3.3

(k ◦ A1/2u)(t) ≤ C(k1+ 1
p ◦ A1/2u)(t)

(1−r)p
1+(1−r)p

for r ∈ (1−σ
p
, 1). So,

V (t) ≤C

(
‖v(t)‖2 + ‖E ′A(u(t))‖

1
1−θ
∗ +

(
(k ◦ A1/2u)(t)

1
2

) 2(1−r)p
1+(1−r)p

+
(
k(t)

1
2‖A1/2u(t)‖

)2− 2
p

+ (1 + t)−1−δ

) (21)

If γ satisfies

1 < γ ≤ min

{
2,

1

1− θ
,

2(1− r)p
1 + (1− r)p

, 2− 2

p

}
= min

{
1

1− θ
,

2(1− r)p
1 + (1− r)p

, 2− 2

p

}
,

then (since the first four terms in the big brackets in (21) are bounded)

V (t) ≤Cγ

(
‖v(t)‖γ + ‖E ′A(u(t))‖γ∗ +

(
(k ◦ A1/2u)(t)

1
2

)γ
+
(
k(t)

1
2‖A1/2u(t)‖

)γ
+ (1 + t)−1−δ

)

Hence,

V (t) ≤ C
(
‖v(t)‖+ ‖E ′A(u(t))‖∗ + (k ◦ A1/2u)(t)

1
2 + k(t)

1
2‖A1/2u(t)‖+ (1 + t)−

1
γ

(1+δ)
)γ

for any γ ∈ (1, γ0].
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Lemma 5.3. There exists φ ∈ S such that limt→+∞ ‖u(t)− φ‖1 = 0.

Proof. Since u(·) is bounded in V , ‖A1/2u‖2 ≤ C(1 + t)−σ holds with σ = 0. Then we

have (18) and (20) with any r ∈ (1
p
, 1). Take r > 1 − 1

p
∈ (1

p
, 1). Then 2(1−r)p

1+(1−r)p > 1,

and therefore γ0 > 1 (the other terms in (19) are obviously greater than 1). Let us take
γ ∈ (1, γ0] ∩ (1, 1 + δ) and denote

W (t) = ‖v(t)‖+ ‖E ′A(u(t))‖∗ + (k ◦ A1/2u)(t)
1
2 + k(t)

1
2‖A1/2u(t)‖.

Then

− d

dt
V (t)1− 1

γ =

(
1− 1

γ

) − d
dt
V (t)

V (t)
1
γ

≥ C
W (t)2

W (t) + (1 + t)−
1
γ

(1+δ)
≥ C

W (t)2 −
(

(1 + t)−
1
γ

(1+δ)
)2

W (t) + (1 + t)−
1
γ

(1+δ)

=C
(
W (t)− (1 + t)−

1
γ

(1+δ)
)
.

Since the function

t 7→ − d

dt
V (t)1− 1

γ + C(1 + t)−
1
γ

(1+δ)

is integrable on R+ (we have γ < 1 + δ), also W ∈ L1(R+), therefore (by definition of W )
v = u̇ ∈ L1(R+, H), therefore u has a limit in H and due to precompactness in V , u has a
limit in the norm of V as well.

Before we prove the decay estimate (3) let us formulate two lemmas.

Lemma 5.4. Let V be an arbitrary function satisfying (18) and (20) with a constant
γ < 2. Then there exists C > 0 such that for all t > 0

V (t) ≤ C(1 + t)−ν , (22)

where ν = min{ γ
2−γ , 1 + δ}.

Proof. By (18) and (20), we have for an appropriate constant C

C
d

dt
V (t) + V (t)

2
γ ≤ C(1 + t)−

2
γ

(1+δ).

Then we apply [9, Lemma 8] with k = 2
γ
> 1, λ = 2

γ
(1 + δ) and obtain V (t) ≤ C(1 + t)−ν ,

where ν = min{ 1
k−1

, λ
k
} = min{ γ

2−γ , 1 + δ}.

Lemma 5.5. Let limt→+∞ u(t) = φ and let V satisfies (18) and (22) with a constant ν > 1.
Then there exists C > 0 such that

‖u(t)− φ‖ ≤ C(1 + t)−µ (23)

holds for all t > 0 with µ = ν−1
2

.
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Proof. We proceed as in [9]. We have

‖u(t)− φ‖ ≤
∫ +∞

t

‖v(s)‖ ds =
∞∑
k=0

∫ 2k+1t

2kt

‖v(s)‖ ds,

by Hölder inequality

‖u(t)− φ‖ ≤
∞∑
k=0

(
2kt
)1/2

(∫ 2k+1t

2kt

‖v(s)‖2 ds

)1/2

,

and due to
∫ b
a
‖v(s)‖2 ds ≤ C(V (a)− V (b)) we have for t > 1

‖u(t)− φ‖ ≤ C
∞∑
k=0

(
2kt
)1/2

[(
1 + 2kt

)−ν/2 − (1 + 2k−1t
)−ν/2]

≤ C
∞∑
k=0

(
2kt
)1/2

[(
2k(1 + t)

)−ν/2 − (1

4
· 2k(t+ 1)

)−ν/2]

= C

(
3

4

)−ν/2 ∞∑
k=0

(
2

1−ν
2

)k
(1 + t)

1−ν
2 .

Since ν > 1, the sum converges and we have ‖u(t) − φ‖ ≤ C(1 + t)−µ with µ = ν−1
2

for
t > 1 and also for t ∈ [0, 1] if we change C appropriately.

Proof of Theorem 2.1. By Lemma 5.3 we have u(t)→ φ in V for some φ. Further, we know
that ‖A1/2u‖2 ≤ C(1 + t)−σ holds with σ = 0, so we can take any r ∈ (1

p
, 1) in Lemma 5.2

and get (18) with γ = min
{

1
1−θ ,

2(1−r)p
1+(1−r)p , 2−

2
p

}
. For such r we have 2(1−r)p

1+(1−r)p < 2− 2
p

and

lim
r→ 1

p

2(1− r)p
1 + (1− r)p

= 2− 2

p
.

We distinguish two cases:
Case 1: 1

1−θ < 2− 2
p
. In this case, we can take r ∈ (1

p
, 1) so small that γ = 1

1−θ < 2. Then

Lemma 5.4 gives (22) with ν = min
{

γ
2−γ , 1 + δ

}
= min

{
1

1−2θ
, 1 + δ

}
> 1 and Lemma 5.5

yields (3) with µ = ν−1
2

= min
{

θ
1−2θ

, δ
2

}
.

Case 2: 1
1−θ ≥ 2− 2

p
. Then for any r ∈ (1

p
, 1) we have γ = 2(1−r)p

1+(1−r)p < 2 and Lemma 5.4

implies (22) with ν = min{p − rp, 1 + δ}. If 1 + δ < p − 1, we can take r close to 1
p

such

that p − rp > 1 + δ. Then ν = 1 + δ > 1 and Lemma 5.5 yields (3) with µ = ν−1
2

= δ
2
.

If, on the other hand, 1 + δ ≥ p − 1, we take r = 1+ε
p

with ε > 0 small enough. Then we

have (22) with ν = p − 1 − ε > 1 (if ε is small enough) and Lemma 5.5 yields (3) with
µ = ν−1

2
= p−2−ε

2
.

Thus, in any case the decay estimate holds with µ = min
{

θ
1−2θ

, p−2−ε
2

, δ
2

}
and the proof

is finished.
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Proof of Proposition 2.2. Let us first observe that boundedness of ‖Au(t)‖ implies (4). In
fact, from ‖u(t) − φ‖1 → 0 we have ‖Au(t) − Aφ‖∗ → 0, and consequently Aφ ∈ H (a
ball in H is weakly sequentially compact, so Au(tn)→ x weakly in H for some tn ↗ +∞,
therefore weakly in V ∗, so x = Aφ and x ∈ H). Then

‖A1/2(u(t)− φ)‖2 ≤ ‖Au(t)− Aφ‖‖u(t)− φ‖ ≤ C‖u(t)− φ‖ ≤ C(1 + t)−µ,

where the last inequality follows from Theorem 2.1. So, (4) holds with ω = µ
2
> 0.

Now, let us assume that (4) holds. Then we can take r = 1
p

in Lemma 5.2 and obtain

(20) with γ = min
{

1
1−θ , 2−

2
p

}
< 2. Then Lemma 5.4 yields V (t) ≤ C(1 + t)−ν with

ν = min
{

1
1−2θ

, p− 1, 1 + δ
}

and Lemma 5.5 gives µ = ν−1
2

= min{ θ
1−2θ

, p−2
2
, δ

2
}.
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