Selected topics on functional analysis 18.6.2019, Test F

1. Find the norm of the operator $T: c_0 \to L^{\infty}([0,1])$ defined by the formula

$$(Ta)(t) = \begin{cases} a_1 & t \in [0, \frac{1}{2}) \\ a_1 + a_2 & t \in [\frac{1}{2}, 1], \end{cases}$$

where $a = (a_1, a_2, \dots) \in c_0$. Find the kernel of T.

2. Find the distance of the function g(x) = x from the subspace $M \subset$ $L^{2}([-1,1])$, where

$$M = \lim\{1, x^2, x^3\}.$$

Each problem is graded by at most 15 points. To pass the written part of the exam it is neccessary to get at least 15 points.

Selected topics on functional analysis 18.6.2019, Test F

$$(Ta)(t) = \begin{cases} a_1 & t \in [0, \frac{1}{2}) \\ a_1 + a_2 & t \in [\frac{1}{2}, 1], \end{cases}$$

where $a = (a_1, a_2, \dots) \in c_0$. Find the kernel of T.

2. Find the distance of the function g(x) = x from the subspace $M \subset$ $L^{2}([-1,1])$, where $\{1, x^2, x^3\}.$

$$M = \lim\{$$

Each problem is graded by at most 15 points. To pass the written part of the exam it is neccessary to get at least 15 points.

1. Find the norm of the operator $T: c_0 \to L^{\infty}([0,1])$ defined by the formula