Homework 1 - Multiplicative semigroups

submit before March 7, 2024

Let $\Omega \subset \mathbb{R}^n$ be measurable, $m : \Omega \to \mathbb{C}$ be measureable and such that

$$\operatorname{esssup}\{\operatorname{Re} m(x): x \in \Omega\} = K < +\infty$$

(i.e. $\operatorname{Re} m(x) \leq K$ a.e. in Ω and it is not true if we replace K by any K' < K). **Alternatively (easier version).** Consider m continuous and $K = \sup\{\Re m(x) : x \in \Omega\}$. Denote $(A_m, D(A_m))$ the multiplicative operator on $L^p(\Omega, \mathbb{C}), 1 \leq p < +\infty$ associated with m, i.e.

$$(A_m f)(x) := m(x)f(x), \quad D(A_m) := \{ f \in L^p(\Omega, \mathbb{C}); \ mf \in L^p(\Omega, \mathbb{C}) \}$$

and for $t \ge 0$ let $S_m(t)$ be the linear operator defined by

$$(S_m(t)f)(x) := e^{tm(x)}f(x) \quad \text{for } f \in L^p(\Omega, \mathbb{C}).$$

1. Show that $t \mapsto S_m(t)$ is a C_0 -semigroup.

2. Show that $(A_m, D(A_m))$ is its generator. [You can use e.g. the Lebesque dominated convergence and the fact that convergence in L^p -norm implies a.e. convergence of a subsequence.]

3. Determine so called *growth bound* of the semigroup S_m , i.e.

$$\omega_0(S_m) := \inf\{\omega \in \mathbb{R}; \exists M \ge 1, \|S_m(t)\| \le M e^{\omega t}, \forall t \ge 0\}.$$

4. Optional. Find spectrum of A_m , i.e. the set of all $\lambda \in \mathbb{C}$ s.t. $\lambda - A_m$ is not a bijection from $D(A_m)$ onto $L^p(\Omega, \mathbb{C})$. Find the spectrum of $S_m(t)$. What is the relation between the spectrum of the generator, spectrum of the semigroup and the growth bound of the semigroup?