Chapter 6. Asymptotic begavior of semigroups

Tomáš Bárta

Charles University, Prague

27.11.2019

	14	D (
Inm	ae	Bar	ta.
10111	uu	Dui	iu.

4 A N

Growth of solutions to (ACP) is determined by the growth of the semigroup.

Is the growth of semigroups determined by the spectrum of its generator?

Definition

Let (A, D(A)) be the generator of a C_0 -semigroup T.

• The spectral bound of A is

 $s(A) = \sup\{\Re \lambda : \lambda \in \sigma(A)\}.$

• The growth bound of T is

```
\omega(T) = \inf\{\omega \in \mathbb{R} : \exists M \ge 1 ||T(t)|| \le M e^{\omega t} \forall t \ge 0\}.
```

_		-	
lor	200	Bor	
- 10/11	las	Dai	

Growth of solutions to (ACP) is determined by the growth of the semigroup.

Is the growth of semigroups determined by the spectrum of its generator?

Growth of solutions to (ACP) is determined by the growth of the semigroup.

Is the growth of semigroups determined by the spectrum of its generator?

Definition

Let (A, D(A)) be the generator of a C_0 -semigroup T.

The spectral bound of A is

$$s(A) = \sup\{\Re \lambda : \lambda \in \sigma(A)\}.$$

• The growth bound of T is

 $\omega(T) = \inf\{\omega \in \mathbb{R} : \exists M \ge 1 || T(t) || \le M e^{\omega t} \forall t \ge 0\}.$

_		-	
	mae	Bor	to
101	illas.	Dai	ıa

< ロ > < 同 > < 回 > < 回 >

Growth of solutions to (ACP) is determined by the growth of the semigroup.

Is the growth of semigroups determined by the spectrum of its generator?

Definition

Let (A, D(A)) be the generator of a C_0 -semigroup T.

The spectral bound of A is

$$s(A) = \sup\{\Re \lambda : \lambda \in \sigma(A)\}.$$

• The growth bound of T is

 $\omega(T) = \inf\{\omega \in \mathbb{R} : \exists M \ge 1 || T(t) || \le M e^{\omega t} \forall t \ge 0\}.$

< ロ > < 同 > < 回 > < 回 >

Remark

1. By Proposition 4 (Chapter 1) we have $s(A) \leq \omega(T)$.

2. For a matrix A we have $s(A) = \omega(e^{tA})$. In fact,

 $\|e^{tA}\| \le Me^{ct}(1+t)^{n-1} \le \tilde{M}e^{(c+\varepsilon)t} \quad \forall t \ge 0$

where $c = \max{\{\Re \lambda : \lambda \in \sigma(A)\}}$ and n is the size of the biggest Jordan cell of A.

Does

$$\boldsymbol{s}(\boldsymbol{A}) = \boldsymbol{\omega}(\boldsymbol{T})$$

hold in general?

NO!

Counterexample

_				
	n	20	85	rte
		a 5	പപ	110
	••••			

Remark

1. By Proposition 4 (Chapter 1) we have $s(A) \le \omega(T)$. 2. For a matrix A we have $s(A) = \omega(e^{tA})$. In fact,

 $\|e^{tA}\| \le Me^{ct}(1+t)^{n-1} \le \tilde{M}e^{(c+\varepsilon)t} \quad \forall t \ge 0$

where $c = \max{\{\Re \lambda : \lambda \in \sigma(A)\}}$ and n is the size of the biggest Jordan cell of A.

Does

$$s(A) = \omega(T)$$

hold in general?

NO!

Counterexample

Two counterexamples can be found in [EN], Chapter IV.3.

Lomoc Bort	
TUTTIAS DALL	

Remark

1. By Proposition 4 (Chapter 1) we have $s(A) \le \omega(T)$. 2. For a matrix A we have $s(A) = \omega(e^{tA})$. In fact,

$$\|e^{tA}\| \leq Me^{ct}(1+t)^{n-1} \leq \tilde{M}e^{(c+\varepsilon)t} \quad \forall t \geq 0$$

where $c = \max{\{\Re \lambda : \lambda \in \sigma(A)\}}$ and n is the size of the biggest Jordan cell of A.

Does

$$s(A) = \omega(T)$$

hold in general?

NO!

Counterexample

Two counterexamples can be found in [EN], Chapter IV.3.

			_		
10	mà	e.	R	àri	
10	1110				

イヨト・イヨト

Remark

1. By Proposition 4 (Chapter 1) we have $s(A) \le \omega(T)$. 2. For a matrix A we have $s(A) = \omega(e^{tA})$. In fact,

$$\|e^{tA}\| \leq Me^{ct}(1+t)^{n-1} \leq \tilde{M}e^{(c+\varepsilon)t} \quad \forall t \geq 0$$

where $c = \max{\{\Re \lambda : \lambda \in \sigma(A)\}}$ and n is the size of the biggest Jordan cell of A.

Does

$$s(A) = \omega(T)$$

hold in general?

NO!

Counterexample

_		
lon	nàc	Borto
- 101	105	Dalle

Remark

1. By Proposition 4 (Chapter 1) we have $s(A) \le \omega(T)$. 2. For a matrix A we have $s(A) = \omega(e^{tA})$. In fact,

$$\|e^{tA}\| \leq Me^{ct}(1+t)^{n-1} \leq \tilde{M}e^{(c+\varepsilon)t} \quad \forall t \geq 0$$

where $c = \max{\{\Re \lambda : \lambda \in \sigma(A)\}}$ and n is the size of the biggest Jordan cell of A.

Does

$$s(A) = \omega(T)$$

hold in general?

NO!

Counterexample

			_		
10	mà	e.	R	àri	
10	1110				

Remark

1. By Proposition 4 (Chapter 1) we have $s(A) \le \omega(T)$. 2. For a matrix A we have $s(A) = \omega(e^{tA})$. In fact,

$$\|\boldsymbol{e}^{tA}\| \leq M \boldsymbol{e}^{ct} (1+t)^{n-1} \leq \tilde{M} \boldsymbol{e}^{(c+\varepsilon)t} \quad \forall t \geq 0$$

where $c = \max{\{\Re \lambda : \lambda \in \sigma(A)\}}$ and n is the size of the biggest Jordan cell of A.

Does

$$s(A) = \omega(T)$$

27.11.2019

3/9

hold in general?

NO!

Counterexample

Tomáš Bárta	6. Asymptotic behavior	

Split the equality $s(A) = \omega(T)$ into two parts:

$$\|T(t)\| \stackrel{(1)}{=} r(T(t)) = \sup_{\lambda \in \sigma(T(t))} |\lambda| = \sup_{e^{\lambda t} \in \sigma(T(t))} |e^{\lambda t}| \stackrel{(2)}{=} \sup_{\lambda \in \sigma(A)} |e^{\lambda t}|$$

_			÷			
10	\mathbf{n}	<u> </u>	<u> </u>	-	n r	ta -
- 10	лп	a	э.	ப	aı	ıα

Split the equality $s(A) = \omega(T)$ into two parts:

$$\|T(t)\| \stackrel{(1)}{=} r(T(t)) = \sup_{\lambda \in \sigma(T(t))} |\lambda| = \sup_{e^{\lambda t} \in \sigma(T(t))} |e^{\lambda t}| \stackrel{(2)}{=} \sup_{\lambda \in \sigma(A)} |e^{\lambda t}|$$

_			÷			
10	\mathbf{n}	<u> </u>	<u> </u>	-	n r	ta -
- 10	лп	a	э.	ப	aı	ıα

Split the equality $s(A) = \omega(T)$ into two parts:

$$\|T(t)\| \stackrel{(1)}{=} r(T(t)) = \sup_{\lambda \in \sigma(T(t))} |\lambda| = \sup_{e^{\lambda t} \in \sigma(T(t))} |e^{\lambda t}| \stackrel{(2)}{=} \sup_{\lambda \in \sigma(A)} |e^{\lambda t}|$$

_			÷			
10	\mathbf{n}	<u> </u>	<u> </u>	-	n r	ta -
- 10	лп	a	э.	ப	aı	ıα

Split the equality $s(A) = \omega(T)$ into two parts:

$$\|T(t)\| \stackrel{(1)}{=} r(T(t)) = \sup_{\lambda \in \sigma(T(t))} |\lambda| = \sup_{e^{\lambda t} \in \sigma(T(t))} |e^{\lambda t}| \stackrel{(2)}{=} \sup_{\lambda \in \sigma(A)} |e^{\lambda t}|$$

_				÷		
	\mathbf{o} r	m	<u>-</u>	<u> </u>	 n r	ta
	υı		a	э	aı	ıα

Proposition 1

Let T be a C₀-semigroup. Then $\omega(T) = \frac{1}{t} \ln r(T(t))$ for each $t \ge 0$

Proof: see [EN], Proposition IV.2.2

-	/ ¥	D (
lon	220	Bor	to .
	llas	Dai	ιa

- 14

Spectral inclusion

Proposition 2

Let *T* be a C_0 -semigroup and *A* its generator. Then $e^{t\sigma(A)} \subset \sigma(T(t))$.

The other inclusion is more important.

	~ -		
lomà	6 B	ort	•
юпа	പ	a 14	

< (□) < 三 > (□)

Spectral inclusion

Proposition 2

Let *T* be a C_0 -semigroup and *A* its generator. Then $e^{t\sigma(A)} \subset \sigma(T(t))$.

The other inclusion is more important.

		—		
lom	20	н:	art	а.
	as	0.0	2 I L	а.

- 3 →

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ A is not injective or range of λ – A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A. 3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ − A is not injective or range of λ − A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A. 3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ − A is not injective or range of λ − A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A. 3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ − A is not injective or range of λ − A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A. 3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ − A is not injective or range of λ − A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A. 3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ − A is not injective or range of λ − A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A.

3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

イロト 不得 トイヨト イヨト

Definition

Let (A, D(A)) be a closed densely defined operator and $\lambda \in \sigma(A)$. We say that λ belongs to

- the point spectrum $P\sigma(A)$ if λA is not injective,
- the approximate spectrum Aσ(A) if λ − A is not injective or range of λ − A is not closed,
- the residual spectrum $R\sigma(A)$ if λA is not dense,

Remark

1. Clearly, $P\sigma(A) \subset A\sigma(A)$.

2. It can be shown that $R\sigma(A) = P\sigma(A')$, where A' is the adjoint of A. 3. $\lambda \in A\sigma(A)$ if and only if there exists an approximate eigenvector $(x_n)_{n=1}^{\infty} \subset D(A)$ such that $||x_n|| = 1$ and $\lim_{n\to\infty} (\lambda - A)x_n = 0$.

Spectral mapping theorem for point and residual spectrum

Theorem 3

Let (A, D(A)) be the generator of a C_0 -semigroup T. Then $P\sigma(T(t)) \setminus \{0\} = e^{tP\sigma(A)}$ and $R\sigma(T(t)) \setminus \{0\} = e^{tR\sigma(A)}$.

Proof can be found in [EN], Theorem IV.3.7.

Proposition 4

Let
$$\mu \in \sigma(T(t))$$
 and $\Lambda = \{\lambda \in \sigma(A) : e^{\lambda t} = \mu\}$. Then

$$\operatorname{Ker}(\mu - T(t)) = \overline{\operatorname{lin}} \bigcup_{\lambda \in \Lambda} \operatorname{Ker}(\lambda - A).$$

_	<i></i>	D /	
10	mac	Barta	
. 10	illas.	Daria	

Spectral mapping theorem for point and residual spectrum

Theorem 3

Let (A, D(A)) be the generator of a C_0 -semigroup T. Then $P\sigma(T(t)) \setminus \{0\} = e^{tP\sigma(A)}$ and $R\sigma(T(t)) \setminus \{0\} = e^{tR\sigma(A)}$.

Proof can be found in [EN], Theorem IV.3.7.

Proposition 4

Let
$$\mu \in \sigma(T(t))$$
 and $\Lambda = \{\lambda \in \sigma(A) : e^{\lambda t} = \mu\}$. Then

$$\operatorname{Ker}(\mu - T(t)) = \overline{\operatorname{lin}} \bigcup_{\lambda \in \Lambda} \operatorname{Ker}(\lambda - A).$$

8/9

Tomáš Bárta	6. Asymptotic behavior	8 / 9	27.11.2019

Spectral mapping theorem for regular semigroups

Theorem 5

Let (A, D(A)) be the generator of a C_0 -semigroup T which is norm continuous for $t > t_0$. Then $\sigma(T(t)) \setminus \{0\} = e^{t\sigma(A)}$.

Proof can be found in [EN], Theorem IV.3.10

Corollary 6 Let (A, D(A)) be the generator of an analytic semigroup. Then $\sigma(T(t)) \setminus \{0\} = e^{t\sigma(A)}$.