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Spectral bound and growth bound
Growth of solutions to (ACP) is determined by the growth of the
semigroup.

Is the growth of semigroups determined by the spectrum of its
generator?

Definition
Let (A,D(A)) be the generator of a C0-semigroup T .

The spectral bound of A is

s(A) = sup{<λ : λ ∈ σ(A)}.

The growth bound of T is

ω(T ) = inf{ω ∈ R : ∃M ≥ 1 ‖T (t)‖ ≤ Meωt ∀t ≥ 0}.

Tomáš Bárta 6. Asymptotic behavior 2 / 9 27.11.2019 2 / 9



Spectral bound and growth bound
Growth of solutions to (ACP) is determined by the growth of the
semigroup.

Is the growth of semigroups determined by the spectrum of its
generator?

Definition
Let (A,D(A)) be the generator of a C0-semigroup T .

The spectral bound of A is

s(A) = sup{<λ : λ ∈ σ(A)}.

The growth bound of T is

ω(T ) = inf{ω ∈ R : ∃M ≥ 1 ‖T (t)‖ ≤ Meωt ∀t ≥ 0}.

Tomáš Bárta 6. Asymptotic behavior 2 / 9 27.11.2019 2 / 9



Spectral bound and growth bound
Growth of solutions to (ACP) is determined by the growth of the
semigroup.

Is the growth of semigroups determined by the spectrum of its
generator?

Definition
Let (A,D(A)) be the generator of a C0-semigroup T .

The spectral bound of A is

s(A) = sup{<λ : λ ∈ σ(A)}.

The growth bound of T is

ω(T ) = inf{ω ∈ R : ∃M ≥ 1 ‖T (t)‖ ≤ Meωt ∀t ≥ 0}.

Tomáš Bárta 6. Asymptotic behavior 2 / 9 27.11.2019 2 / 9



Spectral bound and growth bound
Growth of solutions to (ACP) is determined by the growth of the
semigroup.

Is the growth of semigroups determined by the spectrum of its
generator?

Definition
Let (A,D(A)) be the generator of a C0-semigroup T .

The spectral bound of A is

s(A) = sup{<λ : λ ∈ σ(A)}.

The growth bound of T is

ω(T ) = inf{ω ∈ R : ∃M ≥ 1 ‖T (t)‖ ≤ Meωt ∀t ≥ 0}.

Tomáš Bárta 6. Asymptotic behavior 2 / 9 27.11.2019 2 / 9



Does s(A) = ω(T ) hold?
Remark
1. By Proposition 4 (Chapter 1) we have s(A) ≤ ω(T ).
2. For a matrix A we have s(A) = ω(etA). In fact,

‖etA‖ ≤ Mect (1 + t)n−1 ≤ M̃e(c+ε)t ∀t ≥ 0

where c = max{<λ : λ ∈ σ(A)} and n is the size of the biggest Jordan
cell of A.

Does
s(A) = ω(T )

hold in general?

NO!

Counterexample
Two counterexamples can be found in [EN], Chapter IV.3.
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Does s(A) = ω(T ) hold?

Split the equality s(A) = ω(T ) into two parts:

1 σ(T ) \ {0} = etσ(A) (spectral mapping theorem)
2 ‖T (t)‖ ∼ r(T (t))

‖T (t)‖ (1)
= r(T (t)) = sup

λ∈σ(T (t))

|λ| = sup
eλt∈σ(T (t))

|eλt | (2)
= sup

λ∈σ(A)

|eλt |
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Proposition 1

Let T be a C0-semigroup. Then ω(T ) = 1
t ln r(T (t)) for each t ≥ 0

Proof: see [EN], Proposition IV.2.2
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Spectral inclusion

Proposition 2

Let T be a C0-semigroup and A its generator. Then etσ(A) ⊂ σ(T (t)).

The other inclusion is more important.
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decomposition of spectrum

Definition
Let (A,D(A)) be a closed densely defined operator and λ ∈ σ(A). We
say that λ belongs to

the point spectrum Pσ(A) if λ− A is not injective,
the approximate spectrum Aσ(A) if λ− A is not injective or range
of λ− A is not closed,
the residual spectrum Rσ(A) if λ− A is not dense,

Remark
1. Clearly, Pσ(A) ⊂ Aσ(A).
2. It can be shown that Rσ(A) = Pσ(A′), where A′ is the adjoint of A.
3. λ ∈ Aσ(A) if and only if there exists an approximate eigenvector
(xn)∞n=1 ⊂ D(A) such that ‖xn‖ = 1 and limn→∞(λ− A)xn = 0.
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Spectral mapping theorem for point and residual
spectrum

Theorem 3
Let (A,D(A)) be the generator of a C0-semigroup T . Then
Pσ(T (t)) \ {0} = etPσ(A) and Rσ(T (t)) \ {0} = etRσ(A).

Proof can be found in [EN], Theorem IV.3.7.

Proposition 4
Let µ ∈ σ(T (t)) and Λ = {λ ∈ σ(A) : eλt = µ}. Then

Ker(µ− T (t)) = lin
⋃
λ∈Λ

Ker(λ− A).
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Spectral mapping theorem for regular semigroups

Theorem 5
Let (A,D(A)) be the generator of a C0-semigroup T which is norm
continuous for t > t0. Then σ(T (t)) \ {0} = etσ(A).

Proof can be found in [EN], Theorem IV.3.10

Corollary 6
Let (A,D(A)) be the generator of an analytic semigroup. Then
σ(T (t)) \ {0} = etσ(A).
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