Chapter 5. Analytic semigroups

Tomáš Bárta

Charles University, Prague

27.11.2019

máš	

regularity of semigoup corresponds to regularity of solutions to DE

- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

< ロ > < 同 > < 回 > < 回 >

- regularity of semigoup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

- regularity of semigoup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

・ロト ・ 四ト ・ ヨト ・ ヨト

- regularity of semigoup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

・ロト ・ 四ト ・ ヨト ・ ヨト

- regularity of semigoup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

- regularity of semigoup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

- regularity of semigoup corresponds to regularity of solutions to DE
- initial value $x_0 \in D(A)$, then solution is differentiable for all $t \ge 0$
- initial value $x_0 \notin D(A)$, then solution is not differentiable for t = 0. It may and may no be differentiable for some t > 0.
- From PDE's: for every x₀ ∈ X the solution to heat equation is smooth for all t > 0... high regularity of the heat semigroup.
- From PDE's: solution to transport equation preserves regularity of the initial value ... low regularity of the shift semigroup.
- If a solution is differentiable for $t = t_0$, then it is differentiable for all $t > t_0$ (since $T(t_0)x_0 \in D(A)$ implies $T(t)x_0 \in D(A)$ for all t > 0)
- If $x_0 \in D(A^n)$, then the solution is *n*-times differentiable for all $t \ge 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We distinguish several types of regularity, the following implications hold

$\mathsf{NORM}\ \mathsf{CONTINUOUS}\ \Leftarrow\ \mathsf{DIFFFERENTIABLE}\ \Leftarrow\ \mathsf{ANALYTIC}$

Norm continuous means that the mapping $t \mapsto S(t)$ is continuous in the operator topology for all t > 0 (strictly!).

Differentiable means that the mapping $t \mapsto S(t)x$ is differentiable for all $x \in X$ and all t > 0 (strictly!).

Let us concentrate on ANALYTIC SEMIGROUPS.

We distinguish several types of regularity, the following implications hold

NORM CONTINUOUS \leftarrow DIFFFERENTIABLE \leftarrow ANALYTIC

Norm continuous means that the mapping $t \mapsto S(t)$ is continuous in the operator topology for all t > 0 (strictly!).

Differentiable means that the mapping $t \mapsto S(t)x$ is differentiable for all $x \in X$ and all t > 0 (strictly!).

Let us concentrate on ANALYTIC SEMIGROUPS.

A (1) > A (2) > A

We distinguish several types of regularity, the following implications hold

NORM CONTINUOUS \leftarrow DIFFFERENTIABLE \leftarrow ANALYTIC

Norm continuous means that the mapping $t \mapsto S(t)$ is continuous in the operator topology for all t > 0 (strictly!).

Differentiable means that the mapping $t \mapsto S(t)x$ is differentiable for all $x \in X$ and all t > 0 (strictly!).

Let us concentrate on ANALYTIC SEMIGROUPS.

We distinguish several types of regularity, the following implications hold

NORM CONTINUOUS \leftarrow DIFFFERENTIABLE \leftarrow ANALYTIC

Norm continuous means that the mapping $t \mapsto S(t)$ is continuous in the operator topology for all t > 0 (strictly!).

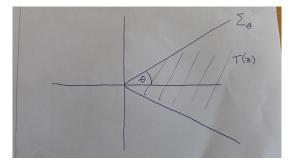
Differentiable means that the mapping $t \mapsto S(t)x$ is differentiable for all $x \in X$ and all t > 0 (strictly!).

Let us concentrate on ANALYTIC SEMIGROUPS.

Analytic semigroups

Denote

$$\Sigma_{\theta} = \{ z \in \mathbb{C} : \ z = 0 \text{ or } | \arg z | < \theta \}.$$



máš	

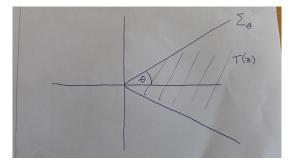
★ E ▶ E つへの 27.11.2019 4/10

イロト イヨト イヨト イヨト

Analytic semigroups

Denote

$$\Sigma_{\theta} = \{ z \in \mathbb{C} : \ z = 0 \text{ or } | \arg z | < \theta \}.$$



máš	

★ E ▶ E つへの 27.11.2019 4/10

イロト イヨト イヨト イヨト

Analytic semigroups

Definition

A C_0 -semigroup T is called analytic, if there exists $\theta > 0$ s.t. T has an analytic extension $\tilde{T} : \Sigma_{\theta} \to \mathcal{L}(X)$ satisfying

•
$$ilde{T}(z+w) = ilde{T}(z) ilde{T}(w)$$
 for all $z, w \in \Sigma_{ heta}$

3
$$z \mapsto T(z)$$
 is analytic in $\Sigma_{ heta} \setminus \{0\}$

$$\lim_{\Sigma_{\theta'}\ni z\to 0} T(z)x = x \text{ for all } x \in X, \, \theta' \in (0,\theta).$$

An analytic semigroup is called bounded analytic semigroup if it is bounded on each $\Sigma_{\theta'}$, $\theta' \in (0, \theta)$.

< 回 > < 三 > < 三 >

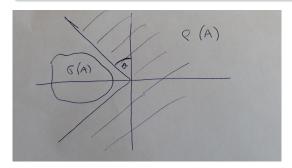
Sectorial operators

Definition

An operator (A, D(A)) is called sectorial if there exists $\delta \in (0, \frac{\pi}{2}]$ such that

• $\Sigma_{\frac{\pi}{2}+\delta} \setminus \{\mathbf{0}\} \subset \rho(\mathbf{A})$

• for every $\varepsilon \in (0, \delta)$ there exists M_{ε} , $||R(\lambda, A)|| \leq \frac{M_{\varepsilon}}{|\lambda|}$ for all $\lambda \in \overline{\Sigma_{\frac{\pi}{2} + \delta - \varepsilon}} \setminus \{0\}$



Tomáš Bárta

Sectorial operators

Definition

An operator (A, D(A)) is called sectorial if there exists $\delta \in (0, \frac{\pi}{2}]$ such that

•
$$\Sigma_{\frac{\pi}{2}+\delta} \setminus \{\mathbf{0}\} \subset \rho(\mathbf{A})$$

for every ε ∈ (0, δ) there exists M_ε, ||R(λ, A)|| ≤ M_ε/|λ| for all λ ∈ Σ_{π/2}+δ-ε \ {0}

Remark 1

The resolvent estimate holds with $|\lambda|$ instead of $\Re\lambda$.

< ロ > < 同 > < 回 > < 回 >

Generator of an analytic semigroup

Theorem 1

Let (A, D(A)) be a θ -sectorial operator. Then it generates a bounded analytic semigroup on Σ_{θ} given by

$$T(z) = rac{1}{2\pi i} \int_{\gamma} e^{\mu z} R(\mu, A) d\mu$$

where γ is as follows with $\theta > \theta' > |\arg z|$.

イロン 人間 とくほ とくほう

Characterization of analytic semigroups

Theorem 2

Let (A, D(A)) is the generator of a C_0 -semigroup T. Then the following assertions are equivalent

- A is θ-sectorial
- T is a bounded analytic semigroup on Σ_{θ} .
- $T(t)X \subset D(A)$ and $\{\|tAT(t)\| : t \in (0, 1]\}$ is bounded.
- $e^{\pm i\theta'}$ A generate bounded C_0 -semigroups $T(e^{\pm i\theta'}t)$ for all $\theta' \in (0, \theta)$.

parts of the proof in HW4

< A > < > >

Multiplicative sectorial operators

Proposition 3

A multiplicative operator A_m on $L^2(\Omega)$ is θ -sectorial if and only if the essential range of *m* is contained in $\mathbb{C} \setminus \Sigma_{\frac{\pi}{2}+\theta} \cup \{0\}$.

Corollary 4

Every self-adjoint dissipative operator on a Hilbert space generates a bounded analytic semigroup on $\Sigma_{\frac{\pi}{2}}$.

Example

Dirichlet Laplacian on $L^2(\Omega)$, Ω bounded domain in \mathbb{R}^n is self-adjoint and dissipative. Therefore, the heat semigroup is analytic and solutions to the corresponding heat equation are analytic for t > 0...?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Multiplicative sectorial operators

Proposition 3

A multiplicative operator A_m on $L^2(\Omega)$ is θ -sectorial if and only if the essential range of *m* is contained in $\mathbb{C} \setminus \Sigma_{\frac{\pi}{2}+\theta} \cup \{0\}$.

Corollary 4

Every self-adjoint dissipative operator on a Hilbert space generates a bounded analytic semigroup on $\sum_{\frac{\pi}{2}}$.

Example

Dirichlet Laplacian on $L^2(\Omega)$, Ω bounded domain in \mathbb{R}^n is self-adjoint and dissipative. Therefore, the heat semigroup is analytic and solutions to the corresponding heat equation are analytic for t > 0...?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Multiplicative sectorial operators

Proposition 3

A multiplicative operator A_m on $L^2(\Omega)$ is θ -sectorial if and only if the essential range of *m* is contained in $\mathbb{C} \setminus \Sigma_{\frac{\pi}{2}+\theta} \cup \{0\}$.

Corollary 4

Every self-adjoint dissipative operator on a Hilbert space generates a bounded analytic semigroup on $\sum_{\frac{\pi}{2}}$.

Example

Dirichlet Laplacian on $L^2(\Omega)$, Ω bounded domain in \mathbb{R}^n is self-adjoint and dissipative. Therefore, the heat semigroup is analytic and solutions to the corresponding heat equation are analytic for t > 0...?

イロト 不得 トイヨト イヨト