
Chapter 4. Self-adjoint semigroups on Hilbert spaces

For an unbounded linear operator A it may happen that A is a restriction of its adjoint, i.e. the
adjoint operator A∗ is almost equal to A but it has a larger domain. Such operators are called
symmetric. If, moreover, the domains are equal, then the operator is called self-adjoint.

Definition. A linear operator (A,D(A)) on a Hilbert space H is

1. symmetric if 〈Ax, y〉 = 〈y,Ax〉 for all x, y ∈ D(A).

2. self-adjoint if A is symmetric and the following holds: if y ∈ H is such that there exists
z ∈ H satisfying 〈Ax, y〉 = 〈x, z〉 for all x ∈ D(A), then y ∈ D(A) and z = Ay.

Remark. 1. Every self-adjoint operator is closed.

2. For a multiplicative operator Amf = m · f on L2, the adjoint operator is equal to Am̄. So,
Am is self-adjoint if and only if m is real-valued. Since σ(Am) is essential range of m, a
multiplicative operator Am is self-adjoint if and only if σ(am) ⊂ R.

3. For an example of a symmetric operator that is not self-adjoint see
https://en.wikipedia.org/wiki/Self-adjoint operator

Proposition 1. 1. If A is symmetric, then σ(A) = C or σ(A) = {λ ∈ C : =λ ≥ 0} or
σ(A) = {λ ∈ C : =λ ≤ 0} or σ(A) ⊂ R.

2. A symmetric operator A is self-adjoint if and only if σ(A) ⊂ R if and only if i − A is
surjective if and only if −i−A is surjective.

Proof. Observe that =〈(λ − A)x, x〉 = −=λ‖x‖2. Hence, ‖(λ − A)x‖ ≥ =λ‖x‖. It follows that
λ−A is injective whenever λ 6∈ R at it yields an estimate on resolvent ‖R(λ,A)‖ ≥ 1

|=λ| provided

λ ∈ ρ(A) \ R. The resolvent estimate implies that if λ0 ∈ ρ(A) \ R, then the whole disc centered
at λ0 with radius |=λ| is contained in ρ(A). The first claim follows.
Part 2. The second and third equivalences are already proved. We let the first equivalence without
proof.

Definition. We say that (A,D(A)) has a compact resolvent if there exists λ ∈ ρ(A) such that
R(λ,A) is compact.

Remark. 1. Of course, in infinite-dimensional spaces if A has compact resolvent, then it is
necessarily unbounded (since I is not compact and I = (λ−A)R(λ,A)).

2. A multiplication operator Am on L2 is compact if and only the range of m is finite or
countable with Hm ∩ {z ∈ C : |z| > ε} being finite for every ε > 0. (not difficult to prove)

Proposition 2. Let (A,D(A)) has a compact resolvent. Then

1. R(λ,A) is compact for every λ ∈ ρ(A)

2. σ(A) is countable and if σ(A) = {α1, α2, . . . } is infinite then limn→∞ |αn| = +∞.

Proof. (i) follows immediately from the resolvent equationR(λ,A)−R(µ,A) = (µ−λ)R(λ,A)R(µ,A).
Part (ii) follows immediately from spectral theory of compact operators and from the spectral
mapping theorem for resolvents:

σ(R(λ0, A)) \ {0} =

{
1

λ0 − µ
: µ ∈ σ(A)

}
.

For the proof of the last statement, see IV.1.13 in [EN].

Remark. R(λ,A) is compact if and only if the canonical embedding (D(A), ‖·‖A)→ H is compact
(Proposition II.4.25 in [EN])
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The following theorems say that every self-adjoint operator is similar to a multiplication operator
on an L2 space. This fact has a lot of consesquences. If you are interested in proofs, they can
be found in E.B.Davies: Spectral theory of differential operators, Theorems 2.5.2 and 4.2.2 +
Corollary. You probably know similar statements for bounded operators. For matrices it says that
symmetric matrices (or normal matrices) are diagonalizable.

Theorem 3 (Spectral theorem). Let (A,D(A)) be self-adjoint on a separable Hilbert space H.
Then there exists a space if finite measure (Y,Σ, µ) and a unitary operator U : H → L2(Y,Σ, µ)
and a measurable function m : Y → R such that UAU−1 = Am, where Am is the multiplication
operator (Amf)(x) = m(x)f(x), D(Am) = {f ∈ L2(Y,Σ, µ) : m · f ∈ L2(Y,Σ, µ)}.

Theorem 4 (Spectral theorem II). Let (A,D(A)) be self-adjoint with compact resolvent on a
separable Hilbert space H. Then there exists a sequence (αn)∞n=1 of real numbers and a unitary
operator U : H → l2 such that UAU−1 = Aα, where Aα is the multiplication operator (xn) 7→
(αnxn), D(Aα) = {x ∈ l2 : (αnxn) ∈ l2}. Moreover, there exists an orthonormal basis (φn)∞n=1

consisting of eigenvectors of A and Ax =
∑∞
n=1 αn〈x, φn〉φn, D(A) = {x ∈ H : (αn〈x, φn〉) ∈ l2}.

One consequence is the following theorem.

Theorem 5. Let (A,D(A)) be self-adjoint dissipative operator on a separable Hilbert space H.
Then A generates a C0-semigroup of contractions T . Moreover, T (t), t ≥ 0 are self-adjoint
operators and if A has compact resolvent, then T (t) are compact for t > 0.

Proof. By spectral theorems, A is similar to a multiplicative operator associated with a function
m that attains only non-positive real values. Then operators T (t) are similar to multiplication
operators associated with em(·)t which are self-adjoint. The rest follows from characterization of
compact multiplication operators (see a remark above).

Many more results on self-adjoint operators follow easily from the corresponding properties of
multiplication operators. Moreover, we can write a formula for the semigroup if we know the
unitary operator as the following examples show.

Example. Dirichlet Laplacian on [0, 1]. Let D(A) = {f ∈ H2(0, 1) : f(0) = f(1) = 0}, Af = ∆f .
(the details are to work out in HW3)

Example. Dirichlet Laplacian on Rn. Let D(A) = H2(Rn), Af = f ′′. The Fourier transform
(Ff)(x) = 1

(2π)n/2

∫
Rn e

−ix·yf(y)dy is known to be a unitary operator from L2 to L2. Moreover,

F( ∂
∂xi

f)(x) = −xif(x), so F : ∆f 7→ −
∑
x2
i f . Hence, F is the unitary operator and the

multiplication operator similar to A is Am with m(x) = −‖x‖22, x ∈ Rn. In this case, A does not
have a compact resolvent. As a consequence

(T (t)f)(x) = F−1(e−‖z‖
2
2t(Ff)(z))(x) =

1

(2π)n

∫
Rn

eixze−‖z‖
2
2t

∫
Rn

e−izyf(y)dydz,

which leads to the Gaussian kernel.

Further, we can define a functional calculus on self-adjoint operators. For a real or complex
function f we can define f(A) by the formula f(A) = U−1Af◦mU as we did for the exponential
function f(x) = etx. If A is dissipative, then m is real valued and non-positive and we can define
fractional powers of −A, e.g.

√
−A := U−1A√−mU .

In the second part of this lecture we show that self-adjoint generators are associated with bilinear
forms.

Definition. Let V , H be complex Hilbert spaces, V densely embedded into H. A mapping
a : V × V → C is called sesquilinear form if a(λx, y) = λa(x, y), a(x, λy) = λ̄a(x, y), a(x+ z, y) =
a(x, y) + a(z, y) and a(x, y + z) = a(x, y) + a(x, z) for all x, y, z ∈ V , λ ∈ C. We say that a is
symmetric if a(x, y) = a(y, x) for all x, y ∈ V . We say that a is positive if a(x, x) ≥ 0 for all x ∈ V
and H-elliptic if there exists ω ∈ R and α > 0 such that <a(x, x) + ω‖x‖H ≥ α‖x‖V
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Remark. a is continuous if there exists c > 0 such that |a(x, y)| ≤ c‖x‖V ‖y‖V for all x, y ∈ V .

Example. a(f, g) =
∫ 1

0
f ′(x)g′(x)dx with H = L2(0, 1) and V = H1(0, 1) or H1

0 (0, 1).

Theorem 6. Let a : V ×V → C is a continuous, positive, symmetric, H-elliptic sesquilinear form.
Define (A,D(A)) by

D(A) = {x ∈ V : ∃y ∈ H, a(x, φ) = 〈y, φ〉H ∀φ ∈ V }, Ax = −y. (1)

Then A is dissipative and self-adjoint, and therefore it generates a C0-semigroup of contractions.

Proof. We show that A is well-defined, i.e. y in (??) is unique. If y1, y2 satisfy (??), then
〈y1−y2, φ〉 = 0 for all φ ∈ V and V is dense, hence y1 = y2. It is easy to show that A is symmetric
and dissipative, the latter follows from 〈Ax, x〉 = −a(x, x) ≤ 0. It remains to show that ω ∈ ρ(A),
in particular that ωx − Ax = y has a solution for each y ∈ H. For fixed y ∈ H let us define
Fy(φ) = 〈φ, y〉H . Then Fy is a bounded functional on V , so there exists a unique x ∈ V such that
Fy(φ) = a1(φ, x) where a1(x, y) := a(x, y) + ω〈x, y〉H (it follows from the fact that a1 is due to
H-ellipticity an equivalent inner product on V ). Hence, a(φ, x) = a1(φ, x)−ω〈φ, x〉 = 〈φ, y−ωx〉H .
So, x ∈ D(A) and Ax = −(y − ωx).

Remark. Also the converse is true: To each self-adjoint dissipative operator (A,D(A)) there exists
a unique continuous positive symmetric H-elliptic sesquilinear form such that (??) holds.

Example. If aij ∈W 1,∞(Ω) are real functions such that aij = aji and <
∑n
i,j=1 aij(x)ξiξ̄j ≥ α|ξ|22

for all x ∈ Ω and ξ ∈ Cn. We can define the form

a(f, g) =

∫
Ω

∑
ij

aij(x)∂if(x)∂gj(x)dx

on V1 = H1
0 (Ω) resp. V2 = H1(Ω). Then a is continuous, symmetric, positive, H-elliptic form

associated with the elliptic operators Av =
∑
ij ∂j(aij∂iv) with Dirichlet resp. Neumann boundary

conditions.
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