Chapter 4. Self-adjoint semigroups on Hilbert spaces

For an unbounded linear operator A it may happen that A is a restriction of its adjoint, i.e. the adjoint operator A^{*} is almost equal to A but it has a larger domain. Such operators are called symmetric. If, moreover, the domains are equal, then the operator is called self-adjoint.

Definition. A linear operator $(A, D(A))$ on a Hilbert space H is

1. symmetric if $\langle A x, y\rangle=\langle y, A x\rangle$ for all $x, y \in D(A)$.
2. self-adjoint if A is symmetric and the following holds: if $y \in H$ is such that there exists $z \in H$ satisfying $\langle A x, y\rangle=\langle x, z\rangle$ for all $x \in D(A)$, then $y \in D(A)$ and $z=A y$.

Remark. 1. Every self-adjoint operator is closed.
2. For a multiplicative operator $A_{m} f=m \cdot f$ on L^{2}, the adjoint operator is equal to $A_{\bar{m}}$. So, A_{m} is self-adjoint if and only if m is real-valued. Since $\sigma\left(A_{m}\right)$ is essential range of m, a multiplicative operator A_{m} is self-adjoint if and only if $\sigma\left(a_{m}\right) \subset \mathrm{R}$.
3. For an example of a symmetric operator that is not self-adjoint see https://en.wikipedia.org/wiki/Self-adjoint_operator

Proposition 1. 1. If A is symmetric, then $\sigma(A)=\mathrm{C}$ or $\sigma(A)=\{\lambda \in \mathrm{C}: \Im \lambda \geq 0\}$ or $\sigma(A)=\{\lambda \in \mathrm{C}: \Im \lambda \leq 0\}$ or $\sigma(A) \subset \mathrm{R}$.
2. A symmetric operator A is self-adjoint if and only if $\sigma(A) \subset \mathrm{R}$ if and only if $i-A$ is surjective if and only if $-i-A$ is surjective.

Proof. Observe that $\Im\langle(\lambda-A) x, x\rangle=-\Im \lambda\|x\|^{2}$. Hence, $\|(\lambda-A) x\| \geq \Im \lambda\|x\|$. It follows that $\lambda-A$ is injective whenever $\lambda \notin \mathrm{R}$ at it yields an estimate on resolvent $\|R(\lambda, A)\| \geq \frac{1}{|\Im \lambda|}$ provided $\lambda \in \rho(A) \backslash \mathrm{R}$. The resolvent estimate implies that if $\lambda_{0} \in \rho(A) \backslash \mathrm{R}$, then the whole disc centered at λ_{0} with radius $|\Im \lambda|$ is contained in $\rho(A)$. The first claim follows.
Part 2. The second and third equivalences are already proved. We let the first equivalence without proof.

Definition. We say that $(A, D(A))$ has a compact resolvent if there exists $\lambda \in \rho(A)$ such that $R(\lambda, A)$ is compact.

Remark. 1. Of course, in infinite-dimensional spaces if A has compact resolvent, then it is necessarily unbounded (since I is not compact and $I=(\lambda-A) R(\lambda, A)$).
2. A multiplication operator A_{m} on L^{2} is compact if and only the range of m is finite or countable with $H_{m} \cap\{z \in \mathrm{C}:|z|>\varepsilon\}$ being finite for every $\varepsilon>0$. (not difficult to prove)
Proposition 2. Let $(A, D(A))$ has a compact resolvent. Then

1. $R(\lambda, A)$ is compact for every $\lambda \in \rho(A)$
2. $\sigma(A)$ is countable and if $\sigma(A)=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is infinite then $\lim _{n \rightarrow \infty}\left|\alpha_{n}\right|=+\infty$.

Proof. (i) follows immediately from the resolvent equation $R(\lambda, A)-R(\mu, A)=(\mu-\lambda) R(\lambda, A) R(\mu, A)$. Part (ii) follows immediately from spectral theory of compact operators and from the spectral mapping theorem for resolvents:

$$
\sigma\left(R\left(\lambda_{0}, A\right)\right) \backslash\{0\}=\left\{\frac{1}{\lambda_{0}-\mu}: \mu \in \sigma(A)\right\} .
$$

For the proof of the last statement, see IV.1.13 in [EN].
Remark. $R(\lambda, A)$ is compact if and only if the canonical embedding $\left(D(A),\|\cdot\|_{A}\right) \rightarrow H$ is compact (Proposition II.4.25 in [EN])

The following theorems say that every self-adjoint operator is similar to a multiplication operator on an L^{2} space. This fact has a lot of consesquences. If you are interested in proofs, they can be found in E.B.Davies: Spectral theory of differential operators, Theorems 2.5.2 and 4.2.2 + Corollary. You probably know similar statements for bounded operators. For matrices it says that symmetric matrices (or normal matrices) are diagonalizable.

Theorem 3 (Spectral theorem). Let $(A, D(A)$) be self-adjoint on a separable Hilbert space H. Then there exists a space if finite measure (Y, Σ, μ) and a unitary operator $U: H \rightarrow L^{2}(Y, \Sigma, \mu)$ and a measurable function $m: Y \rightarrow \mathrm{R}$ such that $U A U^{-1}=A_{m}$, where A_{m} is the multiplication operator $\left(A_{m} f\right)(x)=m(x) f(x), D\left(A_{m}\right)=\left\{f \in L^{2}(Y, \Sigma, \mu): m \cdot f \in L^{2}(Y, \Sigma, \mu)\right\}$.

Theorem 4 (Spectral theorem II). Let $(A, D(A))$ be self-adjoint with compact resolvent on a separable Hilbert space H. Then there exists a sequence $\left(\alpha_{n}\right)_{n=1}^{\infty}$ of real numbers and a unitary operator $U: H \rightarrow l^{2}$ such that $U A U^{-1}=A_{\alpha}$, where A_{α} is the multiplication operator $\left(x_{n}\right) \mapsto$ $\left(\alpha_{n} x_{n}\right), D\left(A_{\alpha}\right)=\left\{x \in l^{2}:\left(\alpha_{n} x_{n}\right) \in l^{2}\right\}$. Moreover, there exists an orthonormal basis $\left(\phi_{n}\right)_{n=1}^{\infty}$ consisting of eigenvectors of A and $A x=\sum_{n=1}^{\infty} \alpha_{n}\left\langle x, \phi_{n}\right\rangle \phi_{n}, D(A)=\left\{x \in H:\left(\alpha_{n}\left\langle x, \phi_{n}\right\rangle\right) \in l^{2}\right\}$.
One consequence is the following theorem.
Theorem 5. Let $(A, D(A))$ be self-adjoint dissipative operator on a separable Hilbert space H. Then A generates a C_{0}-semigroup of contractions T. Moreover, $T(t), t \geq 0$ are self-adjoint operators and if A has compact resolvent, then $T(t)$ are compact for $t>0$.

Proof. By spectral theorems, A is similar to a multiplicative operator associated with a function m that attains only non-positive real values. Then operators $T(t)$ are similar to multiplication operators associated with $e^{m(\cdot) t}$ which are self-adjoint. The rest follows from characterization of compact multiplication operators (see a remark above).

Many more results on self-adjoint operators follow easily from the corresponding properties of multiplication operators. Moreover, we can write a formula for the semigroup if we know the unitary operator as the following examples show.
Example. Dirichlet Laplacian on $[0,1]$. Let $D(A)=\left\{f \in H^{2}(0,1): f(0)=f(1)=0\right\}, A f=\Delta f$. (the details are to work out in HW3)
Example. Dirichlet Laplacian on R^{n}. Let $D(A)=H^{2}\left(\mathrm{R}^{n}\right), A f=f^{\prime \prime}$. The Fourier transform $(\mathcal{F} f)(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathrm{R}^{n}} e^{-i x \cdot y} f(y) d y$ is known to be a unitary operator from L^{2} to L^{2}. Moreover, $\mathcal{F}\left(\frac{\partial}{\partial x_{i}} f\right)(x)=-x_{i} f(x)$, so $\mathcal{F}: \Delta f \mapsto-\sum x_{i}^{2} f$. Hence, \mathcal{F} is the unitary operator and the multiplication operator similar to A is A_{m} with $m(x)=-\|x\|_{2}^{2}, x \in \mathrm{R}^{n}$. In this case, A does not have a compact resolvent. As a consequence

$$
(T(t) f)(x)=\mathcal{F}^{-1}\left(e^{-\|z\|_{2}^{2} t}(\mathcal{F} f)(z)\right)(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathrm{R}^{n}} e^{i x z} e^{-\|z\|_{2}^{2} t} \int_{\mathrm{R}^{n}} e^{-i z y} f(y) d y d z,
$$

which leads to the Gaussian kernel.
Further, we can define a functional calculus on self-adjoint operators. For a real or complex function f we can define $f(A)$ by the formula $f(A)=U^{-1} A_{f \circ m} U$ as we did for the exponential function $f(x)=e^{t x}$. If A is dissipative, then m is real valued and non-positive and we can define fractional powers of $-A$, e.g. $\sqrt{-A}:=U^{-1} A_{\sqrt{-m}} U$.
In the second part of this lecture we show that self-adjoint generators are associated with bilinear forms.

Definition. Let V, H be complex Hilbert spaces, V densely embedded into H. A mapping $a: V \times V \rightarrow \mathrm{C}$ is called sesquilinear form if $a(\lambda x, y)=\lambda a(x, y), a(x, \lambda y)=\bar{\lambda} a(x, y), a(x+z, y)=$ $a(x, y)+a(z, y)$ and $a(x, y+z)=a(x, y)+a(x, z)$ for all $x, y, z \in V, \lambda \in \mathrm{C}$. We say that a is symmetric if $a(x, y)=\overline{a(y, x)}$ for all $x, y \in V$. We say that a is positive if $a(x, x) \geq 0$ for all $x \in V$ and H-elliptic if there exists $\omega \in \mathrm{R}$ and $\alpha>0$ such that $\Re a(x, x)+\omega\|x\|_{H} \geq \alpha\|x\|_{V}$

Remark. a is continuous if there exists $c>0$ such that $|a(x, y)| \leq c\|x\|_{V}\|y\|_{V}$ for all $x, y \in V$.
Example. $a(f, g)=\int_{0}^{1} f^{\prime}(x) \overline{g^{\prime}(x)} d x$ with $H=L^{2}(0,1)$ and $V=H^{1}(0,1)$ or $H_{0}^{1}(0,1)$.
Theorem 6. Let $a: V \times V \rightarrow \mathrm{C}$ is a continuous, positive, symmetric, H-elliptic sesquilinear form. Define $(A, D(A))$ by

$$
\begin{equation*}
D(A)=\left\{x \in V: \exists y \in H, a(x, \phi)=\langle y, \phi\rangle_{H} \forall \phi \in V\right\}, \quad A x=-y \tag{1}
\end{equation*}
$$

Then A is dissipative and self-adjoint, and therefore it generates a C_{0}-semigroup of contractions.
Proof. We show that A is well-defined, i.e. y in (??) is unique. If y_{1}, y_{2} satisfy (??), then $\left\langle y_{1}-y_{2}, \phi\right\rangle=0$ for all $\phi \in V$ and V is dense, hence $y_{1}=y_{2}$. It is easy to show that A is symmetric and dissipative, the latter follows from $\langle A x, x\rangle=-a(x, x) \leq 0$. It remains to show that $\omega \in \rho(A)$, in particular that $\omega x-A x=y$ has a solution for each $y \in H$. For fixed $y \in H$ let us define $F_{y}(\phi)=\langle\phi, y\rangle_{H}$. Then F_{y} is a bounded functional on V, so there exists a unique $x \in V$ such that $F_{y}(\phi)=a_{1}(\phi, x)$ where $a_{1}(x, y):=a(x, y)+\omega\langle x, y\rangle_{H}$ (it follows from the fact that a_{1} is due to H-ellipticity an equivalent inner product on V). Hence, $a(\phi, x)=a_{1}(\phi, x)-\omega\langle\phi, x\rangle=\langle\phi, y-\omega x\rangle_{H}$. So, $x \in D(A)$ and $A x=-(y-\omega x)$.

Remark. Also the converse is true: To each self-adjoint dissipative operator $(A, D(A))$ there exists a unique continuous positive symmetric H-elliptic sesquilinear form such that (??) holds.
Example. If $a_{i j} \in W^{1, \infty}(\Omega)$ are real functions such that $a_{i j}=a_{j i}$ and $\Re \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \bar{\xi}_{j} \geq \alpha|\xi|_{2}^{2}$ for all $x \in \Omega$ and $\xi \in \mathrm{C}^{n}$. We can define the form

$$
a(f, g)=\int_{\Omega} \sum_{i j} a_{i j}(x) \partial_{i} f(x) \overline{\partial g_{j}(x)} d x
$$

on $V_{1}=H_{0}^{1}(\Omega)$ resp. $V_{2}=H^{1}(\Omega)$. Then a is continuous, symmetric, positive, H-elliptic form associated with the elliptic operators $A v=\sum_{i j} \partial_{j}\left(a_{i j} \partial_{i} v\right)$ with Dirichlet resp. Neumann boundary conditions.

