Chapter 4. Self-adjoint semigroups on Hilbert spaces

For an unbounded linear operator A it may happen that A is a restriction of its adjoint, i.e. the
adjoint operator A* is almost equal to A but it has a larger domain. Such operators are called
symmetric. If, moreover, the domains are equal, then the operator is called self-adjoint.

Definition. A linear operator (A, D(A)) on a Hilbert space H is
1. symmetric if (Az,y) = (y, Ax) for all z, y € D(A).

2. self-adjoint if A is symmetric and the following holds: if y € H is such that there exists
z € H satistying (Az,y) = (z, z) for all z € D(A), then y € D(A) and z = Ay.

Remark. 1. Every self-adjoint operator is closed.

2. For a multiplicative operator A,,f = m - f on L?, the adjoint operator is equal to A. So,
A, is self-adjoint if and only if m is real-valued. Since o(A,,) is essential range of m, a
multiplicative operator A,, is self-adjoint if and only if o(a.,) C R.

3. For an example of a symmetric operator that is not self-adjoint see
https://en.wikipedia.org/wiki/Self-adjoint_operator

Proposition 1. 1. If A is symmetric, then o(4) = C or o(4) = {A € C: S\ > 0} or
c(A)={AeC: SN <0} oro(A) CR.

2. A symmetric operator A is self-adjoint if and only if c(A) C R if and only if i — A is
surjective if and only if —i — A is surjective.

Proof. Observe that S((A — A)x,z) = —3\|z||?>. Hence, ||(A — A)z| > I\||z||. It follows that
A — A is injective whenever A € R at it yields an estimate on resolvent ||R(A, A)| > @ provided
A € p(A) \ R. The resolvent estimate implies that if A\g € p(A) \ R, then the whole disc centered
at Ag with radius || is contained in p(A). The first claim follows.

Part 2. The second and third equivalences are already proved. We let the first equivalence without
proof. O

Definition. We say that (A, D(A)) has a compact resolvent if there exists A € p(A) such that
R(\, A) is compact.

Remark. 1. Of course, in infinite-dimensional spaces if A has compact resolvent, then it is
necessarily unbounded (since I is not compact and I = (A — A)R(\, A)).

2. A multiplication operator A,, on L? is compact if and only the range of m is finite or
countable with H,, N {z € C: |z| > ¢} being finite for every ¢ > 0. (not difficult to prove)

Proposition 2. Let (A, D(A)) has a compact resolvent. Then
1. R(X\, A) is compact for every X € p(A)

2. o(A) is countable and if 0(A) = {a1,aq,...} is infinite then lim,, o |an| = +00.

Proof. (i) follows immediately from the resolvent equation R(A, A)—R(u, A) = (u—A\)R(\, A)R(u, A).
Part (ii) follows immediately from spectral theory of compact operators and from the spectral
mapping theorem for resolvents:
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For the proof of the last statement, see IV.1.13 in [EN]. O

Remark. R(\, A) is compact if and only if the canonical embedding (D(A),||-||a) — H is compact
(Proposition I1.4.25 in [EN])



The following theorems say that every self-adjoint operator is similar to a multiplication operator
on an L? space. This fact has a lot of consesquences. If you are interested in proofs, they can
be found in E.B.Davies: Spectral theory of differential operators, Theorems 2.5.2 and 4.2.2 +
Corollary. You probably know similar statements for bounded operators. For matrices it says that
symmetric matrices (or normal matrices) are diagonalizable.

Theorem 3 (Spectral theorem). Let (A, D(A)) be self-adjoint on a separable Hilbert space H.
Then there exists a space if finite measure (Y, %, 1) and a unitary operator U : H — L*(Y, 3, 1)
and a measurable function m : Y — R such that UAU ™' = A,,, where A,, is the multiplication
operator (A f)(z) = m(z) f(z), D(An) = {f € L*(Y,Z, 1) : m - f € L*(Y, %5, 1)}

Theorem 4 (Spectral theorem II). Let (A, D(A)) be self-adjoint with compact resolvent on a
separable Hilbert space H. Then there exists a sequence (o) of real numbers and a unitary
operator U : H — 12 such that UAU~' = A, where A, is the multiplication operator (x,)
(anwy), D(Ay) = {z € 1?: (anxn) € I2}. Moreover, there exists an orthonormal basis (¢,,)3 4
consisting of eigenvectors of A and Az =377 | an(®, ¢n)Pn, D(A) ={z € H : (an(z,dn)) € I*}.

One consequence is the following theorem.

Theorem 5. Let (A, D(A)) be self-adjoint dissipative operator on a separable Hilbert space H.
Then A generates a Cy-semigroup of contractions T. Moreover, T(t), t > 0 are self-adjoint
operators and if A has compact resolvent, then T'(t) are compact for t > 0.

Proof. By spectral theorems, A is similar to a multiplicative operator associated with a function
m that attains only non-positive real values. Then operators T'(t) are similar to multiplication
operators associated with e”()* which are self-adjoint. The rest follows from characterization of
compact multiplication operators (see a remark above). O

Many more results on self-adjoint operators follow easily from the corresponding properties of
multiplication operators. Moreover, we can write a formula for the semigroup if we know the
unitary operator as the following examples show.

Ezample. Dirichlet Laplacian on [0, 1]. Let D(A) = {f € H?(0,1) : f(0) = f(1) =0}, Af = Af.
(the details are to work out in HW3)

Ezample. Dirichlet Laplacian on R". Let D(A) = H?*(R"), Af = f”. The Fourier transform

(Ff(z) = W Jrn €Y f(y)dy is known to be a unitary operator from L? to L?. Moreover,

.F(a%if)(a:) = —a;f(z), so F : Af — —> a?f. Hence, F is the unitary operator and the
multiplication operator similar to A is A,, with m(z) = —||z||3, * € R™. In this case, A does not
have a compact resolvent. As a consequence
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which leads to the Gaussian kernel.

Further, we can define a functional calculus on self-adjoint operators. For a real or complex
function f we can define f(A) by the formula f(A) = U 'Afo,U as we did for the exponential
function f(x) = e'*. If A is dissipative, then m is real valued and non-positive and we can define
fractional powers of —A, e.g. V—-A:=U"1A —.U.

In the second part of this lecture we show that self-adjoint generators are associated with bilinear
forms.

Definition. Let V, H be complex Hilbert spaces, V' densely embedded into H. A mapping
a:V xV — Cis called sesquilinear form if a(Ax,y) = Aa(z,y), a(z, A\y) = a(x,y), a(z+ 2z,y) =
a(x,y) + a(z,y) and a(z,y + 2) = a(x,y) + a(x, z) for all x, y, z € V, A € C. We say that a is

symmetric if a(x,y) = a(y,z) for all x, y € V. We say that a is positive if a(z,z) > 0 forallz € V
and H-elliptic if there exists w € R and o > 0 such that Ra(z, z) + w||z|| g > aflz|v



Remark. a is continuous if there exists ¢ > 0 such that |a(z,y)| < ¢||z|v|y|lv for all z, y € V.
Example. a(f,q) fo ¢'(z)dx with H = L?(0,1) and V = H'(0,1) or H}(0,1).

Theorem 6. Leta: V xV — C is a continuous, positive, symmetric, H-elliptic sesquilinear form.
Define (A, D(A)) by

DA)={zeV: JyeH, alx,p) = (y,¢)u Yo €V}, Az = —y. (1)
Then A is dissipative and self-adjoint, and therefore it generates a Cy-semigroup of contractions.

Proof. We show that A is well-defined, i.e. y in (??) is unique. If y1, yo satisfy (?7), then
(y1 —y2, ) = 0 for all p € V and V is dense, hence y; = yo. It is easy to show that A is symmetric
and dissipative, the latter follows from (Ax,x) = —a(x,x) < 0. It remains to show that w € p(A),
in particular that we — Az = y has a solution for each y € H. For fixed y € H let us define
Fy(¢) = (¢,y)u. Then F, is a bounded functional on V, so there exists a unique x € V such that
Fy(¢) = a1(¢,x) where a1(z,y) = a(z,y) + w(z,y)m (it follows from the fact that a; is due to
H-ellipticity an equivalent inner product on V'). Hence, a(¢, ) = a1(¢, ) —w(p,x) = (¢, y—wx) gy
So, z € D(A) and Az = —(y — wzx). O

Remark. Also the converse is true: To each self-adjoint dissipative operator (A, D(A)) there exists
a unique continuous positive symmetric H-elliptic sesquilinear form such that (??) holds.

Ezample. 1f a;; € W1>°(Q) are real functions such that a;; = aj; and %szzl ai;(2)&&5 > alél3
for all x € Q2 and £ € C™. We can define the form

/Z% )09, (x)dx

on Vi = HJ(Q) resp. Vo = H'(Q). Then a is continuous, symmetric, positive, H-elliptic form
associated with the elliptic operators Av = Z 0;(a;;0;v) with Dirichlet resp. Neumann boundary
conditions.



