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CHAPTER 1

Functions of several variables

In the previous chapter we studied functions of one real variable. However, it
is usual that some quantity depends on more variables. That takes us to concept
of function whose values depends of several real variables. In next sections we
are going to deal at first with sets, which are domains of these functions, then we
introduce basic notions of differential calculus of multivariate functions.

1.1. The set R" as a metric and linear space

Let n € N. Remind that the set R™ consists of all n-tuples of real numbers,
since it is a Cartesian product of n sets:

R"=RxRx.---xR.

n-times

If # € R™, then we denote its i-th coordinate by x;, and hence we can write ¥ =
[€1,...,2y]. There are some important elements in set R™. First of all it is origin,
that is an element, whose all coordinates equals zero. We denote it by 0. For i €
{1,...,n} we define & € R™ as follows:
N [07 o ’0’ i-th 00(1)rdinate’ 0’ Y 0].
These elements will be important to us further.

Elements of R™ can be added together and multiplicated by a real number: if
ZeER", Z=[r1,...,xn], 7 ER", = [y1,...,Yn], A € R, then we define

f—i_g: [$1+y1,...,xn+yn],
AT = [/\171,...,)\1'”].

For operations addition and multiplication by a real number we introduced
now, there are number of counting rules, derived from similar rules for real num-
bers (e.g. T+ ¢ = §+ &, A(Z¥+¢) = AZ+ Ay). Think over that we can write every
element ¥ = [z1,...,7,] € R"inaform &= Y"1 | x;é".

The set R™ with operations addition and multiplication by a real number we
will call the space R™ and the elements of R” will be called the points of this space.
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2 1. FUNCTIONS OF SEVERAL VARIABLES

However, sometimes it is useful to look at a given element Z from R"™ as a vector,
that means a directed line segment starting at the origin and ending in the point &
Now we introduce an important notion of distance.

Definition. The Euclidean metric (distance) on R" is a function p: R™ x R" —
[0, +00) defined by:

We call the number p(Z, /) the distance between points Z and .

Theorem 1 (properties of the Euclidean metric). The Euclidean metric p has the
following properties:

o VI € R™: p(Z,9) =0 ¥ =7,

o VX, € R™: p(Z,v) = p(¥, Z) (symmetry),

o VZ. .2 € R": p(Z,2) < p(&,9) + p(7, Z) (triangle inequality),

o VI, jy e R"VA € R: p()\x AY) = |A| p(Z, §) (homogeneity),

o VZ, 4,2 € R": p(¥+ Z,§ + Z) = p(&, §) (translation invariance).

Proof. We prove only the triangle inequality. The other proofs are simple. Let & =

[T1,. s Tal, ¥ = [Y1,- - Yn)s 7= [21,. .., 25] € R". We want to prove that:
n n n
P&, 2) = [ D (@i —2)2 <\ | D (@i —w)?+ | D (v — )2 = 0
=1 i=1 i=1

We could write a; = x; — y;, b; = y; — z; fori = 1,...,n. Then is equivalent
to

n

D (ai+bi)? < ia% anb?. 2
=1 =1

=1

Since all sums in (2)) are non-negative, then (2)) is equivalent to

zn:az—i—b <Za +2 Za
i=1

We alter this expression:

n n n n n
Sta?+2) abi+3 <Y a2 +2,| Y a?
i=1 i=1 i=1 i=1 i=1
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1.1. THE SET R™ AS A METRIC AND LINEAR SPACE 3

Firstly, inequality (3) corresponds to inequality (I). On the other hand, the in-
equality (3) follows from Cauchy’s inequality (Example ??). That completes the
proof. ]

The following notions, based on the distance definition, play the key role in the
multivariate function theory.

Definition. Let Z € R™, r > 0. We call B(Z, r) defined by the expression
B(fv 7") - {gG Rn; p(fa 37) < 7”}
the open ball with centre Z and radius r or the neighbourhood of point Z.

Definition. Let #/ € R" for each j € N and let # € R". We say that a sequence

{27152, converges to & if lim p(Z,77) = 0. We call the element 7' the limit of
— 00

the sequence {77}5°,. A sequence {47 }32, of the elements of R™ is convergent

if there exists i € R" so that {7 }32, converges to .

Remark. 1t follows directly from the definition that an element Z € R" is the limit
of the sequence {7”}3 if and only if

Ve €R,e >03jo € NVj € N,j > jo: ¥ € B(Z,e).
Compare with the definition of the limit of a sequence of real numbers on page ??.

Theorem 2. Let 77 € R” for each j € N a # € R". The sequence {7’ 132

converges to 7 if and only if for each ¢ € {1,...,n} the number sequence {z i
converges to number ;.

Proof. Suppose that sequence {7/} converges to Z, according to the definition it
means

lim
Jj—00

> (@} — ) =0. @

k=1
Choose fixedly ¢ € {1,...,n}. Then for arbitrary j € N holds

> (@] — )2 > |2l — x| > 0. 5)
k=1

From (@), (8) and the sandwich theorem (Theorem ??) follows lim :Uf = ;.
j—0o0

Now suppose that jlim :vf = x; foreachi € {1,...,n}. Applying the theorem

—00
about limit arithmetic (Theorem ??) and using the continuity of function ¢ — Vi
on interval [0, +00) we deduce (4). n



4 1. FUNCTIONS OF SEVERAL VARIABLES

Remark. Theorem [2|says that convergence in the space R" is the same as conver-
gence by coordinates. It also implies that a sequence {7’} of elements of R™ has
at most one limit. Therefore it is correct to denote the limit of a sequence {77}
(if it exists) by the symbol lim 77. We will sometimes write 27 — & instead of

HOO
lim &7 = Z.
j‘)OO

Definition.
(i) Let M C R™. We say that & € R" is an interior point of a set M if there
exists » > 0, such that B(Z,r) C M.
(i) We call M C R" open in R", if all of its points are interior points.
(iii) A interior of a set M is the set of all interior points of M. We denote the
interiorof the set M Int M.

Example 3. Let Z € R™ and R > 0. An open ball B(Z, R) is an open set in R”.

Proof. We have to prove that each point of the set B(Z, R) is its interior point.
Let ¥ € B(Z, R). We want to find » > 0, such that B(y,r) C B(Z, R). Choose
r = R — p(Z, ). The number r is positive, because p(Z, ) < R. Provided that
Z € B(y,r), we could use the triangle inequality

p(Z,2) < p(Z.y) + p(¥,2) < p(Z,¥) + 7 =R,

and then Z € B(Z, R). We have proved that B(i,r) C B(Z, R), and then the
point ¢/ is an interior point of the set B(Z, R). Draw a figure for n = 2. ]

Now we provide some basic properties of open sets.

Theorem 4 (properties of open sets).

(1) The empty set and the whole space R™ are open in R".
(ii) Let A is an non-empty set of indexes. Let the sets G, C R", a € A, are open
in R™. Then | J,c 4 Go is open set in R".
(iii) Let m € N. Let sets G;, @ = 1,...,m, are open in R”. Then ()", G, is an
open set in IR{"EI

Proof. (i) This proposition is obvious.

(i) If ¥ € (J,ecq Ga- then ag € A can be found such that © € G, . Due
to openness of the set G, there exists » > 0 satisfying B(Z,r) C G,,, and
thus B(Z,7) C U,eca Gao- It means that 7 is an interior point of the set | J,c 4 Ga
and the proposition is thus proved.

(iii) If Z € ;% Gi, then for each ¢ € {1,...,m} there exists r; > 0 such as
B(Z,r;) C Gy, because G; is open. Put r = min{ry,...,r,,}. Then we get r > 0
and B(Z,r) C (" Gi. ]

IThe symbol (i~ means the same as (\;c(y oy



1.1. THE SET R™ AS A METRIC AND LINEAR SPACE 5

Definition.

(i) Let M C R™ and ¥ € R"™. We say that Z is a a limit point of the set M,
provided that for each r > 0 it is true that

B@r)nM#0 & B(Z,r)Nn(R"\ M) # 0.

(i1) The set of all limit points of M is called a boundary of M. We denote it by

(iii) A closure of the set )/ is the set M U H(M). We denote the closure of the
set M by M.

(iv) We say that the set M is closed in R™ if it contains all of its limit points (i.e.
H(M)C Mor M = M).

Theorem 5 (Characterization of closed sets). Let M C R™. Then the following
conditions are equivalent.

(i) The set M is closed in R™.
(ii) The set R™\ M is open in R™.
(iii) If # € R™ is the limit of a convergent sequence {7} of points of the set M,
then & € M.

Proof. The structure of the proof will be as follows: First, we shall prove that the
condition (i) imply (ii), than we shall prove the implication (ii) = (iii) and in the
third step we shall prove from (iii) the condition (i). This would complete the proof
of the theorem is what had to be proved, because from proved implications follow
the rest.

(i) = (i) LetZ € R™\ M. From the assumption that the set M is closed,
we get x ¢ H(M). It implies that there exists » > 0 such that B(Z,7) N M = ()
or B(Z,7) N (R™\ M) = (). The second eventuality could not happen in our case,
because ¥ € R™ \ M. Hence B(Z,r) N\ M = {), in other words B(Z,r) C R™\ M,
and thus Z is an interior point of R™ \ M.

(i) = (iii) Consider the sequence {:F:]} of points of the set M which con-
verges to the element £ € R™. For each r > 0 there exists j € N such that
# € B(%,r). It means that  is not an inner point of R™ \ M. The set R" \ M is
open and thus contains only its inner points, so & ¢ R" \ M,i.e. ¥ € M.

(iii) = (i) We assume that (iii) holds and we want to deduce H(M) C M.
Let ¥ € H(M). Then for each j € N we obtain B(Z,1/j) " M # (). Thus
there exists 77 € B(#,1/j) N M for each j € N. Then lim#/ = Z, because
0 < p(#,27) < 1/j, j € N. According to (iii) we obtain & € M and this is what
had to be proved. ]

Theorem 6 (properties of closed sets).
(i) The empty set and the whole space R"™ are closed in R™.
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(ii) Let A be an non-empty set of indexes. Let the sets F,, C R”, a € A, be
closed in R™. Then (1, 4 F& is a closed set in R".

(iii) Let m € N. Let sets F;, i = 1,...,m, be closed in R™. Then |J;-, F; is a
closed set in R"[

Proof. All propositions could be easily proved from Theorem [} the equivalence
of (i) and (ii) in Theorem and De Morgan’s laws (Theorem ?7?). [

In the following theorem we will deduce important properties of closure and
interior of a set.

Theorem 7. Let M C R". Then:

(i) The set M is closed in R™.
(i1) The set Int M is open in R".
(iii) The set M is open in R if and only if M = Int M.

Proof. (i) Suppose that ¥ € R™\ M. Then ¥ ¢ H (M) and thus there exists § € R,
§ > 0, such that B(Z,0) N M = () or B(Z,6) N (R™\ M) = (. Since T ¢ M,
the second eventuality could not happen. For each point § € B(Z,¢) there exists
n € R, n > 0 such that B(y,n) C B(Z,d) and thus B(¢,n) N M = (. It implies
7 & H(M). Hence B(%,8) N H(M) = 0. This yields B(#,5) N M = () and thus
R™ \ M is open in R™. According to the theorem is then M closed in R™.

(i1) Suppose that £ € Int M. Thus, there exists § € R, § > 0 such that
B(Z,§) C M. Then for arbitrary i € B(&,0) there exists n € R, n > 0 such
that B(y,n) C B(Z,d) C M. The point ¥/ is then an interior point of /. From that
we obtain B(Z,d) C Int M, what we wanted.

(iii) If M is open, then each of its points is an interior point of M and thus
M = Int M. The implicational converse follows directly from the definition of an
open set. |

Remark. Remark that Int M is the biggest open set contained in M in the following
sense: If G is a set open in R" satisfying G C M, then G C Int M. Similarly M
is the smallest closed set containing M.

Definition. We say that a set A/ C R" is bounded if there exists r > 0 satisfying
M C B(0,r). A sequence of the points of R” is bounded provided that the set of
its terms is bounded.

Theorem 8. A set M C R” is bounded if and only if the set M is bounded.

Proof. Suppose that the set M is bounded. Thus, there exists 7 > 0 such that
M C B(0,r).If £ € M, then there exists ¥ € M such that p(Z,y) < 1.If & € M,
we could choose ¥ = &, on the other hand if ¥ ¢ M, then & € H(M ) and ¢ could

2The symbol (Ui~ means the same as U,y ny-
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be an arbitrary point of the set B(Z, 1) N M, which has to be non-empty. From the
triagle inequality we get

p(0,T) < p(0,§) + p(4,7) < p(0,7) +1 <r+ 1.

Thus M C B(d,r + 1) holds and then M is bounded.
Thus also M is bounded, because M C M. n

Example 9. Let M = {[z,y] € R?; = > 0,y > 0}. Decide if the given set is open
or closed, determine its boundary, closure and interior.

Solution. Tt can be easily proved that B([z, y], min{x, y}) C M.Hence, if [z, y] €
(0, 00) x (0, 00), it is an interior point of the set. Neighbourhoods B([z, y], |z| /2),
where x < 0, and B([x,y], |y| /2), where y < 0, are contained in the complement
of the set M. A neighbourhood in a form B([0, y],r), where r > 0, y > 0, always
intersect both the set M and its complement, because for example [r/2,y 41 /2] €
M N B([0,y],7) and [~7/2,y] € (R?\ M) N B([0,y],r). Similarly we could
show, that a neighbourhood of the form B([z, 0], r), where > 0, z > 0, always
intersects both M and its complement.
Hence, we get

Int M = {[z,y] € R* x>0,y > 0},
H(M)={[0,y] e R? y >0} U{[z,0] € R*; 2 >0} a
M ={[z,y] € R* x>0,y > 0}.

It can be seen that M ## Int M a M # M. That is, the set M is neither open nor
closed. »

Example 10. For each k£ € N let a set be defined by
My, = {[z,y] € R% 22 + 4% < (14 1/k)?}.
Determine a set ﬂzozl M kE|Decide if the sets M, ﬂzozl M, are open or closed.

Solution. Each of the sets M, is an open disc with radius 1 + 1/k and for each
k € N Myy1 C My, holds. It seems that (o, My = {[z,y] € R% 22 +y? < 1}
Now we try to prove this conjecture.

Let us set M = {[z,y] € R?; z% + y? < 1}. First, prove inclusion M C
Moy M. If [z,y] € M, then 2 + y* <1 < 1+ 1/k for each k € N and thus
[x7y] € ﬂioﬂ M.

Next, (r—y M C M holds. Since if [z, y] is contained in each set My, is
22 4+y? < 14 1/k for each k € N and it follows that 2% + 52 < inf {1 +1/k; k €
N} =1and [z,y] € M.

3The symbol (Nr—; means the same as (), -



8 1. FUNCTIONS OF SEVERAL VARIABLES

The set My, k € N, is an open ball and hence it is open; M}, is not closed,
because e.g. the point [1 + 1/k, 0] € My, \ My. It is not difficult to think over that
H(M) = {[z,y] € R?; 2> + y*> = 1} and the set M is thus closed. However, it is
not open, because e.g. the point [0,1] € M \ Int M.

The given example shows that the intersect of infinitely many open sets does
not have to be an open set. Compare with the theorem 4] &

1.2. Continuous functions of several variables

In this section we will show how the notion of continuity could be defined for
functions of several variables, i.e. for functions of the type f: M — R, M C R".
We also introduce some basic properties of this notion.

Definition. Let M C R", ¥ € M and f be a function of n variables. We say that f
is continuous at a point & in M, provided that

VeeR,e>030€R, 6 >0Vye B(Z,d)NM: f(y) € B(f(Z),e).

To say that f is continuous at ', means that f is continuous at & in some neigh-
bourhood of the point Z, i.e.

VeeR,e>030 € R,0 >0Vy € B(Z,9): f(¥) € B(f(Z),e).

We state two theorems which shows behaviour of the defined notion while us-
ing arithmetic operations and function composition. They can be proved by a mod-
ification of the proofs of the theorem about function limit arithmetic (Theorem ??)
and the theorem about a limit of a composite function (Theorem ??) respectively.
We omit theese proofs.

Theorem 11. Let M C R, 2 e M, f: M - R, g: M — Rand c € R. If
f and g are continuous at a point Z in M, then so are functions cf, f + g and fg. If
above that g(Z) # 0 holds, then also function f/g is continuous at a point Z in M.

Theorem 12. Letr,s € Nandlet M C R%, L C R" and & € M. Let ¢y,..., ¢,
are functions defined on M, continuous at the point Z'in M and [¢1(Z), . .., ¢, (7)] €

]
L foreach ¥ € M. Let f: L — R is continuous at the point [¢1(Z), ..., ¢y (Z)]
in L. Then the composite function F': M — R defined by

F(%) = f(¢1(f),¢2(f), .. .,gpr(f)), re M,
is continuous at ' in M.

The connection between continuity of a function and convergence of a se-
quence is stated in already mentioned Heine theorem.
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Theorem 13 (Heine theorem). Let M C R™, & € M and f: M — R. Then the
following conditions are equivalent:
G fis continuous at rin M, ' .
(i) lim f(27) = f(Z) for every sequence {i7}72, provided 7 € M for j € N
J—00 .
and lim &7 = 2.
j—00
Proof. (i) = (ii) Choose an arbitrary sequence {77 }5’;’1 of points of the set M,
which converges to Z. Choose € > 0. From the continuity of f at the point &
in M follows the existence of 6 > 0 such that f() € B(f(Z),e) holds for each
y € B(¥,6) N M. For that § > 0 we can find jo € N satisfying p(27, %) < ¢ for
j > jo. If thus j > jo, then 37 € B(#,0) N M and thus f(77) € B(f(%),¢).
(i) = (i) Prove non (i) = non (ii). Suppose (i) does not hold. That is
JeeR,e>0Ve€R,§>035€ B(ZF,0)NM: f(y) ¢ B(f(Z),e).
For each j € N we can find a point i € B(%,1/j) N M satisfying f) ¢
B(f(%),e). We have §7 — &, but the sequence {f(¢”)}2; does not converge
to f(&), and thus (ii) does not hold. [
Definition. Let M/ C R™ and f: M — R. We say that f is continuous on a set M/
if and only if it is continuous at each point ¥ € M in M.

Remark. The definition is consistent with the previously defined notion continuity
on an interval.

Example 14. Leti,n € N, i < n. A function 7' : R” — R defined by (21, ..., 2,) =
x; is continuous on R™. We call these functions coordinate projections.

Proof. Prove that 7’ is continuous at an arbitrary point 7= [Z1,...,Tn] € R™ Let
e > 0 be given, then set § = . Then for each ¥ € B(Z, ) it follows that

|7(Z) — 7'(Z)| = |2 — 4] < p(E,7) < =e.

Example 15. The function Z — p(&, 0) is continuous on R".
Proof. The following inequalities hold for each u, ¥ € R™:

p(il,6) < p(i1,7) + p(5.5) a p(7,3) < plF, @) + p(T, 9.
from that it easily follows
Choose now a point & € R” fixedly and let ¢ € R, ¢ > 0 be given. Then for each
§ € B(Z,¢) from the previous inequality it follows that

and the continuity of the given function at the point & is proved. ]
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Theorem 16. Let f be a continuous function on R™ and ¢ € R. Then:
(i) The set {& € R™; f(&) < ¢} is an open set in R"™.
(ii) The set {# € R™; f(Z) > ¢} is an open set in R™.
(iii) The set {# € R™; f(Z) < ¢} is a closed set R".
(iv) The set {Z € R™; f(Z) > c} is a closed set R™.
(v) The set {Z € R"; f(&) = c} is aclosed set R™.
Proof. (i) Let us set M = {Z € R"; f(Z) < c¢}. If & € M, then we want to
prove that we can find a neighbourhood B (a:c’, r) which is a subset of M. Since

f(&) < ¢, we can set ¢ = ¢ — f(Z) and notice that € > 0. From the continuity of
the function f at the point & it follows that we can find » > 0 such that

Viie B(Z,r): f(I) —e < f(Z) < f(Z) +e. (6)
From the definition of the number ¢ and from (6) follows
Vi€ B(Z,r): f(Z) < ¢,

IIAVA

and thus B(Z,r) C M.

Statement (ii) can be proved similarly or we can use the function — f. State-
ment (iii) follows from (ii) and the theorem [5] statement (iv) follows from (i) and
Theorem [5] It remains to prove the statement (v). It follows that

{ZeR™; f(&) =c} ={TeR"; f(&) <FN{TeR"; f(Z)=c}
This relation, (iii), (iv) and the theorem [6]imply (v). [ ]
Definition. We call a set M C R”" compact if and only if every sequence of
elements of the set M has a convergent subsequence whose limit is in M E]

The following theorem gives an important characterization of the compact sub-
sets of R™, which we will use in finding extremes of a multivariate function.

Theorem 17 (characterization of compact sets in R™). A set M C R" is compact
if and only if it is closed and bounded.

In the proof we will use the following lemma.

Lemma 18. Let {1/ };";1 be a bounded sequence in R™. Then it has a convergent
subsequence.

Proof. We prove the result by applying mathematical induction on n. For n = 1 it
is the Bolzano-Weierstra3 theorem (Theorem ?7?). '
Suppose that the statement holds for every bounded sequence in R™. Let {27 };";1

be a bounded sequence in R"*!, that means we can find R > 0 such that &/ €

4We will define subsequence of a sequence of elements of R™ in a similar way to defining
subsequence of the real numbers.
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B(0, R) for each j € N. Denote i/ = [, ..., )] € R", j € N. Then p(0, ) <
p(0,#7) < R holds for each j € N, and the sequence {y‘7 ° , is thus bounded.
According to the induction assumption, the sequence {77 }3° 5= has a convergent

subsequence {{7%}2° ;. Next ‘an’ < p(0,7%) < R holds for each k € N,
and the sequence of real numbers {zF, ;}7° is thus bounded. According to the

. . Jk; oo
Bolzano-Weierstra} theorem, it has a convergent sebsequence {z), 7 }52,

From the Theorem |2| follows that the sequence of real numbers {yl] Fie, s
convergent for each [ € {1,...,n}. From the theorem about a limit of a subse-

quence (Theorem ??) follows that the subsequence {yljk‘ -2 is convergent. i =

[y{ki, . ,yffi, T, +1] holds, and therefore according to Theorem [2[ the sequence
{a7%i 199, is convergent. [

Proof of the Theorem[7_7] = Let M be compact and not bounded. Then for each
Jj € Nthere exists #7 € M \ B(0, j). But the sequence {7 }22, has a subsequence

{@x}2 | which converges to a limit € M. Then

i < p(@*,8) < p(@*, ) + pl§. 9).
We get lim ji = 400 and concurrently lim (p(Z7%, %) + p(7,0)) = p(7,0) €
k—o0 k—o0

R. With the Theorem ?? we get a contradiction.

Show the closeness of the set M. Suppose that {xj} © | 1s convergent sequence
of the elements of the set M. We denote the limit of th1s sequence by Z. The set M
is compact, and thus {77 };";1 has a subsequence, which converges to a limit in M.
However, this limit must equal to Z (Theorem ?? and Theorem , thus ¥ € M.
Closeness of the set M now follows from the Theorem [51

< Let M C R"™ be bounded and closed set. Take an arbitrary sequence
{337} <, of the elements of the set M. This sequence is bounded, according Lemma.
it has a subsequence {z/* }2° w1, Which converges to any ¥ € R". From the close-
ness of the set M follows according to the Theorem [5| that £ € M. This is what
had to be proved. ]

Remark. From the previous theorem follows that:

e closed intervals in R are compact,
e finite unions of the closed intervals in R are compact,
e interval (0, 1) is not compact in R.

Definition. Let M C R", ¥ € M and f be a function defined at least on M (i.e.
M C Df).

e We say that f has a maximum (minimum, respectively) at a point & on M
provided that

Yy e M: f(y) < f(Z) ~Vy € M: f(y) > f(&), respectively).
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We call the point Z maximum point ( minimum point, respectively) of the func-
tion f on M.

e We say that f has a local maximum (local minimum, respectively) at a
point £ on M., if there exists § > 0 such that

Vy e B(Z,0)NM: f(y) < f(¥) (Vye B(Z,d)NM: f(y) > f(Z) respectively).
We call the point Z a local maximum point (local minimum point, respectively)
of the function f on a set M.

e We say that f has a strict local maximum (strict local minimum, respec-
tively) at a point & on M, if there exists § > 0 such that

Vi € (B(Z,0) \{T}) N M: f(g) < f(Z)
(resp. Vg € (B(Z,6) \ {Z}) N M: f(§) > f(Z)).

We call the point & a strict local maximum point (strict local minimum point,
respectively) of the function f on the set M.

e We denote the biggest (smallest, respectively) value of the function f on M
(provided that this value exists) by the symbol maxy; f (miny; f respectively).

Remark. Speaking about a local extrem of the multivariate function (without men-
tioning the set) means a local extrem on some neighbourhood.

Theorem 19. (about having extremes) Let M C R" be a non-empty compact set
and f: M — R be continuous on M. Then f has both maximum and minimum
on M.

Proof. Denote G = sup f(M). According to Lemma ?? there exists a sequence
{y;} of elements of the set f (/) such thatlim y; = G. For each j € N we can find
7/ € M satisfying f(#7) = y;. The set M is compact, thus the sequence {17 )
has a subsequence {77+ }2° ,, which cinverges to a limit #* € M. The function f is
continuous at the point * in M and thus according to Heine theorem (Theorem|[13)
kli}n;o f(2%) = f(&*) holds. On the other hand we have kli}n;o f(#7) = G. Then

f(&*) = G. This had proved that f has a maximum on M.
We could prove the existence of minimum similarly, or we can use a func-
tion — f, as in the proof of the Theorem ??. ]

From the previous theorem immediately follows the next corollary.

Corollary 20. Let M C R" be acompact setand f: M — R be continuous on M.
Then f is bounded on M.

Definition. We say that a function f of n variables has a limit at a point @ € R",
which is equal to A € R* if and only if

VeeR,e>030 € R, 6 >0VZ € B(a,d) \ {a}: f(&) € B(A,e).
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We denote it lim f(Z) = A.

r—a
Remarks. 1.1f the function f should have a limit at a point @ according to our
definition, it must exist do > 0 such that f is defined at each point of the set
B(a, dp) \ {d}. We could extend this definition by introducing a notion of the limit
of the function at a point in a set. However, we do not need this extension in the
following reading.
2. Every function has at a fixed point at most one limit.

3. Notice that lim f(#) = f(a) if and only if f is continuous at d.
Tr—a

For limits of multivariate functions holds similar theorems to theorems about
limits for for functions of one real variable (e.g. theorem about limit arithmetic or
sandwich theorem). We will formulate explicitly one variant of the theorem about
the limit of the composite function.

Theorem 21. Letr,s € N,@a € M C R®, L. C R", ¢1,...,p, be functions
defined on M satisfying lim ¢;(Z) =b;,j =1,...,r,ab=1[b1,...,b;] € L. Let
Tr—a

f: L — R is continuous at a point b. Define composite function F': M — R by
F(Z) = f(e1(D), p2(2), ..., 0r(D)), ZeM.
Then lim F'(Z) = f(b).
Tr—a

Example 22. Determine the domain of the function f(z,y) = /log(z — y); ex-
amine continuity of the function and draw some contour lines (i.e. sets f_i({c}),
c € R).
Solution. The domain of the function f is a set

Dy = {[z,y] € R?* log(z —y) > 0} = {[z,y] € R* z—y > 1}.
Since the coordinates projections 7! and 72 are continuous on the whole R? (see
Example , is the function g(x,y) = 7'(x,y) — 72(x,y) = = — y continuous
on the whole R? (and thus also on D r C R?). The function log is continuous on
(0, 400), and therefore the function log(x — ¥) is continuous on D¢ (composition
of the continuous functions). The function u +— +/u is continuous on [0, +00), and
thus the function f(z,y) = +/log(x — y) is also continuous on Dy.

Since the function f is non-negative, f_1({c}) = 0 holds for each ¢ < 0. Set
c equal the numbers 0, \/log 2 and +/log 3 one by one:

f1({0}) = {[z,y] € R? 2 —y = 1},
f_1({\/log2}) ={[z,y] € R% z—y = 2},
f_1({\/10g3}) ={[z,y] € R% 2z —y = 3}.
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Draw these sets in R?. *
Example 23. Examine continuity of the function defined by

2xy
x — ) z2+y? pro [:U’y] 7& [O’OL
f( vy) {0 pro [x,y] = [070}

in R? and draw some of its contour lines.

Solution. Continuity at points of the open set R \ {[0, 0]} can be shown similarly
to the way in the previous example.

From the Heine theorem follows very easily that at the point [0, 0] the func-
tion f is not continuous: take an arbitrary sequence {a,} C R such that, lim a,, =
0 and a,, # 0. The sequence {[ay,a,]} converges to the point [0,0] in R2, but
lim f(an,a,) =1 0= f(0,0).

If we realize that (x 4= y)? > 0 holds for all pairs of the real numbers x and y,
we get immediately, that for all points [z,y] € R?\ {[0,0]}is —1 < xSiZQ <1
The function f is thus bounded and we see that for each ¢ < —1 and for each ¢ > 1

also f_1({c}) = 0 holds.
Try to formulate some of the contour lines:

fa({=1}) = {[z,y] € R% y = —2}\ {[0,0]},
fa({-1/v2}) =
= {[z,y] € R (y+ V2 —2)(y + V22 + z) = 0} \ {[0,0]} =
={[z,y) eR* y=(1—vV2)zvy=(-1-v2)z}\{[0,0]},
f-1({0}) = {[z,y] € R* 2 = 0} U{[z,y] € R% y =0},
fa({1/v2Y) = {lz,y] € R* y = (V24 Dz vy = (V2 - 1)z} \ {[0,0]},
fa({1}) = {[z,y] € R? y =2} \ {[0,0]}.

Example 24. Examine continuity of the function defined on R? by

[ EY for [z,y] #[0,0],
f(x7y> - {O +y for [xjy] _ [O’O]’

and determine if the function has a maximum and minimum on R2,

Solution. Continuity of the function is obvious at all points except the origin. Ex-
amine continuity of the function at th point [0, 0]. We will estimate the subtraction

|f(x,y) — f(0,0)| = |f(x,y)|. For each point [z, y] € R?\ {[0,0]} it is

(22 + %) |yl
< _—_— = .
|f(z,y)] < 2 Yl
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Let £ > 0. For each [z,y] € B([0,0],¢) itis
|z, )] <yl < Va2 +y? <e.

Given any positive number € > 0 we cab find § > 0 (for example 6 = ¢) such that
for [z,y] € B([0,0],9) is |f(z,y) — f(0,0)| < &, that means that the function f
is continuous at the point [0, 0].

The function f is not bounded above on R?, because for each ¢ > 0 there
exists a point [x, x| such that f(z,z) = /2 > c. Similarly, we can prove, that
the function f is not bounded below. Since f is bounded on R? neither above nor

below, it has neither maximum nor minimum on that set. &
. . . 2
Example 25. Determine the domain of the function f(z,y) = 4/ x—IQ -5 -1

Examine continuity of the function on Dy and maximum and minimum of the
function f and draw some of its contour lines.

Solution. The domain is Dy = {[z,y] € R? = # 0,1 — y* — 2? > 0}. It is then
a circle with radius 1 with points, where x-coordinate is equal to zero (part of the
y-axis), being removed. Continuity on the domain can be proved similarly using

composition of continuous functions.
Determine some contour lines:

f1({0}) = {[z,y] € R% 2® +4* = 13\ {[0,1], 0, —1]},
f1({1}) = {[=,y] € R? 227 + y* = 1}\ {[0,1], [0, -1]},
f—l({z}) = {[x,y] € R2; 5a° + y2 = 1} \ {[07 1]7 [07 _1]}'

The function attains on D the smallest value 0 at each point of the contour line
f=1({0}). It does not have a maximum, because is not bounded above. If we are

getting closer to the point [0, 0] along the z-axis, we get lir% f(z,0) =4/ x—g —1=
T—
+00. &

Example 26. Determine the distance from the point [—5, —1] to the sets
My = {[r,y) eR: y =2} a My={[z,y] €R* y >2’}.

Solution. We know the notions of the distance from a point to a line and the dis-
tance from a point to a plane from the high school: we find the closest point on
the line (the plane, respectively) to a given point and the searched distance is the
distance between these two points. If we want to define the distance from a point
a € R" to a general set M C R", we find a difficulty that the closest point does
not have to be included in M. Thus we define the distance from a point to the set
in a following way. Let @ € R™ and M C R"™, M # (). Then we call the number

p(@, M) = inf {p(@, ¥); ¥ € M}
the distance from the point @ to the set M.
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According to this definition, in our example then follows

P([_5; _1]7M1) = inf{p([—5, _1]7 [wvxz]); T e R} =
=inf{\/(z +5)% + (22 + 1)?; z € R}.

We can find that function f(z) = /(z +5)2 + (22 + 1)2 on R has a mini-
mum at the point x = —1. Thus p([—5, —1], M1) = f(—1) = 2v/5. In this case
the set M, contains the point [—1, 1], which is closest to the [—5, —1]. Prove on
your own, that p([—5, —1], M) = 21/5, and that the set M5 does not contain the
closest point of the point [—5, —1]. »

1.3. Partial derivative and tangent hyperplane

In this section we will show, how to generalize the notion the derivation of a
function of one variable for the multivariate functions.

Definition. Let f be a function of n variables, j € {1,...,n}ad € R™. Then we
call the number
o) q+tel) — f(a
OF 4y g LT+ 1) = (@)
81‘]‘ t—0 t
— lim flar,...,aj—1,a; +t,ajq1,...,an) — flai,...,an)
t—0 t

the (first order) partial derivative of the function f with respect to the j-th
variable at the point a @ (provided that the limit exists).

Remarks. 1.1f f?—l{;(d’) should exist, then there must exists > 0 such that line
segment {a@ + té’; |t| < §} is a subset of Dy.

2. Setting
g(y) = f(al,CLQ, cees A5—1,Y, Q5415 - - - 70/77,)7

then ¢'(a;) exists, if and only if there exists %(EL’). If both derivatives exist then
J

they are equal. On the following figure we can see the geometric meaning of the
function g.
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a a; +t

FIGURE 1.

This remark gives us instruction, how to calculate the partial derivatives of the
multivariate functions with the use of the derivatives of the function of one variable.

The value of the notion of a partial derivative will be already demonstrated in
the following theorem.

Theorem 27 (necessary condition for a local extrem). Let G C R" be open, @ € G
and a function f: G — R has a local extrem (on (7) at the point @. Then for each
j €{1,...,n} holds: the partial derivative %fj(d') either does not exist, or is equal
to zero.

Proof. Choose j € {1,...,n} and set g(t) = f(@+té’). The function g is defined
on some neighbourhood of 0 and at the point 0O it has a local extrem. According to
the Theorem ?? we obtain that the derivative ¢'(0) either does not exist, or is equal
to zero, and because ¢'(0) = aE)TJ;(EL')holds (provided that at least one limit exists),
the proof is finished. ]

Partial derivatives are a very useful tool in examining the properties of the
multivariate functions. However, there is a disadvantage that every partial deriva-
tive at some point describe behaviour of the derived function only in one particular
direction.

If we consider only functions, which have continuous all partial derivatives on
the open set G C R", then partial derivatives give us more complex knowledge
about behaviour of the original function (see e.g. Theorem [30/and Theorem 31).

Definition. Let G C R™ be nonempty and open. Let the function f: G — R has

continuous all partial derivatives at each point of the set GG (that is, the function

T — %(f), j =1,...,n, are continuous at each point of ). Then we say that
J
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the function f is of class C' on G. We denote the set of all such functions f by
cH@).

Remark. Let G C R™ is nonempty open set and f,g € C!(G). Then th functions
f+g,f— g, fg are also of the class C!(G). Provided that g does not attain zero
value in any point of the set G, then also f/g € C}(G).

Remark. An important task is finding extremes of the function f on K. We are
often in situation that X C R” is closed nonempty bounded set, f is continuous
function on K and is of the class C! on the interior of the set K.

According to the characterization of the compact sets in R™ (Theorem [17),
we get that the set K is compact, and hence f attains its maximum and minimum
values on K (Theorem [T9). Each point of the extrem is also a local extrem point
on K and lies either on the border, or in the interior of the set K. If there is an
extrem at a point & € Int K then applies

of

81,‘]'
The function f could attain a extrem value only at points which satisfy the condi-
tion (7 or lies on the border of K. We introduce the methods, which enables to find
points on the border suspicious to be an extrem, in the following example, and par-
ticularly in section [I.5] where we show one general example. Since the necessary
condition for local extremes are often satisfied for only a finite number of points
of the set K, then it is sufficient to calculate values of the function in these points,
compare them and thus find extremes.

(Z)=0,j=1,...,n. )

Example 28. Find extremes of the function f(x,y) = 322 + 43> on the set M =
{[z,y] € R* 2 + 4> <1}
Solution. The function f is continuous on the whole R? and thus is continuous on
the set M. The set M is bounded and closed (see the Theorem [I6)), and therefore
it is compact. The function f has a maximum and minimum on it. The suspicious
points (i.e. the points, at which only could be an extrem) are the points of the bor-
der M and — since f € C!(Int M) — points inside M, satisfying the condition (7).

Find all suspicious points inside M at first. Calculate both first order partial
derivative:

of

of )
o (z,y) = 6z, 9y (z,y) Yy

To find points, where both partial derivative equal 0, we have to solve the linear
system:

6x = 0,
1242 = 0.
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The function f has both partial derivative equals 0 only at the point [0, 0], which
lies in the set Int M.

Now determine the points on the border. Define a supporting partial function
, which maps an interval [0, 27| on H (M):

©(t) = [cost,sint], t € [0,2n].

Define a function g: [0, 27] — R in a following way: g(t) = f(¢(t)), ¢ € [0, 27].
Thus g(t) = 3cos?t + 4sin®¢ holds for the function g. Find a maximum of the
function g on the interval [0,27]: ¢’(t) = —6costsint + 12sintcost holds.
Inside the interval [0, 27] is the derivation of the function g equal to zero at the
points 7/6, w/2, 57 /6, m, 37/2. The function g is continuous on bounded and
closed interval [0, 27], and hence it has a maximum and minimum on the interval.
Extrém tedy miZe mit pouze v bodech, kde ¢'(¢) = 0, a v krajnich bodech intervalu
[0, 27]. It is easily determined, that function g has a maximum on the interval at
the point 7/2 and a minimum at the point 37 /2.

Now return to the function f. From the previous paragraph it follows, That the
extrem could by only at points [0, 0], [0, 1], [0, —1]. For the function values of f at
these points f(0,0) = 0, f(0,1) =4, f(0, —1) = —4 holds. Hence, the function f
has a maximum on M at the point [0, 1] and has there the function value equal to 4
and f has a minimum on M at the point [0, —1] and has the function value equal
to —4. &

Convention. Let a,b € R. Then we denote a closed interval with endpoints a a b
by the symbol [a, b], also in the case, where a > b.

Theorem 29 (weak version of the Lagrange theorem). Letn € N, I1,..., I, CR
be open intervals, [ = I x --- x I,, f € C*(I), @,b € I. Then we can find points
el i=1,..., n,satisfying 5; € aj,bj] foralli,j € {1,...,n} such that,
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FIGURE 2.

Proof. Firstly, proof the assertion for n = 1. If a = b, choose £ L—a.Ifa <b,is
the function f continuous on interval [a, b] (since it is differentiable on I) and has
a derivation at each point of the (a,b), thus the Lagrange theorem (Theorem ??)
can be used, from it we obtain that exists £ € (a, b) such that

1)~ £(0) = €0 —a) = 5L (€0 - a).

If @ > b, we can get similarly the existence of the number ¢! € (b, a) satisying

fla) = f(b) = f'(€")(a —b), thas f(b) — f(a) = £L(£")(b — a) also holds.
Then we follow by proving the theorem for n = 2. Define functions g;: I; —
R and go: I — Rby g1(t) = f(t,a2) and g2(t) = f(b1,t). Then

F(b) = f(@) = f(b1,b2) — f(b1,a2) + f(b1,a2) — f(a1,az) =
= ga(b2) — g2(a2) + g1(b1) — g1(a1).

The function g; is of the class C! on I; and the function go is of the class ct
on I5. According to the first part of the proof there exist numbers &} € [aq, bi]
and &3 € [ag, bo] such that,

(®)

g1(b1) — ga(ar) = g4 (€) by — ar) = gfl(f%,az)(bl ),
of

g2(b2) — g2(az) = g5(&3) (b2 — az) = 872(51,5%)(52 — ag).

Setting £! = [¢], as] a €2 = [by, €3], we get

&) — @y =21

L @)1 — ) + 5L @02 - 00)
from the (8).

0xo
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Finally for n > 2 we have

n

f(b) - f(a) = Z(f(bla vy bi—17 bi7 i1y - ,Gn)—
i=1
- f(b].a L 7bi—17 ag, ai+17 R ,an))
and the proof can be completed similarly to the one in the previous step. ]

Definition. Let G C R™ be an open set, @ € G and f € C1(G). Then we call the
graph of the function 7": R® — R defined by the formula

T(@) = @)+ g @) — o)+ 4 g @ —a)  O)

a tangent hyperplane to the graph of the function f at the point [a, f(a)].

FIGURE 3.

Observe that the point [@, f(@)] is an element of the tangent hyperplane. Notice
that in the case n = 1 and n = 2 respectively, we say tangent (see the chapter ??)
and tangent plane, respectively, instead of tangent hyperplane.

The following theorem justify the use of adjective “tangent”. It says that, tha
error we make by replacing the value f(&) by the value T'(Z), approach 0 faster
than p(Z, @) for & approaching a.

Theorem 30 (about tangent hyperplane). Let G C R"™ be an open set, @ € G,
f € CY(G) and T be a function, whose graph is a tnagent hyperplane to the graph
of the function f at the point [a@, f(@)]. Then

f(@) = T(Z)

=0.
i—»a  p(Z, Q)



22 1. FUNCTIONS OF SEVERAL VARIABLES

Proof. Let ¢ € R, € > 0 by given. Since the function f has all partial derivatives
continuous at the point @, we can find A > 0 such that B(a,A) C G and for
eachi € {1,...,n} and each ¥ € B(ad,A) is ‘g—i(ﬂ — a—f( d)| < £. Setting
d=A/y/nandI = (a;—98,a1+0) %X X (an—0,a,+0), we obtain I C B(d,A),

what we can calculate easily. For each i € {1,...,n} and each ¥ € I is thus
of of
< —. 10
@ - gl < (10

Letye B (a J) by given. Then ¢/ € I and thus according to the Theorem 29| there
exist pomtsf yen ,§” € I such that

F@ — 7@ ~ Ziy 3@ — a)

—

p(y,a)
=L (O - H @) i - a0
p(y,a)
L@ - 2
p(y,a)
e Y lyi—al e YL p(y,d)

< — - — —— S* __’\_' =c
n p(i, @) n p(if, @)

<

lyi — ai

Theorem 31. Let G C R™ be open and f € C(G). Then f is continuous on G.

Proof. Letd € G and T be a function in a form (9). According to the Theorem [30]
then follows

z)—-T(% - -
iy @) = i (L0200 )+ 7)) =0-0-+4 1@ = 1@
T—a F—a p(Z,a)
According to the remark on the page the function f is thus continuous at the
point a. ]

Now we will introduce an analogy of the theorem about the derivative of the
composite function.
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Theorem 32 (derivative of the composite function). Let r,s € N and G C R?,
H C R" be open sets. Let @1, ..., € CY(G), f € C'(H) and for each ¥ € G
is the point [p1(Z),...,¢,(Z)] € H. Then the composite function F: G — R
defined by a formula

F(f):f(@l(f)v(PQ(f)v7¢T(f))7 fEGy
is of the class C* on G. Let @ € G and b = [, (@), . . ., ©,(@)]. Then

8f “ aSOz
Z@yz 83:] (in

89:]
holds for j € {1,...,s}.

Remark. The symbol %(5) in the formula (TT)) denotes the partial derivative of
the function f with respect to the i-th variable at the point b.

Proof. According to the remark on the page [[6] we can assume without loss of
generality that s = 1. We will calculate the derivative of the function F’ at the point

a € R, that is the limit lim £@)=F(a)

T—a r—a
The set H is open, and hence there exists A > 0 such that B(b, A) C H. Now
we can find open intervals Iy, ..., I, C R such that

bel=1Ix---x1I.CH.

It can be easily shiwn by calculation, that the choice I; = (b;—A/\/r, bi+A//T),
i = 1,...,r satisfy the condition . Since the set G be open and the functions
©1,- .., pr are continuous, there exists 6 € R, § > 0, such that (a — d,a+ ) C G
and for each x € (a — d,a +9) and i € {1,...,7r} is p;(x) € I;. From the
Theorem 29| thus follows, that for each 2 € (a — 8, a + &) exist points £ () € I,
i=1,...,r, satisfying £'(z); € [bj, ¢;(z)] foralld,j € {1,...,r} and

F@r(@)se o siorl@)) = O, b) = 30 SL(E@) (o) — 1)

i=1 8y
This way we defined the functions = + £(z);,4i = 1,...,7,5 = 1,...,7 on the
interval (a — d,a + 9).
This yields
F(a:)—F(a) _ f(@l(x),,g@r(x)) _f(bla"'7b7“) _
r—a T —a
—~ If (7, ¢il2) = pi(a)
=25y, E T
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From the continuity of the functions @; at the point a (according to the Theo-
rem ??.eventually the Theorem [31), we obtain lim <pj( ) = b;. According to

the sandwich theorem (Theorem ??(iii)) is thus hm 52( )j = bjforalli,j €
{1,...,r}. The functions g L are continuous at b, hence due to the theorem about
the 11m1t of the composite function (Theorem [21)) we get

Fl(a) = lim 2@ = F@) _ Z 98 ) gl(a).

r—a Tr— a

Definition. Let G C R" be an openset, @ € G a f € C*(G). We call a vector

Vi@ = @ g @, @)

a gradient of the function f at the point a

Remark. A gradient of the function sometimes helps us to know behaviour of the
function better, because it determine the direction of the biggest growth at the point
in the following sense. LEt G C R” be an open set, @ € G and f € C}(G). If
Vf(@) # 0,0 € R", ¥ # Vf(a@) and p(7,0) = p(Vf(d),0), then it can be
shown, that exists 6 > 0 such that
VteR,t € (0,8): f(@+tVf(a)) > f(a+ tD).
On the first figure, there is a graph of some function f and on the second, there

are gradients V f(@) drawn on yhe plane for some values of @ € R%. Notice the
mutual relationship of both figures.
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FIGURE 4. The graph
of the function f FIGURE 5. The gradient array

Definition. We call the point @ € R" satisfying V f(a) = J a stationary (some-
times also critical) point of the function f.

We could define higher order partial derivative similarly to the definition of the
higherof the function of one real variable.
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Definition. Let G C R” be a nonempty open set, 7,j € {1,...,n}, the function
f: G — R has a real i-th partial derivative at each point of G and @ € G. We

denote a partial derivative of the function & +— %(f) with respect to x; at the

point @ by

of
21 )
a) = a
al'ial'j 813
and we call it a second order partial derivative of the function f. If ¢ = j, then

% (a@). We define a higher order partial derivatives analogically.

Generally, it matters if we derive firstly with respect to ¢-th and then with re-
spect to j-th variable or conversely. However, the following theorem holds. We
omit its (rather difficultier) proof.

we use a notation

Theorem 33. Leti,j € N, i < n, j < n, and the function f has both derivatives

92 92 . . N . .
#g;j, (%dj gxi on the neighbourhood of the point @ € R™. These derivative are

continuous at the point @. Then
o @-l @
856,-8% N 8x]8xz '

We will end this section by one more definition.

Definition. Let G C R™ be an open set and k£ € N. We say that a function f is of
the class C* on G, provided that f has all partial derivative up to order k and they
are continuous on the set G. We denote the set of all functions of the class C¥ on
the set G by C*(G).

We say that a function f is of the class C*° on G, provided that f has all
partial derivative of all orders and they are continuous on the set G. We denote the
set of all functions of the class C*° on G by C*°(G).

If we say that the function f is of the class C¥ (without mentioning the set), it
means that the function is defined on some nonempty open set G and is of the class
C* on G. We introduce similar convention also for C*.

Example 34. Determine the domain of the function f(x,y) = +/|zy|. Calculate
the partial derivatives at every point, where they exist. Find a tangent plane to the
graph of the function f at the point [1, —2,/2].

Solution. The domain of the function f is R? and the function f is continuous on
R2. We can rewrite f(z,y) = \/|z| - \/|y| and then we can easily calculate:

0 sgn x
(e = VIl 2B pro fa,g] € B w £ 0,
r 2v/|z|

0 sen
O (og) = VIl 2B bro [, 4] € 2 y £ 0.

dy 2+/1yl
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At the points, where previous formulas does not hold, calculate the partial
derivatives of the function f from the definition. Firstly, calculate both partial
derivative at the point [0, 0]:

97 (0,0) = 1 @O SO0 _ 56—,
Ox z—0 z—0 z—0
97 (0,0) = 1 LOW =IO _y 9,
8y y—0 Yy — 0 y—0
If yg # 0, then
of _ o flaye) = £(0,30)
= lim Viewl _ lim 2222 /g
x—0 x z—0 |x’

this limit does not exist, and thus % (0, yo) does not exist. For g # 0 we can prove
similarly, that %(l’o, 0) does not exist.

The function f has continuous first order partial derivative on the neigbourhood
of the point [1, —2]. The tangent plane at the point [1, —2, v/2] is the graph of the
function

(r—1)— ——(y+2).

T(z,y) = V2+ >3

1
V2
Example 35. The function f is on R? defined by

2 2\ o 1
fang) = L@ s () pro feul # 0,0)
0 pro [z, y] = [0,0].
Calculate partial derivatives at all points, where they exist.

Solution. The domain of the function f is the whole R? and the function f is
continuous on R2. For the points [x, ] # [0, 0] is

of . 1 2, o 1 —2z
%({E,y) = 2xsin <M) + (IE + Yy )COS :L‘2 n y2 ($2 n y2)2 =

9 i 1 2z 1
= 2 S1n — COS
$2+y2 332+y2 $2+y2 ’

OF (o) — 2ysi 1 2y 1
— (T = S1n — COS .
8y Y Yy 1,2 + yQ .’L'Q 4 y2 .'L'Q + y2
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Calculate partial derivatives at the point [0, 0] according to the definition:

_ 2gin L
07 (0,0) = 1im T@ O =S O0) _ ;) #7singz
oz z—0 z—0 z—0 T
1
= lim xsin — =0,

z—0 T
of
—(0,0) =0.
8y( ) )

L3

Example 36. Determine the tangent plane at the point [0, 3, v/3] to the torus de-
fined by the equation (22 + y? + 22 + 12)% — 64(z% + 32) = 0.

Solution. By expressing z as a function of two variables we find out that the plane
can be described as the union of two graphs of the following functions f and g:

flz,y) = \/8vx2+y2—m2—y2—12,

Dy ={[z,y] € R% 4 < 2 +y* < 36},

9(z,y) = —\/8\/932+y2—$2—y2—12,

D, = Dy.

Since £(0,3) = /3, the point [0, 3, /3] is a point of the graph of the func-
tion f. The partial derivatives

of 4— /2?2 +y?

L wy) == ,
\/x2+y2\/8\/x2+y2—x2—y2—12

O (2 0) = Lt

ay ’y y

\/xQ +y2\/8\/x2 _|_y2 — 22 _y2 —12

are continuous on the neigbourhood of the point [0, 3], hence at this point there
exists a tangent plane and is described by the function 7" defined by

T(@y) = V3+0- (z—0)+ —=(y—3) = V3 +

7 (y—3)

1 _ Y
V3 VG

In next examples we will examine extremes of the multivariate functions.

Example 37. Find local extrems of the function f(z,y) = zy log(x? + y?). Deter-
mine if the function f attains a maximum and a minimum values on Dy maxima
a minima; if so, calculate them.
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Solution. The domain of the function is the set Dy = R?\ {[0,0]}. The function f
is continuous on the whole D¢. It the point [0, 0] we have

lim  zylog(a? + v?) = 0.
T g(z” +y7)

For calculation of this limit we will use the following estimate |zy| < (2% + y?)/2
and the result lim ulogwu = 0 (Example ?7?).
Since ~ “7°%

lim f(z,z)= EIE (2% log 22%) = +o0,

T——+00
. . o 2 2y _ _
xEToof<w7 x) mgr}rloo( x*log 2x*) 00,

we can see that the function f is bounded neither above nor below on D¢, and thus
it can attaint neither maximum nor minimum value on Dy.

Find points, where the function f could attain a local extrem value. Calculate
first order partial derivatives at first:

of 22y
%(l.vy) = leg(fﬂQ + y2) + 5[72 + yza
of 9 9 22y
et — 7] it
ay(:MJ) zlog(x +y)+$2+y2,

whenever [z, y] € Dy. The partial derivative exists at all points of D, and thus we
can find suspicious points of D ¢by solving the system of linear equation.

2 2
) 9 2 g * —0, ] 2 2y, 9_Y -0
y(og(az +y°) + PR z (log(z® 4+ y*) + 21
The first equation holds if and only if y = 0 or log(z? 4 3?) = —%, the second
2
holds if and only if # = 0 or log(2? + y?) = — 9322_213,2' By testing all possibilities,

we get the following suspicious points

[07 1]7 [07—1]7 [170]7 [_170]7
[1/\/%a1/\/%]a [1/@7_1/@]a
[—1/v2e,1/V2e], [-1/V/2¢e, —1/V/2¢].

Now, draw the domain Dy = R?\ {[0, 0]} and the set K inside it K = {[z,y] €
Dy¢; f(x,y) = 0}. The set K jis the union of the coordinate axis without the origin
and the circle with the centre [0,0] and radius 1. The set K divides R? at areas,
kwhere the function f does not change a sign:
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— 1 +
_|_ —
—1 1
— +
+ -1 —
FIGURE 6.

Now it is obvious, that the function does not have a local extrem at any of the
point [1,0], [0, 1], [-1,0] and [0, —1] — each of them has a function value equal to
zero, but in any neigbourhood of any of them there are points with both positive
and negative function values.

We shall now prove, that f has at points [—1/v/2¢,1/v/2¢] a[1/v/2e, —1//2¢]
local maximum and at the points [1/v/2e,1/v/2¢] a [~1/v/2¢, —1/+/2¢] ma f lo-

cal minimum. Define the function f: R? — R this way:

oo ) @y) profz,yl € Dy,
f(z,y) = {O pro [z,y] = [0,0].

Take for example the point @ = [1/+/2e, 1/+/2¢]. This point lies in the interior of
the set J = {[z,y] € R%; 2 >0, y > 0, 22 + y* < 1}. The set J is compact, the
function f is continuous on it and thus has there a maximum and a minimum.

At each point of the set H(.J) the function f attains the value zero, which is
its maximum on J (since it is non-positive on .J). Since the functionf is negative
at the points of Int J, it has a minimum at some interior point of the set .JJ. From
the previous part of the solution we know, that the only suspicious point is @. The
function f has thus a minimum at the point @ on the set .J, and since @ € Int .J,
then f has a local minimum at the point @. Since f = f on the neighbourhood of
the point @, then also the function f has a local minimum at the point a. )

Example 38. Find local extrems of the function f(z,y) = z+2y+ 222 +2y+2y>
ontheset M = {[z,y] € R?% y? —2 <2 < —y? +2}.
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Solution. Draw a figure of the set M.

V2

-2

FIGURE 7.

The set M is compact.Since f is continuous on M, it has a maximum and a
minimum on M. Examine firstly suspicious points in the interior of the setp M,
i.e. solve the linear system

3
1+§x+y:0, 2+z+4y=0.

Only one point makes this linear system valid: [z, y] = [-2/5, —2/5] € Int M.
We can rewrite the boundary H (M) in the form H (M) = M; U Ms, kde

My = {[z,y] e R z =y* — 2,|y| < V2},
My = {[x7y] € R2; =2 _y27 ’y‘ < \@}

Find points suspicious from being an extrem on the set M. We define support-
ing funcion ¢ by:

3
e(y) = fly* —2,y) = 1y4+y3+1, y €R.

We are interested in extremes of the function ¢ on the set [—+/2,v/2]. We have
¢'(y) = 3y*(y+1), and thus ¢’ (y) = 0 for just two points: y = 0 ay = —1. These
points together with the points —+/2 and v/2 gives us the following points suspi-
cious from being an extrem on M; for the function f: [0,/2], [0, —/2], [-2,0],
[—1,—1].

We take a similar approach on the set M5. In this case we examine a supporting
function 5

V) =2 -vhy) =0 -y -2 Ay +5

and we solve the equation ¥/ (y) = 3y3 — 3y? — 4y 4+ 4 = 0 on (—v/2,1/2). One
root of the equation is 1, and thus we can write ¢'(y) = (y — 1)(3y? — 4). The
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second bracket is equal to zero for y = 2/v/3 and y = —2/+/3. Hence we get
another suspicious points [1,1],[2/3,2/v/3] and [2/3, —2//3].

since we know, that f has a maximum and minimum on the set M it is suffi-
cient to compare the function values at the suspicious points:

f(=2/5,-2/5) = =3/5, f(=2,0)=1,
f(=1,-1) = 3/4, F0,V2) = 4+2V2,
£(0,—V2) =4 —2v2, F(1,1) = 27/4,
16 + 113 11v3 — 16

£(2/3,2/V3) = £(2/3,-2/V3) =

3v3 3v3

Hence we easily find out, that the function f attains a maximum value at the
point [0, \/5] with the function value mj\z}x f=4+ 24/2, a minimum at the point

[—2/5, —2/5] with the function value m]\/i[n f=-3/5. *»

1.4. Implicit function theorem

Consider an equation
2+ —-1=0. (12)

Our task is to solve the equation (I2)) for y in terms of the parameter . The equation
has a solution only for z € [—1,1], and then y = /1 — 22 and y = —V/1 — 22.
Dependent on x z we have two (for z € (—1, 1)), or one solution (for z = +1),
or no solution (for x ¢ [—1,1]). We can see, that for x € (—1,1) is it not pos-
sible to calculate from the equation exactly one y dependent on z. But if we
use restriction to an appropriate (that is enough small) neighbourhood U of the
point £y € (—1,1) and a neighbourhood V' of the point yg, where xq, yo satisfy
the equation (I2), then it is possible to find exactly one y € V for each x € U
such that x and y satisfy the equation (I2)). The equation (I2)) thus define on the
neighbourhood U some function ¢ of one real variable = with the values in the
neighbourhood V, which satisfies 22 + (p(z))? — 1 = 0, for each € U. The
situation is maybe shown better on the following figure.
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FIGURE 8.

Notice, that for points g = 1 a x9 = —1 we can not find neighbourhoods U
and V with stated property.

The following theorem is generally dealing with the situation illustrated in
the previous example. It describes, what condition do we need to get exactly one
variable y as the function of the variable x from the equation F'(z,y) = 0.

Theorem 39 (Implicit function theorem). Let G C R™*! be open, F: G — R,
Z=[T1,...,%p) e R", g € R, [Z,7] € G and let:
() Fecl(a),
(ii) F(Z,7) =0,
(i) 5 (7.3) 2 0.
Then there exist neighbourhood U C R" of the point # and neighbourhood
V' C R of the point 7 such that for each ¥ € U there exists exactly one y € V'

satisfying F'(%,y) = 0. If we denote this 3 by the symbot (&), then ¢ € C1(U)
and

OF (= —
Dy e, (7 (7)) .
— (%) = —52————~, providedje{l,...,n}, ZeU. (13)
O 9 (T, 0(@))

Proof. We prove only the first part of the theorem for n = 1. We can assume
without loss of generality, that %—5(95, ) > 0. Since G is an opne set, F' € C}(G)
and %—5(%, g) > 0, then there exist 9; > 0 and 7 > 0 such that

- 5 5 5 oF
Viz,yl € [ — 01,2+ 01] x [ —n, 5+ n]: Fy(w,y)>0- (14)
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The function ¢ — F(Z,t) is due to (T4) is increasing in the interval [§ — 7, § + 7).
From that and from the F'(Z, ) = 0 we obtain F(Z,5+n) > 0and F(Z,§—1n) <
0. The continuity of the function F' imply the existence of d2 € (0, d1) such that

Vo € (T — 02,4 02): (F(z,y+n) >0 & F(z,y—n) <0).

SetU = (Z — 02,Z 4+ d02) and V = (g —n,y +n). Choose = € U. The function of
one variable t — F'(x,t) is increasing and continuous on the interval [§ — 1, § + 1]
and F(z,y +n) > 0, F(x,y —n) < 0 holds. The function thus attains on this
interval all values between F'(z,§ + n) and F'(z,y — n) (theorem ??), and each of
them at exacly one point. Taht means that there exists exactly one y € V satisfying
F(z,y) =0.

The proof of the assertion that ¢ € C'(U) is somewhat more difficult and
we do not give it here. But we will show, how to derive the formula (T3 pro-
vided that, we already know that ¢ € C}(U). For each x € U F(z,p(z)) = 0
holds. It is equality of two functions on the neighbourhood U (the function = —
F(z,p(z)) and the function = — 0), from which follows also equality of their
derivatives on the neigbourhood U. According to the Theorem ?TI; (:c, cp(a:)) .

1+ %—5 (z,¢(z))¢'(x) = 0 holds. From that the formula (T3) follows, because
%—I;(aj,go(x))#Oforer. [

FIGURE 9.

Remark. It can be proved, that the function ¢ is as “smooth” as the function £ is.
Let I be for example of the class C*°, then also ¢ is of the classC*.
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Example 40. Let M = {[z,y] € R?; (2% + y?)? — 2(2? — y?) = 0}. Show that
in a neighbourhood of the point [v/3/2,1/2] is it possible to describe the set M as
a graph of s function ¢ of the variable z. Calculate ¢'(v/3/2).

Solution. Set
F(z,y) = (2" + %) = 2(2® — ).

Then:

(i) F € C'(R?),

(i) F(v3/2,1/2) =0,

oy OF 2,2 5

OF (\/3/9.1/2) = (2 2 4‘ — 440
i) 57 (v3/2.1/2) = (22 +o) -2y +ag)| o =%
The assumption of the implicit function theorem are then satisfied. According

to this theorem follows that the set M is described by the function ¢ in a neig-

bourhood of the point [v/3/2, 1/2]. Calculate the derivative of the function ¢ at the
point v/3/2. We get
8—F(\/§/2, 1/2) = (2(x2+y2)~2x—4a:)‘ =0,
ox [V3/2,1/2]
and thus due to (T3)
5 (V3/2,1/2) 0

'(V3/2) = OB A 0.

On the first two figures we can see parts of the graph of the function F' and on
the third figure, there is a set M.

=T ” V’ 1" ;
T ‘.,.,u"v_g!: /
S I s

FIGURE 10. FIGURE 11.

3The symbol (2(362 +9y?) -2y + 4y) ‘[\/5/2’1/2] denotes the value of the expression (2(362 +
y°) - 2y + 4y) at the point [v/3/2, 1/2]. We will use this notation also in the following lecture notes.
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FIGURE 12.

We introduce a more general theorem without the proof.

Theorem 41 (Implicit functions theorem). Let n,m € N, G C R"™ be an
open set, F;: G — R, j = 1,...,m, £ e R, yeR™ satisfying[i",yj] =
[Z1,. s ZnsT1s---,Um] € G and then:

() F; € CHG) forj € {1,...,m},

(ii) Fj(;%, gj’) =0proj € {l,...,m}, thatis

Fl(jly"'vjnagla"'agm):07

Fm(jla--wj'nagla'“vgm): )

(iii) and finally

OF| /1S = OF] 1> =
8y11 (xay) 8?/731 (:E)y)
: . : # 0.
OFm (= =~ OFm (= =
621 (xay) ayLm(xvy)

Then we can find a neigbourhood U C R" of the point Zand a neigbourhood
V C R™ of the point ¢/ such that for each & € U there exist exactly one § € V
with the property F;(Z, i) = 0 for each j € {1,...,m}. If we denote coordinates
of this 7 as ; (%), j = 1,...,m, then ; € C*(U).

Remarks. 1. 1In the condition (iii) of the previous theorem, there appeared a sym-
bol, which is non-defined yet. It is so-called determinant. Its exact definition and
basic properties are stated in a section[2.3] For m = 2 and a, b, ¢,d € R this holds:

a b

d} = ad — be.
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For m = 1 is the condition (iii) in a form g—i (:%’, g) # 0, and then the Theorem
is a special case of the Theorem (41}

2. If the functions F1, ..., F, from the Theorem are of the class C>°(G), it can
be even proved, that also functions @1, . . . , ¢, will be of the class C*>°(U). We will
use this assertion in the following examples and exercises.

3. If we consider the linear system

Fl('rla"'?xnvyla"'vym):Oa

Fm(wly--wxnayla"'aym):0

of m equation with n real parameters x1,...,x, and m unknowns yi, ..., Ym,
then the Implicit functions theorem gives us - besides other things - conditions,
when we can “calculate” the unknowns vy, . . ., Y, from this linear system depen-
dent on the parameters x, ..., Ty.

Example 42. Show that the set
{[x,y] € R?; ™ — sin(xz +y) = 1}

is (on some neighbourhood of the point [0, —7]) a graph of the function = — y(x)
of the class C*°, which satisfies y(0) = —m. Calculate y'(0) a y”(0).

Solution. Denote F'(x,y) = € — sin(z + y) — 1 and check, that the function
satisfy assumptions of the Implicit function theorem at the point [0, —7]:

() F € C>®(R?),
(i) F(0,—7) =€ —sin(—7)—1=1-0-1=0,

| =1#0.
Thus there exist numbers 47 > 0, do > 0 such that

Vo € (—61,61) Fy(x) € (=7 — o, =7 + 82): F(z,y(z)) =0

OF
Lo OF
(iii) Iy (0, —m) = xe cos(z + y) 0

,— T

and the function x — y(z) is of the class C* on (—d1, d1). The function
x> V@) sin(z + y(z)) — 1
is thus on the interval (—d7, d1) constant, and hence its derivation
s e (y(z) + 2y (2)) — cos(z + y(z)) (1 + ¢/ (2)) 15)

is on the interval (—d1, 1) equal to 0. Setting z = 0 y(0) = —=, we obtain easily
that y/(0) = 7 — 1.
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We use the function(I3) to calculate the second derivative. As we determined,
is the function constant on the interval (—d1,0;) as well, and thus its derivative is
equal to zero on this interval. Hence,

V@ (y(z) + wy’(m))2 + @ (29 (2) + wy () +
+ sin(z + y(z)) (1 + y/(:c))2 — cos(z + y(x))y"(z) = 0.
Setiing # = 0 and y(0) = —7 and ¢/ (0) = 7™ — 1 we obtain y”’(0) = —72 — 27 +
2. &
Example 43. Show that the set
{[z,y,2] €R3; xsinz +ycosz —expz =0}

is (on some neighbourhood of the point [2, 1, 0]) a graph of the function [z, y] —
z(x,y), which satisfies z(2,1) = 0. Write the equation of a tangent plane (if it
exists) to the graph of the function z at the point [2, 1, 0].

Solution. Denote F'(x,y, z) = xsin z 4+ y cos z — exp z and check the assumption
of the Implicit function theorem for F' at the point [2, 1, 0].

() F € CY(R?),
(i) F(2,1,0)=2-0+1-1—-1=0,
... OF .
(iii) 5(2, 1,0) = (xcosz — ysinz — exp Z)‘[ZLO] =1+#0.
The assumption of the Theoremare satisfied, thus there exist numbers 61 >
0, 62 > 0 such that
V[CC, y] € B([Qa ]-]7 61) H'Z(.’L‘,y) € (_627 52): F(I‘,y, Z(.’I?,y)) =0

and the function [z, y] + z(x, y) is of the class C* on B([2, 1], 61). Thus there exist
a tangent plane to the graph of the function z at the point [2, 1, 0]. The function

[z, y] = F(2,y,2(z,y)) = xsinz(z,y) + ycos z(x,y) — exp z(z, y)

is constant on the ball B([2, 1], d;), and thus its partial derivative are equal to zero
there. We obtain
0z

SiIlZ(x, y) + @ cos Z(Ji,y) ’ %(xa y)_

. 0z 0
—ysinz(z,y) - %(x’y) —expz(x,y) - %(m,y) =0,

reos=(a,) - 0 (1) + cos 2z, )~
Yy

% 0z

— ysinz(z,y) 3 (z,y) — exp z(z, y) - @(w’y) =0.
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After setting [z, y] = [2,1] and 2(2,1) = 0 we get
0z 0z
—(2,1)=0 —(2,1) = —-1.
8.%'( Y ) Y 6y( Y )

The second way, how to calculate these partial derivative is using the formula (T3).
The tangent plane to the graph of the function [z, y| — z(z,y) at the point [2, 1, 0]
is described by the function

T(x,y)=0-(z—2)—1-(y—1)=1-uy.
*

Example 44. Prove that there exist functions [z, y| — u(x,y), [z,y] — v(z,y) of
the class C* satisfying u(1,1) = 0, v(1,1) = 7/4 and relations

exp (g) coS (Z) = %, exp (%) sin (Z) = \%

on some neighbourhood of the point [1, 1]. Find a tangent plane to the graph of the
function U
(v, respectively) at the point [1, 1, 0] ([1, 1, 7/4], respectively).

Solution. Denote

Fi(x,y,u,v) = exp (E> cos <v) _r

x y) V2
Fy(x,y,u,v) = exp (%) sin <Z> — %

Check that the function F; and F5 satisfy the assumption of the Implicit functions
theorem (Theorem [41)) at the point [1, 1,0, 7 /4].

() Fy, Fy € CH(G), where G = (0, +00)? x R?,

(i) F1(1,1,0,7/4) = cos(w/4) — 1/v/2 =0,

Fy(1,1,0,7/4) = sin(n/4) — 1/v/2 =0,

(iii)
G1(1,1,0,7/4) %(1,1,0,7/4)
G2(1,1,0,7/4) %2(1,1,0,7/4)

1 1 .
3 oxp(¥)cos(3)  — exp(%) sin(})
u
X

%exp( ) sin(%) i exp(%) COS(g)

= 1 # 0 (see the section [2.3).
[1,1,0,7/4]
Thus there exist posive numbers d; > 0, o > 0 such that
V[z,y] € B([1,1],01) 3 [u(z,y),v(x,y)] € B([0,7/4],d2):
Fi(z,y,u(z,y),v(z,y) =0 & Fa(z,y,ulz,y),v(z,y)) =0,
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the functions wu, v are of the class C! on B([1,1],d1) and u(1,1) = 0,v(1,1) =
/4 holds. By calculating the derivatives of the contant functions

[iﬂ,y] = Fl (xayvu(xay),v(xay))v
[.Z',y] = Fg(x,y,u(:c,y),v(w,y))
on B([1, 1], 1) with respect to = we obtain

eXp< u(a, y)) Se(o,y) @ —uley) <v<x,y>) )

22 Y

eXp< (a; y)) o (,7) - xz—u(w,y) i (mzy)) .

X

+ exp (“‘ij)) cos <”<y )> ;SZ(:E y) = 0.

Similarly by calculating the derivative with respect to y we obtain

10u v u\ . (v %?/—U
exp( >—8—cos — exp (—) sin | — 3 =0,
T oy Y z Y Y

ov
u\ 10u . ) U v\ gyY — Y 1
“Dsin (2 +exp (- ko [ . S|
exp( ):ra sin <y> exp (x) cos <y> 7 7

Here we used an useful notation, which makes the writing clearer — we omitted

arguments x a y of the functions u, v. Setting [z, y| = [1, 1], we obtain two systems
of linear equation
ou ov ou v
1,1) — —(1,1 1 1,1 —(1,1
San-Pan=1 s e =o
and
ou v w ou v T
—((1,1) — —(1,1) = —— 1,1 —(1,1) =1+ —.
S - =5, S+ e -14]
Hence,
du 1 ov 1 Ou 1 v w1
1,1 —(1,1) = —= 1,1 —((1,1)=—+-.

From the continuity of the partial derivatives of the function u (v, respectively)
at the point [1, 1] it follows the existence of a tangent plane at the point [1, 1, 0]
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([1, 1, 7 /4], respectively). The tangent plane is described by the function
1 1 1 1
T(0,9) = 5o =1+ 50-1), esp. Ta) = 5 - (o= 0+ (5 + 5 ) (-
*

1.5. Lagrange multipliers theorem

The following theorem describes a method for a function of the class C*, how
to find points suspicious for being an extrem on a set, which is a contour line of a
function of the class C'.

Theorem 45 (Lagrange multiplier theorem). Let G C R? be an open set, f,g €
CHG), M = {[z,y] € G; g(z,y) = 0} and [Z,§] € M be a local extrem point
of the function f on the set M. Then at least one of the following conditions is
satisfied:

(i) Vg(z,9) =0,

(ii) there exists a real number A € R satisfyign

af g
a{(w) + NS (&,5) =0, (16)
0 0

ai(sf:, 7) + A;Z(a:n j) =0. a7

Proof. 1t is sufficient to prove that if (i) is not satisfied, then the second condi-
tion (ii) holds. Suppose then, that Vg(Z,y) # 0. We can assume without loss of
generality that g—z(a?, g) # 0. If this partial derivative was equal to zero, then it

would have to be %(50, g) # 0 and the whole following procedure will be the
same except for changing the roles of x and y.

Let 0 € R, 6 > 0, be such that f attains at the point [Z, §] extrem value on
B([z,9],0)NM.Set G' = B([Z, 7], d). According to the Implicit function theorem
used on the set G’, funkction g|¢ and a point [Z, §] there exist neighbourhood U
of the point z, neighbourhood V' of the point § aand function : U — V of the
class C! satisfying

e G'NMN(UxV)=graf ¢,

* v(7) =7
Define a function h: U — Rby h(z) = f(x,¢(z)). According to the Theorem
the function A is of the class C! on U, since f € C1(G) and ¢ € C1(U).If f has a
maximum at the point [Z, §] on G’ N M, then for each = € U follows

hz) = f(z,0(x) < f(Z,9) = f(Z, 0(@)) = h(@),
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since [z, ¢(x)] € G'N M. The function h has thus a maximum at the point  on U.
If f has a minimum at the point [Z, ] on G’ N M, then we could derive similarly
that h has a minimum at the pointz on U.

since the function h has a local extrem at the point &, h'(Z) = 0 must hold.
According to the Theorem [32]then follows

of of

W(E) = 55 (@:0@)) + 5 (2 ¢(@))¢'(2) = 0. (18)
From the Implicit function theorem we know that
5 (7, 9(2))
¢'(x) = - : (19)
- 09(7, (1))

Seting

9F [ ~ -
L@ e@)
9a [~ =
52(%, (%))
then the relation (T7) is automatically satisfied. If we use (I9) and (I8)), we get

)

of (= (=
Of - v 309, o Of o (@e@) a9
890( y)+)\6x( ,g) = 830( y)—m O z,9) =
— L @0) + 5 (@6(@) ¢ (@) = 0.
That completed the proof. ]

Example 46. Find a maximum and a minimum of the function f(z,y) = 2x + 8y
on the set M = {[z,y] € R?; 2% + 2y = 1}.

Solution. The set M is compact and the function f is continuous, it thus has
a maximum and a minimum on M. To find points, where could be a local ex-
trem of the function f on the set M, we use the previous theorem. Set G = R?
and g(x,y) = x +2y —1. The function f and g are of the class C* and 2 B (x y) =

2, a£ (z,y) =8, 2 G (r,y) =2z a a—ﬁ(x, y) = 4y holds. then Vg(z,y) = 0, if and
only if [z, y] = [0, 0], but the set M does not contain this point. at any point of the
set M the condition (i) from the Theorem 43]is not satisfied, at the points of the
local extremes of the function f on the set M there must be satisfied the second
condition (ii). Thus, to find a points suspicious from being an extrem, we have to
solve the following linear system:

242 x =0,
84+ 4 y =0, (20)
z? + 2y2 = 1.
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The first two equation are the condition (ii) from the Theorem [45] the last
equation express, that we are finding points which are contained in the set M. If
we multiply the first equation by the number 4 and subtract from it the second
equation od ni druhou rovnici, we get 4\(2x — y) = 0 must hold. From the first
equation we can see that A\ # 0, thus y = 2z. After setting to the last equation
we obtain that for the solution of the liear system r = % y = % nebo z = —%,
y = —%. In the first case, we get A = —3, in the second then A\ = 3. Because
f(3,2)=1and f(—%,—2) = —1, the function f attains a maximum value on M
at the point [£, 2] and a minimum on M at the point [—%, —2].

Notice, that finally there was no need to calculate the value . It was enough,
that for values z,y other than [3, 2] or [—1, —2] the linear system (20) has no
solution. Usually, it is easier to set all found pairs [z, y| to the function f in this
moment, to reduce their number by searching the value of \. *

Without the proof, we introduce a more general form of the Theorem[5] where
the set M is described by several conditions. This formulation uses a notion linear
dependance of the vectors. This notion will be defined in the section [2.2] Here we
will only notice, that one vector is linear dependent if and only if it is a zero vector,
and two vectors are linear dependent if and only if one of them is a multiple of the
other.

Theorem 47 (Lagrange multipliers theorem). Let m,n € N, m < n, G C R" be
an open set, f,g1,...,9m € CHQ),

and the point ZeMisa point of a local extrem of the function f on the set M.
Then at least one of the following condition is satisfied:

(i) vectors Vg1 (Z), Vga(Z), ..., Vgm(Z) are linear dependent,

(i1) There exist real numbers A1, Az, ..., Ay, € R satisfying

V(E) +MV1(2) + 2V g2(Z) + - + AnVgm(Z) = 0.
Remarks. 1. Setting m = 1 an = 2, we obtain from the Theorem 47| the Theo-
rem 43]

2. We call the numbers \q, ..., \,, multipliers.

Example 48. Find a maximum and a minimum of the function f(z,y, z) = zyz
ontheset M = {[z,y,2] €R? 22 +y? + 22 =1, 2 +y+2 =0}

Solution. The set M is compact and the function f is continuous, it thus has a
maximum and a minimum on M. We use the previous theorem to find points,
where could be a local extrem of the function f on the set M. Set G = R3,

g(z,y,2) =2>+y2+ 22 -1,  glr,y,2)=r+y+2
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Functions f, g; and go are of the class C'. Calculate partial derivatives.

g(:v z) =yz g(x z) =1xz g(z z) ==
ax 7y7 - y ) ay 7y7 - ) aZ 7y7 - y?
g1 . dg o g1 _
%(%y, Z) - 2:1:7 8y (:1:7y72) - 2y7 82’ ('T,y, Z) - 227
992 B 992 _ 992 _

833‘ (xaya Z) - 17 8y (:1:7y72) - 17 82’ (:c,y, Z) =L

The vectors [2x,2y,2z] and [1,1,1] are linear dependent if and only of
x = y = z holds. There is no point with this property contained in the set M, since
for the point [z, z, ] there must be g1 (z,x,z) = 322 — 1 = 0 and go(z, 7, ) =
3z = 0 at the same time, which is not possible. Thus it is necessary to solve this
nonlinear system:

Yz + M2z 4+ Ay = 0, 21
xz + M2y + Ao =0, 22)
Y+ A122 4+ Ao = 0, (23)
2y’ + 22 —-1=0, (24)
x+y+z=0. (25)
By subtracting from we obtain:
—z(z —y)+ 2\ (z —y) =0. (26)

Hence it follows, that must be z = 2\; or = y. Similarly by subtracting (23))
from (22) we get:

—z(y—2)+2M(y—2) =0. (27)
That gives us = 2\; or y = z. From the relations and thus follows,
that must be either x = y, or y = z, or x = 2. Look at the first case, where = = y.
From (23) we have z = —2x and from 24) we get 622 = 1, ie. * = 1/v/6 or
x=-1/ /6. Indeed, we can calculate corresponding ¥, z, A1 and Ag to this points.
We can solve similarly the other cases y = 2z and z = . We obtain these suspicious
points:

2 1 1 1

1 2 1 1 2
[77_75_%} ) [_%a%)_%} ) |: \[7_%7%} )
[_L 1 g] [L _2 L} [L 1 _l}
V67 V6 V6] V6 V6 V6] V6 V6 V6]
Setting the values to the function f in these points we find out that in the first row,
there are maxima points of the function f on M, and in the second row, there are
minima points of f on M. *

[\

Example 49. Find a maximum and a minimum of the function f(z,y, z) = zyz
ontheset M = {[x,y,2] € R3 2?2 +¢y?> + 22 < L,z +y+ 2z > 0}.
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Solution. The set M is compact, since M is a closed half ball. The function f
is continuous on M, therefore it has a maximum and a minimum on M. We will
search the points suspicious of being an extrem separately on the interior of the
set M and on the boundary of M. Apart of these point there cannot be another
extrem point, since if ¥ € A C M a extrem point on M, then it is a extrem point
on A.

The interior of M is equal to {[z,y, z] € R3; 22 4+4?+22 < 1,z+y+2 > 0}.
The function f is of the class C'. The suspicious points on Int M are points with
all first partial derivative equal to 0. Itis V f(z, y, 2) = [yz, zz, xy|. This vector is
equal to zero vector at point with at leat two zero coordinates, that is on coordinate
axis. The suspicious points on Int M are points from any of the following sets:

{[,0,0]; € (0,1)}, {[0,5,0]; y€(0,1)} a {[0,0,z]; z € (0,1)}.
We divide the boundary H (M) into parts

Hy = {[z,y,2] € G1; v +y + 2 =0}, where
Gr={[z,y,2] € R? 2 + 4 + 2 < 1},
Hy ={[z,y,2] € Go; 2* +y* + 2 = 1}, where
Go = {[z,y,2] € R’ z +y + 2> 0},
Hy={[z,y,2] € R% 2+ + 2" = Lo +y+2 =0},

Notice that the sets G; and Gy are open. We can use the Lagrange multipliers
theorem to find suspicious points on the set H;, Ho, H3, respectively.

The function [z, y, 2] — = +y+ 2 has non-zero gradient on R?, therefore in the
case of the set H; we get the suspicious points by solving the system of equations

yz+ A =0,
rz+A=0,
zy+A=0,
z+y+2=0.

By a similar procedure as in the previous example we get the only solution of this
system [z,y, z] = [0,0,0]. This point is contained in H;, and thus it is a point,
which is suspicious of being an extrem.

In the case of the set Hy has the function [z,v, 2] — 2 + y? + 2% — 1 zero
gradient only at the point [0, 0, 0], which is not an element of Hy, therefore we get
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the suspicious points by solving the system of equation

yz + 2 r =0,
xz + 2 y =0,
xy + 22z =0,

2y 422 =1

By a similar procedure to the one in the previous example we get the solution, and
there we omit the corresponding values of \:

{_1 ;_;] [_; 1 L} [1 _1 L} [LL_L}

V3’ 3’ 3] 3’V3 V3]’ 3’ 3’3’ 33 V3]’

) el ] ]
[1,0,0], [-1,0,0], [0,1,0], [0,—1,0], [0,0,1], [0,0,—1]

From all these points, only these points are contained in Ho:
{LLL} [_LL 1} {; 1 L} [L;_L}
\/g? \/g? \/g ) 37 \/g? 3 ) \/37 \/g? \/g ) \/§7 \/g’ \/g )
[170?0]’ [0’]‘70]7 [070? 1]'

We examined the set H3 already in the previous example. Here are the suspi-
cious points

ol Lda] b3l
R A A

Comparing the values of the function f in the suspicious points we get that the

function f has a maximum on M at the point [7 % %] and a minimum on M
. 11 1 1 11

atthepomt [—%,%7%], [7,—%,%] [7 7 —7] &

Example 50. Find extremes of the function f(z,y, z) = zy + 2> on the set M =

{[x,y,2] ER3 2?2 +y? + 22 <1, z > 0}.

Solution. The set M is compact, since M is closed half ball. The function f is
continuous on M, therefore it has a maximum and minimum on M. We will pro-
ceed similarly to previous example. We will search the points suspicious of being
an extrem separately on the interior of the set M and on the boundary of M. It can
be easily saw, that the only point with all partial derivative equal to zero is [0, 0, 0].
But this point is not an element of Int M.

Examine the function f on a part of the boundary

Hl :{[xayvz] ERS; $2+y2+22 = 1,$>0}
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We want to use the Lagrange theorem. Set G = {[z,y, z] € R3; z > 0},
g(x,y,2) =2 +y? +2° -1

and calculate
dg dg dg
_—= _—= 2:1/7 _—=
Ox dy 0z

It is obvious, that at each point of the set H; is at at least one of these partial

derivative non-zero. The functions f and g are of the classC' on R3, thus we can

use the Lagrange multipliers theorem. The points, suspicious of being an extrem,
solve this system of equations

2z, 2z.

y+ 2 x =0,
x4 2 \y =0,
2242 2 =0,

24+t + 22 —1=0.

The third equation is satisfied, if eiter = = 0, or A = —1 holds.

a) The case z = 0. Multiply the first equation by ¥, the second by —x and add
them. We get the equation 32> — 22 = 0. Setting this to the fourth equation, we
obtain 222 = 1. It is either x = 1/v/2, or x = —1/+/2. But the value z = —1//2
does not satisfy the condition x > 0. We get the first pair of suspicious points:
[1/v2,1/3/2,0] a[1/v/2,—1/+/2,0].

b) If A = —1, then the first two equation has the only one solution z = y = 0.
This solution does not satisfy the condition « > 0.

The second part of the boundary is the set Hy = {[0,y, 2] € R3; 4%+ 22 < 1}
(adisc in the plane x = 0). Often it is handy to use a special shape of the function f
or of the set, where we examine the function instead of a general procedure using
Lagrange multipliers theorem. It is so also in this case. We define a supporting
function

90(3/7 Z) = f(ov Y, Z) =2
and find extremes of the function ¢ of two variables on the compact set L =
{ly, 2] € R%; y?+ 2% < 1}, and thus also extremes of the function f on the set H.
If the function f does not have an extrem on the set Hs at a point of Ho, then it
also does not have an extrem on M at this point. Into the set of points suspicious
of being an extrem of f on M we thus add only extrem points of f on Ho.

The function ¢ is non-negative and has zero values on L just at points of the
set K = {[y,0] € R?; y € [~1,1]}. The function ¢ thus has a minimum on L at
some point of K.

On L, there holds ¢(y, z) = 22 < 32 4+ 22 < 1 and ¢ attains the value 1 on L
just at points [0, 1] and [0, —1] and therefore they are the maxima points of  on L.
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Now it is enough to compare the function values in all suspicious points. We
obtain:

F/V2,1/v2,0) =1/2, £(0,0,-1) = f(0,0,1) =1,
F/V2,-1/v2,0) = -1/2, £(0,9,0) = 0fory € [-1,1].
Thus it i = land min f = —1/2.
us i 1smj\z}xf an n}\}nf / »
Example 51. Examine the extremes of the function f(z,y) = (z +y) exp(—2? —
y?) onthe set M = {[z,y] € R?; 2?2 +¢*> < 1,|z| <y +1}.

Solution. Draw the set M.

FIGURE 13.

The set M is compact and the function f is continuous on it. The function f
thus has a maximum and minimum on M . Find suspicious points in Int M. Solve
a system of equations on Int M

of _ 2 2 2\(1 902 _ _
9 exp(—z* — y)(1 — 2z° — 2zy) = 0,
of _ a2 2 2 _ _
- exp(—z° —y*)(1 — 2y° — 2zy) = 0.

This system has the only one solution in Int M and it is [1/2,1/2].
Next find suspicious points on the boundary H (M ). Firstly consider this part
of the boundary

Hl:{[xay]€R270§$§1jy:$_1}
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Define a supporting function
o(x) = flz,z — 1) = (22 — 1) exp(—22% + 2z — 1).

The function ¢ is continuous on a compact set [0, 1], and thus has there a maximum
and a minimum. Since ¢’ has non-zero values at all points of the interval (0, 1),
then the only suspicious points are the endpoints x = 0, x = 1. There are two
suspicious points on Hy, namely [0, —1] and [1, 0].

Proceed similarly on this part of the boundary

Hy={[z,y] €R* -1<2<0,y=—x—1}

we get the following suspicious points [—1/2, —1/2] and [—1, 0].

We use the multiplier theorem on this part of the boundary

Hs = {[z.y] € R% 2® +y* = 1,y > 0}
Denote
g(z,y) =a® +y* -1

and calculate %(w, y) = 2z, %(x’ y) = 2y. For all points from H3 is second of

the partial derivative non-zero. The functions f and g are of the class C! on the
whole R?. The assumption of the multiplier theorem are thus satisfied. Suspicious
will be the points, which solve the system of equations on H

exp(—z? — 3?)(1 — 22% — 2zy) + 2\z = 0,
exp(—a? — y?)(1 — 2y” — 2zy) + 2\y = 0,
224+ -1=0.

We multiply the first equation by y, the second by —z and then we add them to-
gether. Then we obtain exp(—22 — 3?)(y — =) = 0, which is satisfied if and only
if x = y. From the third equation we can see that this situation could happen H3 at
the only point [z,y] = [1/v/2,1/V/2].

Since we know, that the function f has extremes on M, it is enough to compare
the function values in suspicious points:

f(1/2,1/2) = exp(=1/2), f(0,-1) = —exp(-1),
f(1,0) = exp(-1), f(=1/2,-1/2) = —exp(=1/2),
F(=1,0) = —exp(-1), F(1/v2,1/V2) = V2exp(-1).
We get then
max f = £(1/2,1/2) = exp(~1/2),
m]\}nf = f(-1/2,-1/2) = —exp(—1/2).
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1.6. Concave and quasiconcave functions

In this section we will study concave and quasiconcave functions of several
variables. The definition of a concave multivariate function is a straightforward
generalization of the notion concave function of one variable from the chapter ??.

Definition. Let M C R™. We say that M is a convex set if:
Vi, e MVte[0,1]:td+ (1 —t)y € M.

Remarks. 1. The set M is convex if and only if every line segment with endpoints
in M lies whole in M.

2. If the sets M, N C R" are convex, then also a set M N N is convex. But a set
M U N does not have to be convex in general.

Definition. Let M C R™ be a convex set and a function f be defined on M. We
say that f is a concave function on M if:

Va,be MVt e[0,1]: f(ta+ (1 —t)b) > tf(@) + (1 —t)f(b).
We say that f is strictly concave function on M if:
Va,be M,a#bvte (0,1): fta+ (1—1t)b) > tf(@) + (1 —t)f(b).

Remark. If we reverse an inequality sign, we get a definition of convex and strictly
convex function of several variables.

Remark. The concave function does not have to be continuous on its domain, it
can be shown by a function f defined on interval [0, 1] by

0 proxz=0,
fla) =4
pro z € (0, 1].
However, the following theorem holds; we omit its somewhat more difficult proof.

Theorem 52. Let G C R" be an open convex set and a function f be concave
on GG. Then f is continuous on G.

Theorem 53. Let a function f be concave on a convex set M. Then for each a € R
isaset Qy = {¥ € M; f(Z) > a} convex.

Proof. Letar € R.If@,b € Q, and t € [0, 1], then f(@) > v and f(b) > . From
that and from the concavity of the function f follows

—. —.

Fta+ (1—t)b) > tf(@) + (1 —t)f(b) > ta+ (1 —t)a = a,
in other words td@ + (1 — )b € Q. [



50 1. FUNCTIONS OF SEVERAL VARIABLES

The following theorem says, that for functions of the class C! is the concav-
ity of the function f on the set GG is equal to the property that the graph of the
function f lies under every tangent hyperplane to the graph of the function.

Theorem 54. Let G C R" be a convex open set and f € C'(G). Then the func-
tion f is concave on G if and only if

(@) (yi — i) (28)

Proof. = For each Z, 7 € G and for each ¢t € (0, 1]
FA=0T+t7) = (1= 1)f(@) + ()
holds, and thus

f(f+t(:t7—tf)) @) o e

From the theorem about composite function derivative and from the theorem about
limit and order (Theorem ??) it follows

S0 () =ty [T D) @)

lim > f(y) — f(@).

— Oz; t—0+ t

<« Choose ¥, € G and next t € [0,1]. Apply (28)) on pairs of points t¥/ +
(1—t)w, v:

@)~ feT+ (1 - t0d) < Y

Multiply the first inequality by ¢ and second by (1 — ¢) and then add them together:
tf(0) —tftr+ (1 —t)w)+ (1 —t)f(W) — (1 =) f(tT+ (1 — t)wd) < 0.
We alter the previous inequality and get
tf(0) + (1= t) f(w) < f(t0 + (1 — t)ad).
This would complete the proof. ]

From the previous theorem we could easily derive the following assertion.

Theorem 55. Let G C R" be a convex open set and f € C'(G) be concave on G.
If @ € G stationary point of the function f, then @ is a maximum point of the
function f on the set G.
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Proof. From the Theorem |54 we get, that for each point i € G follows

@ < 5@+ @i —a) = 1@+ 30 i - a) = 1(@),
; i=1

which completes the proof. ]

We state - without the proof - the following theorem, which characterize a strict
concavity of the function.

Theorem 56. Let G C R™ be a convex open set and f € C(G). Then the func-
tion f is strictly concave on G if and only if the following expression holds

VE,j€ G, 24y f(§ <ff+zax — ;).

Definition. Let M C R” be a convex set and f be a function defined on M. We
say that f is quasiconcave on M, if
Va,be MVt e[0,1]: f(t@a+ (1 —t)b) > min{f(@), f(b)}.
We say that f is strictly quasiconcave on M, if
Va,be M,a+#bvte (0,1): f(td+ (1 —t)b) > min{f(a), f(b)}.

In this figure, there is a quasiconcave function, which is not concave.

N\

il :0‘:%: &\
i

54;;;»‘0::‘ g}k\l

FIGURE 14.

Remark. If we write in the previous definition f (td+(1—t)b) < max{f(a@), f(b)}
instead of f(td@ + (1 — t)b) > min{ f(a@), f(b)}, we obtain a definition of a quasi-
convex function of several variables. Similarly we can define a strictly quasicon-
vex function of several variables.

In this section we deal only with (strictly) concave and (strictly) quasiconcave
funkctions. But we can alter the formulation of the stated results straightforwardly
also for convex and quasiconvex functions. It is enough to realize, that the func-
tion f is convex if and only if the function — f is concave, and similarly it holds
for function strictly convex, quasiconvex and strictly quasiconvex.
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Remark. It can be shown, that strictly quasiconcave functions are exactly the qua-
siconcave functions, whose graph “does not contain a horizontal line segment”,
ie.

non(3@,b € M,d@ # b, ¥t € [0,1]: f(td + (1 —t)b) = £(@)).

Theorem 57. Let M C R" be a convex set and f be a function defined on M.
Then:

(i) If f is concave on M, then it is also quasiconcave M.
(ii) If f is strictly concave on M, then it is also strictly quasiconcave on M.

Proof. (i) Take a, be Mandt € [0, 1]. We can assume without loss of generality,
that f(b) > f(d). Then

fta+ (1 —1)b) = tf(a)+ (1 -1)f(b) = tf(a) + (1 -t)f(a) = f(a).

(i) Take @,b € M, @ # b, and t € (0,1). We can assume without loss of

generality, that f(b) > f(@). Then

—. -,

fa+ (1 —1)b) > tf(a)+ (1 —1)f(b) = tf(a) + (1 -t)f(a) = f(a).

Theorem 58. Let M C R" be a convex set and f be a function defined on M. The
function f is quasiconcave on M if and only if for each o € R the set Q, = {¥ €
M; f(Z) > a} is convex.

Proof. = Letd, beQua€cER,tE [0, 1]. Then
f(td+ (1= 1)) = min{f(@), f(5)} > a,
and hence t@ + (1 — £)b € Q.
< Letd,be M andt € [0, 1]. Denote v = min{ f(a@), f(b)}. Then @, b € Qq
and a set (), is convex, hence t@ + (1 — ¢)b € Q). From it follows that

—,

f(td+ (1 —6)b) > a = min{f(@), f(B)}.

Compare the previous theorem with the Theorem [53]

The last two theorems of this section are important, because they express the
relation of a strict quasiconcavity of the function and uniqueness of a maximum
point.

Theorem 59. Let M C R" be a convex set and f is strictly quasiconcave function
on M. If f has a maximum on M , then it has exactly one maximum point.



1.7. EXERCISE 53

Proof. Leta, b € M be two different points, at which f attains its maximum value
on M. If we use condition of strict quasiconcavity for @,b and t = 1/2, we get

I (%&'—i- %5) > f(d) = m]\z/ile ant that is a contradiction. [ |

Theorem 60. Let M/ C R™ be a convex, bounded, closed and non-empty set and f
be continuous and strictly quasiconcave function on M. Then f has a maximum
on M at exactly one point.

Proof. The function f has a maximum on M since M is non-empty compact set
and f is continuous on M. According to the previous theorem, the uniqueness then
follows from the strict quasiconcavity. ]

1.7. Exercise

In the following five exercises examine, if the given set M is open, closed or
bounded and determine its boundary, interior and closure.

{[r,y) eR* 1 <2 <2, 1<y<2}
{[xy]eﬂz@) ‘<1}
{[1/n,1/m] € R* n €N, m € N}
{lz,y] e R% =120 > 0}

{[3cost + cos3t,3sint — sin3t] € R%; ¢t € [0,27]}

L PR S

Let for each k € N je M, = {[z,y] € R?; 2 +y® < (1 —1/k)?}. Define
M Uk 1 MkﬂDetermlne if the sets M, M}, are open or closed.

7. Prove the continuity of the function defined by

x 2sin L or |x
flzy) = =+y) (\/szyz> for [z, y] # [0,0],
’ for [z, 5] = [0,0.

on the whole domain.

In the following exercises examine for a given function f a domain, continuity,
contour lines and determine a maximum and a minimum, if they exist.

8. flay)=2a®—y° 9. flz,y)==a/y
10. f(z,y) = arcsinzy

The symbol (U, means the same as | J, c -
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_[E forla,y] # 0,0
n.ﬂ%w—%+y for [z, y] = [0, 0]

12. Determine a domain of the function f(z,y) = \/x? + 4y? + 1. Calculate
partial derivatives at all points, where they exist.
13. For the function
Ly ro [x,y 0,0],
ro = | TR poledl 200
0 pro [z,3] = [0,0)

calculate partial derivatives at all points, where they exist.

14. Determine a domain of the function f(z,y, z) = (x/y)?; calculate first and
second partial derivatives at all points, where they exist. Determine an equation of
a tangent plane to the graph of the function f at the point [e, 1,2, €2].

15. Determine a domain of a function f(z,y) = arctg z—;z calculate first and
second partial derivatives and write an equation of a tangent plane to the graph of
the function f at the point [1,1, f(1,1)].

16. Examine extremes of the function f(x,y) = zy exp(—xy) on the set
M = {[z,y] € R* >0,y > 0}.

. . r—Y
17. E t f the funct )= —="Y _ onthe set
xamine extremes of the function f(x,y) ey on the se
M = {[z,y] € R y > 0}.
18. Examine extremes of the function f(z,y) = zy(1 — = — y) on the set

M = {[z,y] €R% >0,y >0,z +y < 1}.

19. Examine extremes of the function f(z,y) = sinx cosy on the set
M={[z,y) eR: 0< 2 <2m,0<y < —x+ 27}
20. Examine extremes of the function f(z,v, z) = (z—1)?+ 2y —1)*+ (2 —2)?
on the set
M = {lz,y,z] €R% >0,y >0,z > 0,2 +y+z <4}.

21. Prove that the set

{lz,y] € R* y =z +logy}
is a graph of the function x +— y(x) at a neighbourhood of the point [e — 1, €].

Write the equation of a tangent (if it exists) to the graph of the function y at the
point [e — 1, e].
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22. Prove that the set

M = {[z,y] € R 2 + 22y +¢y* — 4z + 2y — 2 = 0}
is a graph of the function = — y(z) at a neighbourhood of the point [1, 1]. Examine,
if the function y is convex or concave on a neighbourhood of the point 1.
23. Prove that there exist functions = — y(x) and  — z(z) of the class C*,
which satisfies y(1) = e, z(1) = 1, and relations

expz —ayz =0, log(zy) — S
z

on a neighbourhood of the point 1. Calculate 3'(1) and 2/(1).

In the following exercise prove that the set M is a graph of the function
[,y] — z(z,y) of the class C* at a neighbourhood of a given point. Determine a
tangent plane to the graph of the function at a given point.

24, M ={[x,y,2] €R3 22+ 22+ 322 + 2y —2—-9=0}, [1,-2,1]
25. M ={[x,y,2] €eR% expz+2?y+2+5=0}, [1,-6,0]
26. M = {[z,y,2] € R3 cos’x +cos?y +cos?z =1}, [r/3,7/2,7/6]
In the following exercises find extremes of the function f non the set M.
27. f(z,y) = 2523 —18xy+92, M = {[z,y] € R?; z € [-3,3], v —5z? < 4}
28. f(z,y) = 6wy +y° + 6y, M = {[z,y] € R 2% +y> < 5}

)
29. f(z,y) =xy+2x+ 3y, M = {[z,y] € R?; 42 + 9y? < 36}
30. f(z,y) =ay+ 2z + 3y, M = {[z,y] € R?%; 42% +9y? < 36, y < —z/2}
3. f(z,y) = exp(a® — 4> +y), M = {[z,y] € R*; 2> +3* <1, y >0}

32, f(r,y,2) =224+ y°+22, M = {[z,y,2] € R3; 22 +y? =22, 2 — 22 =3}

Results of exercises

1. M is neither open, nor closed; it is bounded; H(M) = {[z,1] €e R*; 1 <z <
2} U{[r,2] e Ry 1 <2 <2}U{[l,y] eR% 1<y <2}U{[2,y] eR% 1<
y<2hIntM ={[z,y] eR* 1 <2 <2, 1<y<2}; M ={[z,y] eR*} 1 <
r<2 1<y<2}

2. M is neither open, nor closed; it is not bounded; H (M) = {[z,y] € R?; y =
—x4+ 1} U{[z,y] e R% y = x4+ 1} It M = {[z,y] € R |£2L] < 1}
M = M U{[0,1]}

T
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3. M is neither open, nor closed; it is bounded; H (M) = MU{[1/n,0] € R*; n €
N} U {[0,1/m] € R?; m € N} U {[0,0]};Int M = (), M = H(M)

4. M is neither open, nor closed; it is not bounded; H(M) = {[z,y] € R?; 4 —
42?2 —y? = 0} U{[,0] € R? z € R} Int M = {[z,y] € R, % > 0};
M = M U{[z,0] € R% z € R}

5. M is closed, bounded; H(M) = M = M;Int M = ()

6. For each k£ € N the set M}, is closed and not open; the set M = {[z,y] €
R?; 22 + 42 < 1} is open and not closed.

8. Dy = R% fis continuous on Dy; f—1({0}) = {[z,y] € R* y =2} U{[z,y] €
R* y = —a}, f1({1}) = {[z,y] € R 2? —y? =1}, f1({-1}) = {[z,9] €
R?; 22 — y? = —1}; contour lines f_1({k}) (k # 0) are rectangular hyperbolas;
the function f does not attain maximum or minimum value on Dy

9. Dy = {[z,y] € R? y # 0}; f is continuous on Dy; f_1({0}) = {[z,y] €
Dyg; w = 0} fa({1}) = {[z,9] € D3y = «}s fa({=1}) = {lz,y] €
Dy¢; y = —x}; the function f does not attain maximum or minimum value on D
10. Dy = {[z,y] € R%* —1 < zy < 1}; f is continuous on Dy; f_1({0})
{[z.,y] € R% @ = 0} U{[z,y] € R* y = 0}, fa({n/2}) = {[=,y]
R? zy = 1} fa({-7/2}) = {[z,9] € R oy = -1}, f1({n/6})
{[z,y] € R%* xy = 1/2}; the function f attains a maximum value on D at
points [x,y| € f_1({mw/2}), minimum on Dy at points [z,y] € f_1({—7/2})

m I

11. Dy = R? f is continuous on R? \ {[0, 0]} and is not continuous at the point
[0,0: f-1({0}) = {[z,4] € R* 2 = 0} U{[z,y] € R* y = 0}, f1({1}) =
{5 € B% y = 2P\ {0, 0]}, f1({=1}) = {[z,] € B% y = —2*}\ {[0, 0]},
T ({1/2) = ({[e,9] € R y = @4 vVE)e2 Ul ) € B: y = (2—v3)a2})\
{[0,0]}; the function f attains a maximum value on R? at points [z, y] € f—1({1}),
minimum on R? at points [z,y] € f_1({—1})

12. Dy = R

aof x of 4y 2
.\, = == a I = TS €z, eR 0,0[§;
)= e = e il B (0,0])
partial derivatives at points [0, 0] does not exist
13.
of y? of x3
7('%73/): ) 7($7y): )
Ox /(x2 +42)3" Oy (22 + 42)3

0 %)
55(0,00=0,3£(0,0)=0

[z,y] € R*\ {[0,0]};
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14. Dy = {[z,y,2) € R 2> 0,y > 0} U{[z,y,2] € R3; 2 <0,y < 0};

of _(z\* =z Of (N =
= (5) 2= () (5)

of AN
95 —(T) 100X
L v = (£) 08

Yy
0% f z\* z
@(xaya Z) = <y> ?(Z’ - 1)7
o) = 2L o = (2) 2
0xdy Y2 = OyOx LY. 2= y) xy’
82f 2\ » 62f 2\? 2\ 2
87y2(x7y’2) - <y> ?(2—1_1)7 @(1‘711/7’2) - <y) <10gy> )
0% f 0% f z\° 1 T
ayaz(xayvz)_ azay(xvyaz)__ <y> &(Zlogg‘i‘l),
o0 f 0% f z\° 1 T
8x8z(x’y’ Z) - 8285[)<x,y’ Z) - (y) ;(legg + 1)a [xvya Z] S va

T(z,y,2) =e?+2e(x —e) —2e%(y — 1) + e%(z — 2)
15. Dy = {[z,y] € R* y # —a};

of Y af —x
%(xyy):mv Fy(%y):m;
Ol )= g Ly = Oy = T
Oz (22 +y2)2"  Oxdy "’ Oydx (22 +y2)?’
0% f 2xy

L yy) = —— € Dy;

3y2 (l’,y) (332 +y2)27 [xvy] o

the tangent plane to the graph of the function f exists at all points [z, y, f(x,y)],
where [z, y] € D and at the point [1, 1, f(1, 1)] is defined by equation 2z —z+y =
0

16. The set M is not bounded; the continuous function f thus could, but does not
have to attain,its maximum and minimum values on M. But it is not difficult to
realize, that the function f is continuous on M and equal to zero on both axis x, ¥.
Next we can easily see, that on rectangular hyperbola zy = k, k > 0, is f(z,y) =

ke=* and klim ke~ = 0. Hence we can derive, that f attains its maximum and
— 00

minimum values on M. Suspicious points: [z, 0], where € [0, +00); [0, y], where
y € [0,400); [x,1/z], where x > 0; the function f attains its maximum value
on M at the points [x,1/x], z > 0 and attains its minimum value on M at the
points [z, 0], x > 0, and [0, y], y > 0.
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17. suspicious points: [—1/v/2,1/v/2], [~1,0], [1,0]; at the point [1, 0] the func-
tion f attains its maximum value on M at the point [—1/+/2, 1//2] the function f
attains its minimum value on A/} at the point [—1, 0] there is no extrem.

18. the function f is continuous on the setM, which is compact. Thus the func-
tion f attains its maximum and minimum values on M. Points suspicious of being
an extrem of the function are: [1/3,1/3] and all points from H(M); max f =

f(1/3,1/3) = (1/3)3, mj\}nf = 0, it is attained at all points of the boundary
H(M).

19. The function f is continuous on the set M, which is compact. thus the func-
tion f has a maximum and a minimum on M. suspicious points: [7/2, 7], 7,7 /2],
[7/2,0],[37/2,0],[0,y] (Where y € [0, 2x)), [1/4, Tr /4], [37/4, b /4], [57/4, 37 /4],
[Tm/4,7/4] and [27,0]; maxima and minima: max f = f(7/2,0) = 1, min f =
F(37/2,0) = f(n/2,7) = —1. M M

20. the function f is continuous on the set M, which is compact. Thus the func-
tion f has a maximum and a minimum on M. Suspicious points are: [1,1/2,2],
[0,1/2,2], [1,0,2], [1,1/2,0], [11/9,5/9,20/9], [0,0,2], [1,0,0], [0,1/2,0],
[0,4/5,16/5], [3/2,0,5/2], [3,1,0], [0,0,0], [4,0,0], [0,4,0], [0,0,4); max f =
£(0,4,0) =54, min f = f(1,1/2,2) = 0. M

21. The tangent at the point [e — 1, ¢] is described by the function T'(z) = _%x.
22.y/(1) = 0, y”(1) = —1/3; the function y is concave on a neighbourhood of the
point 1 konkdvni  23.y/(1) = —e,2/(1) =1  24.T(z,y) =1+ L(y+2)
25.T(z,y) = 6(z — 1) — 1(y +6) 26.T(x,y)=7m/2—x

27. suspicious points: [0,1/2], [1, 3], [-1,3], [3,7], [3,=7], [-3, 7], [-3,—7]. The
set M is compact and f is continuous on it, thus f has a maximum and a minimum
on M; mﬁxf = f(3,—=7) = 1080, m]\i4nf = f(-3,-=7) = —1080.

28. Suspicious points: [—1,0], [1,2], [1, —2], [-2, 1], [-2, —1]. The set M is com-
pact and f is continuous on it, thus f has a maximum and a minimum on M,
m]‘%xf = f(1,2) = 32, mj\}[nf = f(1,-2) = —32.

29. Suspicious points: [3/v/2,v/2], [-3/v/2, —v/2], [0, —2], [~3, 0]. The set M is
compact and f is continuous on it, thus f has a maximum and a minimum on M;

max f = f(3/v2,v2) =3 +6V2, min f = £(0,~2) = f(~3,0) = 6.

30. Suspicious points: [~3/v/2, —v/2], [0, —2], [-3, 0], [1/2, —1/4], [12/5, —6/5];
[—12/5,6/5]. The set M is compact and f is continuous on it, thus f has a maxi-
mum and a minimum on M; max f = f(1/2,—1/4) =1/8, min f = f(0,—-2) =
f(—3,0) = —6. M M
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31. Suspicious points: [0,1/2], [0, 1], [vV/15/4,1/4], [-v/15/4,1/4], [0,0], [1,0],
[—1,0]. The set M is compact and f is continuous on it, thus f has a maximum
and a minimum on M ; m]‘%xf = f(v15/4,1/4) = f(—v/15/4,1/4) = exp(9/8),

32. The set M is an intersection of a conical surface and a plane, it can be shown,
that in this case it is an ellipse. The set M is compact and f is continuous on it, thus
f has a maximum and a minimum on M/} suspicious points: [—3, 0, —3], [1,0, —1];
mj\%xf = f(-3,0,—-3) =18, m}\}nf = f(1,0,—1) = 2.






CHAPTER 2

Matrix algebra

In this chapter we will be concerned with topics which belong to linear algebra.
We will primarily deal with basic matrix operations, theory of determinants and
solving systems of linear equations. All of this is very useful not only in other parts
of mathematics (see for example the general formulation of the Implicit functions
theorem (Theorem [I.41)), but also in varied applications in economics.

2.1. Basic operations with matrices

Definition. We call a table

ail a2 Q1n
a1 a2 ... Q92n
A3]  ee e 5 (1)
Aml  Am2 Qmn
where a;; € R,i=1,...,m,j =1,...,n, the m X n matrix. If m = n, then
we call it the square matrix of order n. The set of all m x n matrices is denoted
by M(m x n).
We call an n-tuple of numbers
((Iil, (17;2, MR} ain)7
where ¢ € {1,...,m}, the i-th row of a matrix (I)) and an m-tuple of numbers
a1j
a2;
Y
amj

where j € {1,...,n}, the j-th column of the matrix (I). The matrix (IJ) is also
denoted by the symbol (a;;)i=1..m.

j=1l.n

61
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Remarks. 1. As we mentioned in the Chapter[I} we call elements of the space R”
also vectors. If we have a vector ¥ = [z1,...,2,] € R", we can look at it as at a
row vector , i.e. a 1 x n matrix of the form

(@1 ... )

or as at a column vector, i.e. an n X 1 matrix of the form

1

In
2. If @', ..., @™ € R™ are row vectors, then an m x n matrix, for which the i-th
row is equal to u*, i = 1,...,m, is denoted by the symbol

1_[1

am
Similarly, if 7, ..., 9™ € R™ are column vectors, then an m X n matrix, for which
j-th column is equal to ¢/, j = 1,...,n, is denoted by the symbol

1
(v e, U ) .

Definition. We say that matrices A = (a;j)i=1..m» B = (buv)u=1.p are equal

j=l.n v=1..s
provided that m = p, n = sand a;; = b;j foreachi € {1,...,m},j e {1,...,n}
(i.e. matrices are of the same size and elements with the same indices are equal).

We now define two basic operations with matrices.

Definition. Let A, B € M(m x n), A = (aij)i=1.m> B = (bij)i=1.m>» A € R.
j=l.n j=l.n
Then we call the following matrix the sum of matrices A and B
a1 +b11 arp+bi2 ... aip+biy
ao1 +ba1  az+b ... ao,+ by
A+ B = as1 + b31 ........................... ,

Am1 +bm1 am2 +bm2 ... G+ bn

and the following matrix the real number multiplication \ of the matrix A

)\&11 )\(112 e )\aln
)\(121 )\(122 e )\agn
A = )\agl .................
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In the following theorem there are summarized basic properties of these oper-
ations. Proofs of the assertions are very simple and we omit them.

Theorem 1. The following assertions hold:

e VA, Be M(m xn): A+ B = B + A (commutativity),

e VA, B,C e M(mxn): A+ (B+C) = (A+ B) + C (associativity),

e there exists exactly one matrix O € M (m x n) satisfying O + A = A for
each A € M (m x n) (existence of a zero element),

e VA€ M(m xn)3Cy € M(m xn): A+ Cy = O (existence of an inverse
element),

e VAe M(mxn)VA\,peR: (A+pu)A =XA+ pA,

e VA, Be M(mxn)VAXeR: AN(A+ B) = A+ AB,

o VAe M(m xn) VA pueR: (Au)A = AuA),

e VAe M(mxmn):1-A=A.

Remark. 1t is obvious that each entry of the matrix O from the third assertion is
equal to 0. We call such a matrix the zero matrix. It is also easy to realize that the
matrix C'4 from the fourth assertion is uniquely determined and is equal to (—1)- A.
Usually, we denote it by —A.

Let an important notion of matrix multiplication be defined.
Definition. Let A = (a;s)i—1..m be am X n matrix and B = (bsj)s=1.n bean x k
s=1..n j

= ]21..]6
matrix. We say that a m x k matrix A - B = (¢;;)i=1.., Where
=1k

n
Cij = E aisbsj, iZl,...,?ﬂ,jZl,...,k,
s=1

is a matrix product of A with B. Usually, we will write only AB instead of A - B.

Remark. Let A be an m x n matrix and B be an n x k matrix. We calculate the entry
with indices 7j of the matrix AB such that we “put” the i-th row of the matrix A
on j-th column of the matrix B, multiplicate the corresponding entries and add the
resulting numbers together:

Let the row vectors of the matrix A be denoted by !, ..., @™ and the column
vectors of the matrix B by @', ..., #". The vector @ is in fact a 1 x n matrix and

the vector ¢/ is an n x 1 matrix. A matrix product of these matrices in this order is
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a1 x 1 matrix, whose the only entry is just a number ¢;;. Then it is not difficult to
realize that for a matrix AB the following conditions hold:

B
@t @' B
A-B=|: |'B= :
am @™ - B
A

The foregoing definition of a matrix multiplication may seem to be somewhat
complicated. But we will see later (for example in section[2.5), that it is very natural
and useful.

Example 2. Calculate the matrix product AB, where

2 1 1 0
A:<; (1) _31) and B=|0 -1 3 1
1 0 4 5

Solution. The matrix A is a 2 x 3 matrix and the matrix B is a 3 x 4 matrix, thus
multiplication is possible and the matrix product AB is a 2 X 4 matrix. According
to the definition we have

AB — ( L2H00+31,  L1+0(=1D430, 11403434, LO+0-1435
=\ 2:241:04(=1)-1, 2:141-(=1)+(—=1)-0, 2-141-3+(—1)-4, 2-04+1-14(—1)-5

(5 1 13 15
“\3 11 —4)

Theorem 3 (properties of matrix multiplication). The following assertions hold:
(i) VAe M(m xn)VB € M(n x k)VC € M(k x p): (AB)C = A(BC)
(associativity of multiplication),

(i) VA € M(m x n) VB,C € M(n x k): A(B+ C) = AB + AC (left
distributivity),

(iii) VA,B € M(m x n) VC € M(n x k): (A+ B)C = AC + BC (right
distributivity).

(iv) There exists exactly one matrix I € M (n x n) such that for each matrix
A € M(n xn), [A = AI = A holds (existence and uniqueness of the
identity matrix 7). Above that, for the matrix I it holds:

e VBe M(mxn): BI =B,
e VC e M(nxk): IC =C.

L]
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Proof. (i) From the matrix multiplication definition it follows that AB is an m X k
matrix and then the matrix product (AB)C is defined and a result is an m x p
matrix. Similarly it can be seen that BC' is an n x p matrix and hence the matrix
product A(BC) is an m X p matrix. Both sides of the equality are thus matrices of
the same size. We shall now prove that they have the same entries.

Let A = (aij)i:L.m, B = (bij)izll_n, C = (Cij)izl”k. An entry with indices

j=1.mn j=1k j=1"p

ij of the matrix (AB)C is equal to

r=1 r=1

and an entry with indices ij of the matrix A(BC)) is equal to

Szn; ais (ijl bsrch> = Z (Z s srcm>

s=1

Adding and multiplying of real numbers are commutative and associative and
hence it follows

zk: <2n: aisbsrcm> 2 (Z ais swcm>

(ii) Obviously, on both sides of the equality are m x k matrices. If A =

(@ij)i=1. m- B = (bij)i=1.n, C = (cij)i= Lns then an entry with indices ij of
Jj=1.. j=1..k j=1.k
the matrix A(B + C) is equal to

n n n
g ais(bsj + Csj) = E aisbsj + E AjsCsj-
s=1 s=1 s=1

Let us note that the expression ) ., a;sbs; is equal to the entry with indices ij of
the matrix AB and the expression > ._; a;sCs; is equal to the entry with indices 7]
of the matrix AC'. This is what had to be proved.

(iii) It can be proved similarly to the proof of (ii).

(iv) Let I = (@ij)i=1..n, Where
j=1l.n

0 fori#j,
G —
" 1 fori=j.
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The matrix [ is thus of the form

1 0 0 0
0 1 0 0
I= : . :
0o ... 0 1 0
0o ... 0 0 1

It can be easily checked, that the matrix I satisfies all required equalities.

We shall now prove the uniqueness. Let us suppose that the matrix J € M (n x
n) satisfies AJ = JA = A for each matrix A € M (n x n). However, then we get
I=1J=J. |

Remarks. 1. Let us point out that the matrix multiplication is not commutative.
For example, if A € M(2 x 3) and B € M (3 x 4), then the matrix product AB is
defined, but the matrix product B A is not. But the matrix multiplication is neither
commutative in square matrix multiplication case:

0 1y/(0 0\ (0 1 0 0y/0 1\ (0 O

o o/\o 1/ \o o)> \o 1/\0 0o/ \o 0O/
2. In this text we will often appeal to the notion of an identity matrix. From the
context it will be clear what size it has.

The latter matrix operation is described in the following definition.

Definition. The transpose of a matrix

aii ai2 a3 ai4 Aln
az1 az2 Aa23 Aa24 a2n
A= (2 3 A S
Aml Am2 v vvvive v Amn
is the matrix
ailp  a21 Am1
ai2 a2 am?2
T a1z a23 am3
A" =|aua au ... ama |,
(257 S PP
Ain QA2n  --- Amnp

that is, if A = (aij)izl,,m, then AT = (bm,)u:1
j=1.n v=1.
ue{l,....,n}ve{l,...,m}
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Let us look how the transposition of the matrices relates to the foregoing oper-
ations.

Theorem 4 (properties of transposes). The following assertions hold:
() VA€ M(m xn): (AT = A,

(i) VA,B € M(m xn): (A+ B)T = AT 4+ BT,

(iii) YA € M(m x k) VB € M(k xn): (AB)T = BT AT,

Proof. The assertions (i) and (ii) are obvious.

(iii) The matrix AB is an m x n matrix, the transpose (AB)” is thus an n x m
matrix. The matrix A7 is a k x m matrix, the matrix B” is an n x k matrix, their
product BT AT is thus an n x m matrix. We obtain that on both sides of equality
are matrices of the same size. We shall now prove that they have the same entries.

Let
A= (ajs)jzl._m, B = (bsi)s:L.kv
s=1.k i=1..n
AT = (Cpq>p=1..lc ) B' = (drp)r=1.n -
q=1..m p=1.k

Then the entry with indices 4j of the matrix (AB)7 is equal to the entry with
indices ji of the matrix AB, i.e. it is equal to Zle a;sbsi. The entry with indices
ij of the matrix BT AT is equal to

k k k
§ :dipcpj = § :bpiajp = § :ajpbpia
p=1 p=1 p=1

which completes the proof. ]

2.2. Invertibility and rank of a matrix

If we have a non-zero real number a, then exactly one real number b can be
found such that ab = ba = 1 holds. We use this property of real numbers for
example in solving this type of equation: ax = c. If we multiply both sides of
equation by the number b, then we get x = be. It is thus natural to ask if we can
find for a given non-zero matrix A € M (n x n) amatrix B € M (n x n) satisfying
AB = BA = I. Generally, the answer is negative. It is not difficult to make sure

that for the matrix
1 0
1= (0 o)

we can not find a matrix B € M (2 x 2) satisfying AB = BA = I. It is there-
fore useful to separate the matrices for which the answer to the given question is
positive.
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Definition. Let A € M (n x n). We say that a matrix A is invertible if there exists
B € M(n x n) such that

AB =BA=1. ()
Remarks. 1. But are there any invertible matrices? It can be directly seen that for
example an identity matrix of any size is invertible. In this section we will prove
relatively simple criterion, which determine if a matrix is invertible or not.

2. Let us note that if AB = I holds for A, B € M(n x n), then also BA = I
holds. We prove this assertion in the last section of this chapter.

Let us note that if a matrix A is invertible, then there exists exactly one ma-
trix B satisfying AB = BA = I. Since if we have an invertible matrix A €
M (n x n) and matrices B, B € M (n x n), which satisfty AB = BA = I,
AB = BA =1,then B =IB = (BA)B = B(AB) = BI = B. This observa-
tion shows that the following definition and notation are correct.

Definition. Let A be an invertible matrix. We call the matrix B satisfying (2)) the
inverse of a matrix A. We denote it by A1,

Theorem 5. Let A, B € M (n x n) be invertible matrices. Then:
(i) A~!is an invertible matrix and (A~1)~! = A,
(i) AT is an invertible matrix and (AT)~! = (A~1)7T,

(iii) AB is an invertible matrix and (AB)~! = B~1A~1

Proof. The assertion (i) is obvious.

(i) AA=! = A=1A = I holds and hence (AA~1)T = (A71A)T = [T and
from Theorem it follows (A~1HTAT = AT(A=1)T = I. Hence, our assertion
follows.

(iii) AA™' = A~'A =T and BB~! = B~!'B = I hold. We thus have

(B'A™HYAB) =B Y(A'A)B=B"'B=1,
(AB)Y(B'A Yy = A(BB H)A 1 =447 =T

Let us realize that we use the associativity of a matrix multiplication. From the

previous relations we obtain the assertion. ]
Definition. Let k,n € Nand ¢!, ..., 7% € R™. We say that a vector @ € R is the
linear combination of vectors ¥, ..., 7% with coefficients A\1,..., A\ € R
provided that
@ = MU+ AT

In this case we also say that the linear combination of vectors @1, . .., #* with
coefficients A1, ..., Ay is equal to .

If A1 = --- = Ax = 0, then we call it the trivial linear combination of the
vectors ¥, ..., T%; if any of the coefficient is non-zero then it is the non-trivial

linear combination.
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Definition. We say that the vectors %', ..., % € R" are linearly dependent if

there exists any netrivial linear combination which is equal to a zero vector. We
say that the vectors #!,..., 7% € R™ are linearly independent, if they are not

linearly dependent, i.e. if

VAL oo M ER NG 4+ M =6 = M =Xa=-- =X, =0.

1

In other words among all linear combinations of vectors %!, . .., #* only the trivial

linear combinations is equal to a zero vector.

Remark. Vectors ', ..., 7" are linearly dependent if and only if one of them is a

linear combination of the others.
Since if \;@" + - - - + A\, @ is a netrivial linear combination which equals to a
zero vector, then for a certain ¢ we have \; # 0 and we could write

— ALy ANi—1 i1 Al i1 Ak g
v=——0 —-- = v — v — = —
Ai Ai Ai Ai
We shall now prove the converse implication. If a certain vector ¢ is a linear com-

bination of the other vectors, i.e.

7 :Oz1771 +'--+ai,1@¥i_1+ai+1ﬁi+1 —|-~'-+Ozk1_fk,
then by adding a vector (—1) - ¢ to both sides of equality we get a netrivial linear
combination which is equal to a zero vector.

Definition. Let A € M (m xn). The rank of the matrix A is the maximal number
of linearly independent rows, i.e. the rank is equal to k € N if

(i) there exist k linearly independent row vectors of the matrix A and
(ii) every [-tuple of row vectors of the matrix A, where [ > k, is linearly depen-
dent.

The rank of a zero matrix is equal to zero. The rank of a matrix A is denoted by
h(A).

Remark. 1t is obvious that a non-zero vector is linearly independent and if in an
[-tuple of vectors there are at least two of them the same, then this [-tuple is linearly
dependent. Hence, the rank is correctly defined for each matrix and is at most equal
to its number of rows.

Most matrices has not obvious rank at the first sight. But for some matrices, it
is very easy to determine it.

Definition. We say that A € M (m x n) is in the row echelon form, if for each
i € {2,...,m} it holds that the i-th row of the matrix A is a zero vector or starts
with more zeros than (i — 1)-th row.
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It is not difficult to realize that the rank of a matrix in a row echelon form is
equal to the number of non-zero rows. We show a method how to use this observa-
tion to determine the rank of a general matrix.

Definition. The elementary row operations of a matrix A are:

(i) switching any two rows,
(i1) multiplying a row by a non-zero number,
(ii1) adding multiple of one row to another one.

Definition. We call the transformation a finite sequence of elementary row op-
erations. If a matrix B € M (m X n) originated from a matrix A € M (m X n)

: . . . . T
applying a transformation 7" on a matrix A, then we use this notation A ~~ B.

The assertions (i) and (iii) in the following theorem show how to determine the
rank of a general matrix. We could transform a given matrix to a matrix in a row
echelon form (assertion (i)) whose rank is then equal to the rank of the original
matrix (assertion (iii)).

Theorem 6 (properties of transformation).

(i) Let A € M(m x n). Then there exists a transformation 7" which alter the
matrix A to a matrix in a row echelon form.

(i1) Let T} be a transformation applicable on m X n matrices. Then there exists
a transformation 75 applicable on m X n matrices such that for each two

matrices A, B € M(m xn) A %% B holds if and only if B Za
(iii) Let A, B € M(m x n) and matrix A became matrix B by a transformation.
Then h(A) = h(B).

Proof. (i) We prove the result by applying mathematical induction on m. If m =1,
then we does not have to prove anything, since the matrix has only one row and
thus it is in a row echelon form. Let us suppose that the assertion holds for all
matrices with m rows. Let A € M((m + 1) x n). If A is a zero matrix, then it
is also in a row echelon form. Let thus A be a non-zero matrix. Let us find the
smallest j € {1,...,n} such that the j-th column of the matrix A contains non-
zero entry. Let this entry be in an i-th row. Then we swap the i-th row with the first.
Let the newly originated matrix be denoted by B and its entries by b;;. Let us take
s€{2,...,m+ 1} and add a (—bs;/b1;)-multiple of the first row to the s-th row
of the matrix B. The originated matrix has zero in the position sj. Let us repeat
this process for each s € {2,...,m + 1}. This way we get a matrix C' which has
zero entries in the first j — 1 columns and in j-th column there is a only one entry,
just on the first position. From the induction assumption it follows that there exists
a transformation of only the second to the (m + 1)-st row, which alter the matrix C'
to be in a row echelon form.
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(ii) For the purpose of this proof we use the following notation. If 7" is a row
elementary operation of swapping an i-th and a j-th row, then take 7' equal
to T. If T is a row elementary operation of multiplying an ¢-th row by a non-zero
number )\, then 7! stands for an elementary operation of multiplying the i-th
row by a (non-zero) number 1/\. Finally, if T" is a row elementary operation of
adding a A-multiple of a j-th row to an i-th row and i # j, then 7! stands for an
elementary operation of adding (—\)-multiple of the j-th row to the i-th row.

Let us suppose first that the transformation 77 consists of one row elementary
operation; then it is obvious that the transformation 75 = T ! has the required
property. Now if 77 is a transformation consisting of a sequence of row elemen-
tary operations P, Ps, ..., P, then let us denote a transformation consisting of
a sequence of P,;l, e ,P{l, Pfl by Tb. Then for matrices A, B € M(m X n)
follows

P P Pp_1 P . .
AL A3 LSS Ay ~8 B, if and only if
Bt e e

B 5 Ay S0 A S A,

and this is what had to be proved.

(iii) It could be seen that the row elementary operations of the first and the
second type does not change the rank of a matrix.

We shall now prove that the row elementary operation of the third type does
not reduce the rank of a matrix. Let us suppose that h(A) = [. Let the row vectors
of the matrix A be denoted by order @', ...,7™. We can assume without loss of
generality that exactly the vectors 7', ..., @' are linearly independent. Let A be
transformed by a row elementary operation of the third type. If this operation does
not change any of the vectors ¢!, . .., @, then the rank of newly originated matrix
cannot be smaller than /.

Let us suppose now that we added A-multiple of some vector to some an-

other vector of 7', . .., #'. We can assume without loss of generality that we added
vector A", i € {1,...,m} to the [-th vector provided i # [. If the vectors
@',..., "1, ¥ are linearly independent, then the proof is completed, since the

newly originated matrix has the rank at least /. Let us assume now that the given
vectors are linearly dependent. From that we derive the linear independence of the
vectors ¥, ..., 0" 1, @ + M. Let us take any linear combination of the vectors

ot ..., 71, & + A& which equals to a zero vector:

#1171 + .4+ Nl—lﬁl_l —+ 'ul(’L_)’l + )\171) = 0. (3)

From the linear independence of the vectors ¢!, . . ., 71 and from the linear de-

pendence of the vectors ¢, ..., oL, & follows that ¢ is a linear combination
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-1
1_14 = Z T j?._fj .
j=1
By plugging this into the (3) and manipulating the equation, we obtain

(11 + ulz\ﬁ)ﬁl + o+ (e + m)\n,l)ﬁl_l + it =a.
The vectors 7', . .., #" are linearly independent and therefore it must be
pr+ AT =0, 1+ A1 =0 and gy = 0.

Hence, p11 = -+ = p; = 0 and this proves the linear independence of the vectors
AN Ll D V)

Thus, if the matrix A becomes a matrix B by a certain transformation, then
h(A) < h(B). Acoording to the assertion (ii) we can transform B to A and there-
fore h(B) < h(A). Thus, we get h(A) = h(B). [

Remarks. 1. Let us realize that the proof of the point (i) gives us at the same time
instruction how to transform a given matrix to be in a row echelon form.

2. We can define column elementary operations similarly to row elementary op-
erations. It can be shown that after column elementary operation the linearly de-
pendent rows of an original matrix are linearly dependent also in a new matrix
and linearly independent rows stays independent. Hence, the column elementary
operations does not change the rank of a matrix.

If we want to determine the rank of a matrix, we can thus use both rows and
column elementary operations. But in certain situations (e.g. solving linear systems
of equations, see the section [2.4) we can use only rows elementary operations.

3. Moreover, it can be shown that h(A) = h(AT) holds provided A € M(m x n).
Since (AT)T = A, it is sufficient to show that h(AT) > h(A). If a matrix A is
in a row echelon form, then the proof of this inequality is simple. According to
Theorem [6] we can transform A to a matrix B in a row echelon form and h(A) =
h(B). If we perform corresponding column elementary operation on A”, we get
BT. According to the previous point h(A”) = h(BT) holds. Due to h(BT) >
h(B), we obtain h(AT) > h(A).

Example 7. Determine the rank of the matrix h(A)
1 3 -2 2 4
7 0 —1

-1 1 3 1 5
1 6 19
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Solution. The rank of the matrix A cannot be bigger than 4. We transform A to a
matrix in a row echelon form.

1. Let us copy the first row, add a (—2)-multiple of the first row to the second
one, add 1-multiple of the first row to the third one and add 2-multiple of the first
row to the fourth one. This way we get the matrix

13 -2 2 4
01 7 -4 -9
04 1 3 9
0 7 -5 10 27

2. Let us copy the first and the second row, add a (—4)-multiple of the second
row to the third one and add a (—7)-multiple of the second row to the fourth one.
Now we get the matrix

13 -2 2 4
o1 7 -4 -9
0 0 =27 19 45
0 0 =54 38 90

3. Let us copy the first three rows and add a (—2)-multiple of the third row to
the fourth one. We get the matrix

13 -2 2 4
o1 7 -4 -9
0 0 =27 19 45
00 O 0 0
A transformation does not change the rank of a matrix and thus h(A) = 3. &

Example 8. Determine the rank h(A) of the matrix

1 0 5 -1
0 3 -2 5
A=19 9 4 4
1 15 b 24

in dependance on real parameters a, b.

Solution. We use a suitable transformation and get these matrices consecutively

1 0 5 -1 1 0 ) -1 10 5) -1

0 3 -2 ) 0 3 =2 ) 0 3 =2 )

0 9 —6 a+2]’|0 0 O a—13]1"10 0 b+5 0

0 15 b—-5 25 0 0 b+5 0 00 0 a—-13
Now it is obvious that h(A) = 2 in case that = 13 and b = —5. Next,

ifa =13 and b # —5 or a # 13 and b = —5, then the rank of the matrix is
h(A) =3.1fa # 13,b # —5, then h(A) = 4. *»



74 2. MATRIX ALGEBRA

Theorem 9 (about transformation and matrix product). Let A € M (m x k), B €
M(kxn),C € M(mxn)and AB = C hold. Let T be a transformation and A &
A, C~ C'. Then A'B = C".

Proof. Let us assume without loss of generality that 7" is only one row elementary
operation. Let the rows of the matrix A be denoted by a1, d2, - . . , @, and the rows
of the matrix C' by €1, €2, . . ., Cm- According to the remark following the definition
of matrix product on page[63| we have

¢j=ajB, j=1,...,m.

For row elementary operations of the first and the second type the situation is thus
clear.

Let us prove the assertion in case that we add A-multiple of the p-th row to
the ¢-th row, p # ¢. Then the ¢-th row of the matrix A’ is equal to @, + Ad, and
the g-th row of the matrix C” is equal to ¢; + Ac,. Then we have

(@y + A@y) B = @y B + AipB = & + \é,.

Since the other rows did not change, we get A’B = C’ and this is what had to be
proved. ]

Lemma 10. Let A € M(n x n) and h(A) = n. Then there exists a transforma-
tion 7" which alter A to .

Proof. According to Theorem Eki) we can transform A to a matrix A’ (with entries
a;j) in a row echelon form. From Theorem [6(iii) and the assumption h(A) = n
we obtain h(A") = n. Hence, a}; # 0,7 = 1,...,n. If we multiply the i-th row
by a non-zero number 1/d’;;, i = 1,...,n, then we get the entries on the diagonal
equal to 1. Thus, we can directly suppose thata};, =1,i=1,...,n.

Now let us take consecutively a (—a;n)—multiple of the n-th row and add it
to the ¢-th row for ¢+ = 1,...,n — 1. The newly originated matrix B; has the
columns equal to the columns of the matrix A’ except for the n-th column which
is equal to the n-th column of an identity matrix. In the next step let us take con-
secutively a (—a; ,,_;)-multiple of the (n — 1)-st row and add it to the i-th row for
i = 1,...,n — 2. The newly originated matrix By has the columns equal to the
columns of the matrix A’ except for the two last columns which are equal to the cor-
responding columns of an identity matrix. We repeat this procedure and finally we
get (using row elementary operations of the third type) the matrices Bs, ..., B,_1.
Then B,,—; = I holds and this would complete the proof. ]

Remark. Let us realize that this proof gives us also instruction how to find such a
transformation.

The latter theorem gives us an important characterization of regular matrices.
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Theorem 11 (invertibility and rank). Let A € M (n x n). The matrix A is regular
if and only if h(A) = n.

Proof. Let us assume first that the matrix A is invertible, but h(A) < n. Thus,
we can find an inverse A~! of a matrix A. Let us find a transformation 7" which
alter the matrix A to a matrix in a row echelon form S. Let a matrix, transformed
by T from I, be denoted by B. According to Theorem @, SA~! = B holds, since
AA™1 = I Since h(A) < n and a transformation does not change the rank of
a matrix, it follows that A(S) < n, and thus the last row of the matrix S is a
zero vector. Therefore also the last row of a matrix B is a zero vector and hence
h(B) < n. Simultanously, we have h(B) = h(I) = n and that is a contradiction.
This would complete the proof, that the rank of an invertible matrix is n.

Let now h(A) = n. Then according to Lemma [10| there exists a transforma-
tion 77 which alter A to I. Let us apply 77 on I and let the resulting matrix be
denoted by B. According to Theorem [6{ii) we can find a transformation T to the

transformation 77. Then A D13 Aand 1% B3 Iholds. By using Theorem@
and the transformation 75 on the equality /B = B we get the equality AB = I.
Similarly, from the equality /A = A and by using the transformation 77 we obtain
an equality BA = I. The matrix A is thus invertible. ]

Method of matrix inversion. The second part of the just finished proof gives
us instruction for matrix inverse calculation. Let a matrix A € M (n x n) be invert-
ible. Let us transform the matrix A to an identity matrix I (see Lemma[I0). Using
the same row elementary operations simultanously on I we get a matrix B satisfy-
ing AB = BA = I. Thus B = A~! holds. In other words — if we tranform A to
a I, then the same transformation alter I to A~1.

Example 12. Find an inverse of the matrix

1 0 1
1 1 2
0 -1 0

Solution. Usually, we proceed as described below: from matrices A, I € M (n X
n) we form a matrix (A|I) € M(n x 2n), which we transform by suitable row
elementary operations to (I|A~1). Let us calculate:

1 0 1|1 0 O
(AlI)=11 1 2(0 1 0],
0O -1 0j{0 0 1
let us subtract the 1st row from the 2nd row:
1 0 1|1 00
0 1 1}]-1 1 0},

0 -1 0] 0

=)
—_
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let us add the 2nd row to the 3rd row:

1 011 00O
01 1|-11
00 1|-11

let us subtract the 3rd row from the 2nd row:

1 01l1 0 0
010[0 0 -1],
00 1[-1 1 1

—= O

let us subtract the 3rd row from the 1st row:
1 0 0] 2 -1 -1
01 0|0 0 -1
0 0 1|/-1 1 1

The matrix
2 -1 -1
0 0 -1
-1 1 1
is thus the searched inverse of the original matrix
1 0 1
1 1 2
0 -1 0

Example 13. Find an inverse of the matrix

-18 —-16 —-11 12
-6 -6 —4 5
-1 -10 -7 8
-1 -1 -1 1

A=

Solution. Let us use row elementary operations on the 4 X 8 matrix:

-18 =16 —-11 121 0 0 O
-6 -6 -4 5]0 100
(AlT) = -1 -10 -7 8|0 0 1 O
-1 -1 -1 1}]0 0 0 1
In the matrix (A|I), let us swap the 1st and the 4th row:
-1 -1 -1 1}0 0 0 1
-6 -6 —4 50100
-1 -10 -7 8]0 0 1 O}’
-18 —-16 —-11 1211 0 0 O
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let us multiply the 1st row by —1:

1 1 1 -1
-6 -6 -4 5
-1 -10 -7 8
-18 =16 —-11 121 0 0 O

0 0
01
0 0

= o O
o

let us add suitable multiples consecutively to the 2nd, 3rd and 4th row:

111 -1(]0 0 0 -1

002 —-1]010 -6
014 -3/{0 0 1 —11}"
027 —6(1 0 0 —-18
let us swap the 2nd and the 3rd row:
111 -1{0 0 0 -1
014 -3{0 0 1 —-11
00 2 —-1/010 —-61"
027 —-6(1 0 0 18

let us subtract a double of the 2nd row from the 4th row:
11 1 —-1/0 0 0O -1

01 4 -3/00 1 -11
00 2 —-1({01 0 —61]"’
00 -1 0|10 -2 4

let us swap the 3rd and the 4th row:

11 1 -1/0 0 O -1
01 4 -3(00 1 -11
00 -1 0110 -2 4 |’
00 2 —-1|01

let us add a double of the 3rd row to the 4th row:
11 1 —-1/]0 0 0O -1

01 4 -3/{00 1 -11
00 -1 0110 -2 4 |’
00 0 -1}(21 -4 2

let us multiply the 3rd and the 4th row by —1:

111 -10 O O -1
014 -3/0 0 1 -11
001 oj-1 0 2 -4’
000 1|-2 -14 =2
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let us add a triple of the 4th row to the 2nd row:

OO O

SO ==

S =

let us add 4th row to the 1st row:

OO O

OO ==

[ G N

-1 0
0|6
0 |-1
1 | -2
0|-2
0|—6
0]-1
1]-2

0

0
-1

-1

0
-3 13
2
4

4

-3 13

0
-1

2
4

-1
—-17
—4 |-
-2

-3
—-17
4 |
-2

let us subtract a quadruple of the 3rd row from the 2nd row:

o O O

OO = =

O = O =

-2
-2
-1
—2

_ o o o

-1
-3
0
-1

let us subtract the 3rd row from the 1st row:

oS o o+

and finally let us subtract 2nd row from the 1st row:

SO = =

1 0
0 1
0 0
0 0
Thus we have
A*l

O = OO

o= OO

o oo
|
)

1
-2
-1
-2

— o O O

1 2
-3
0
-1

-2
-1
-2

-1
-3
0
-1

2
-3
0
-1

-3

)
2
4

4
5
2
4

2
)
2
4

-3

5
2
4

-3
-1
4|
-2

2
-1
—4
-2

-1
—4
-2

Let us note that we can check our calculation by multiplying AA~!. If we pro-
ceeded correctly, the result must be 1.

L)
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2.3. Determinants

Now we will study the notion of determinant, which plays an important role in
mathematics.

Definition. Let A € M (n x n). We denote by the symbol A;; a (n —1) x (n —1)
matrix which becomes from A by omitting the i-th row and the j-th column.

Definition. Let A = (a;;)i=1..n. We define the determinant of the matrix A by:
j=1l.n

ail ifn= 1,
n

det A = Z(—l)i+1ai1 det A;7  ifn > 1.
=1

For det A, we also use the symbol

aill ai19 N AT
asy a9y N ¢ Xe)
(075 3 .
anl Aan2 ann

Remarks. 1. According to the mathematical induction princip the determinant no-
tion is defined by the previous definition for each square matrix of order n € N.

2. Let us calculate a determinant of the 2 x 2 matrix A:

det (Z Z) = adet(d) — cdet(b) = ad — be.
It can be seen that for n = 2 our definition is consistent with the high school
formula.

The next part of the section will be dedicated to derivation of some basic prop-
erties of a determinant.

Theorem 14. Let j,n € N, j < n, and matrices A, B, C' € M (n x n) be the same
at all rows except the j-th. Let us suppose that j-th row of the matrix A is equal
to sum of the j-th row of the matrix B and the j-th row of the matrix C'. Then
det A = det B + det C. We can reformulate this assertion in the following way:

ail aiz ... Qin ail ai2 ... Qin ail ai2 ... Qin
aj—1,1 Gj—1,2 -+ Aj—1,n aj—1,1 @j—1,2 --- Qj—1,n aj—-1,1 @4j—1,2 --- Gj—1,n
u1+v1 u2e+ve ... Un+u, | = Uy U2 ... Up —+ V1 V2 ... Un
aj+1,1 @j41,2 - Aj+1,n aj+1,1 @j41,2 -+ Qj+1,n aj+1,1 @j41,2 --- Qj+1,n

an1 an2 ... Qnn an1 an2 ... Qnn an1 an2 ... Qnn
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Proof. We prove the result by applying mathematical induction on n. For n = 1
the assertion is obvious. Now let us assume that for n — 1 the assertion holds and
we derive its validity for n. From the definition we haveE]

det A = Z (—1)ta;y det Ay + (=17 (ug +v1) det Ajy.
1<i<n
i#]
According to the induction assumption for each i € {1,...,n}, i # j the equality
det A;1 = det B;1 +det C;1 holds. Above that, Ajl = le = le obviously holds.
Thus,

det A = Z (—I)H_lail (det B + det Czl) + (—1)j+1 (u1 + 1)1) det Ajl =
1<i<n
i#£]
= Y (1) det By + (—1)7 " uy det Bj1+
1<i<n
i#]
+ Z (—1)i+1a1‘1 det Cﬂ + (—1)j+1111 det le =det B + det C.

1<i<n

i#]

Theorem 15 (determinant and transformation). Let A, A" € M (n x n).

(i) If the matrix A’ becomes from the A by multiplying one row by a real number,

then det A’ = pdet A.

(ii) If the matrix A’ becomes from the A by swapping of two rows (in other words,
we use a row elementary operation of the first type), then det A’ = — det A.

(iii) If the matrix A’ becomes from the A by adding p-multiple of one row to
another row (in other words, we use a row elementary operation of the third
type), then det A’ = det A.

(iv) If the matrix A’ becomes from the A by a transformation, then det A # 0
holds if and only if det A" # 0.

Proof. Let us use the following notation: A = (a;;)i—1.., and A’ = (a;-j)izlnn.
j=l.n j=l.n

(i) We use the mathematical induction. For n = 1 the assertion is obvious. Let

us assume that for each (n — 1) x (n — 1) matrix, where n > 1, the assertion holds.

Let the matrix A’ becomes from A by multiplying the j-th row of the matrix A by

IWe denote by the symbol >~ the sumover all indices ¢ € {1,...,n}\ {j}.
1<i<n
B
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. Then:
n
det A’ = Z(—l)”la'ﬂ det A} =
i=1
= Z (—=1)"a;; det ALy + (—1)7 pajy det ALy =
1<i<n
i#]
= Z (—l)iJrlaiLu, det A;1 + (—1)j+1uaj1 det Ajl = pdet A.
1<i<n
1#]
In the third equality we used the induction assumption and an obvious fact that
A;'1 = Aj1.

(i) We prove this part of the theorem by applying mathematical induction as
well. For n = 1 there is nothing to prove and for n = 2 we can verify the assertion
by a direct calculation. Let us assume that the assertion was already proved for
n — 1. Let the matrix A’ € M (n x n) becomes from A by swapping of the k-th
and the [-th row, & < [. Let us calculate

det A" = Z (=1)"a; det AL+
o @

+ (=1)**Lay; det A, + (—1) Ly det 4],

If we apply the induction assumption to the matrices A};, i # k,I, we obtain
det A}, = —det A;1. If we swap in the matrix Aj; the row k with the row (k +
1), in the newly originated matrix the row (k + 1) with the row (k + 2) etc.,
then after [ — k — 1 step we get the matrix Ag;. From that and from the in-
duction assumption it follows that det Ay, = (—1)l*k*1 det Aj,, in other words
det A, = (—1)~"***+1det Ayy holds. Similarly we can derive that det A}, =
(—1)~!**+1 det Ay holds. Let us apply this in (@):

det A, = — Z (—1)”1(11-1 det Ail -+ (—1)k+1(—1)_l+k+1a11 det All"f'
1<:i<

+ (—1)l+1(—1)71+k+1ak1 det A1 = — det A.

(iii) Let us suppose that the matrix A’ becomes from A by adding a pu-multiple
of the k-th row to the [-th row. Then we have det A’ = det A + pdet B, where
the matrix B becomes from the matrix A by replacing the [-th row by the k-th row
(according to Theorem and the point (i)). The matrix B has the [-th row equal
to the k-th row. Thus, if we swap the k-th and the [-th rows, the matrix B does
not change. However, according to the assertion (ii) det B = — det B holds, i.e.
det B = 0. This would complete the proof of (iii).
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(iv) Proof of this assertion follows easily from (i)—(iii). [

Remark. Let us note that from Theorem [15(i) it follows that a determinant of a
matrix with a zero row is equal to zero. From Theorem [T5(ii) follows that a deter-
minant of a matrix with two identical rows is also equal to zero (see also the proof
of the part (iii) of Theorem|[I5).

Next, we will show a simple theorem, which gives us (together with Theo-
rem|[I3]) another way, how to calculate determinants. We will start with the follow-
ing definition.

Definition. Let A = (a;j)i—1.n, € M(n x n). We say that A is the upper trian-
j=1l.n
gular matrix provided that a;; = 0 fori > j,4,5 € {1,...,n}. We say that A is

the lower triangular matrix provided that a;; = 0 fori < j, 4,5 € {1,...,n}.
Theorem 16. Let A = (a;j)i=1.n. € M(n x n) be an upper (a lower) triangular
j=l.n
matrix. Then
det A=a11-a99---- Apy -

Proof. Let us use the mathematical induction. For n = 1 the assertion is obvious.
For n > 2, let us assume that for every upper (lower, respectively) (n — 1) x
(n — 1) triangular matrix the assertion holds. Let A € M (n x n) be upper (lower,
respectively) triangular matrix. According to the definition of a determinant we
have

det A = Z(—l)iJrlail det A;1.
=1

If A is an upper triangular matrix, then a;; = 0 for ¢ = 2,...,n, and thus the
right-hand side is equal to a1; det A1. If A is a lower triangular matrix, then for
each i = 2,...,n, in the first row of the matrix A;; there are only zero entries,
hence det A;; = 0 according to the remark following Theorem In this case the
right-hand side is equal to a1 det A1; as well. Due to the induction assumption,
we obtain
det A = all det A11 =ai1 a2 - anpn-
]

Theorem 17 (determinant and invertibility). Let A € M (n x n). Then A is invert-
ible if and only if det A # 0.

Proof. If A is invertible, then we can transform it to the identity matrix. We know
det I =1 # 0 and thus according to Theorem [I5]iv) det A # 0.

If A is not invertible, then h(A) < n (Theorem , and thus we can trans-
form A to an upper triangular matrix A’, which has at least one zero entry on the
diagonal. Then det A" = 0 and hence det A = 0. |
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Theorem 18 (determinant of matrix product). For matrices A, B € M (n x n), the
following formula det AB = det A - det B holds.

Proof. Let us put C' = AB. We divide the proof into two cases.

1. Let us assume first that the matrix A is not invertible. Let us choose a trans-
formation T" which alter the matrix A to A’ of a row echelon form. Since a trans-
formation does not change a rank and h(A) < n, then the last row of the matrix
A’ is a zero vector. Let C’ denote a matrix which becomes from C' by the transfor-
mation T". According to Theorem E] C’ = A’'B holds, therefore the last row of the
matrix C’ is also a zero vector. From that follows h(C’) < n. The matrix C' has
the same rank and hence it is not invertible. We obtain det A = det C' = 0 and the
equality is proved.

2. Now let us suppose that the matrix A is invertible. Then we can tranform
it to the identity matrix. Let us take the transformation 7" which alter the identity
matrix [ to A. Since /B = B and AB = C, from Theorem [9] it follows that the
matrix C' becomes from B by the transformation 7. From Theorem [15]it follows
that there exists such a number o € R that if D is n X n matrix and a matrix
D’ becomes from the matrix D by the transformation 7', then det D’ = « det D.
Thus, in a special case det A = adet I = «. Next, we have

det C = adet B = det A - det B,
and thus the proof is completed. ]

Remark. An assertion similar to Theorem [I5] holds also for column elementary
operations. We can use this in proving the two following theorems - but we will
omit their proofs.

Theorem 19 (determinant and transposition). Let A € M (n x n). Then det A =

det AT,
Theorem 20. Let A = (a;s)i=1.n, € M(n xn)andj € {1,...,n}. Then
s=1..n
det A = (—1)i+jaij det Aij7

i=1
det A = Z(—1)5+jajs det Aj.
s=1

The first (the second) formula is called an expansion of the determinant along
the j-th column (row, respectively).

Example 21. Calculate the determinant of the matrix

A=

N DN W
=W N
W W =
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Solution. We can calculate the determinant of 3 x 3 matrix by so-called Sarrus’
rule, which can be easily proved from definition. We first add two more rows to the
matrix A such that the fourth row of the new matrix is the first row of the matrix A
and the fifth row of the new matrix is the second row of the matrix A. This way we
geta b x 3 matrix

+K
+
+V

W
T ERTRT

Now we calculate the determinant of the matrix A by adding the products of
the entries on diagonals denoted by the sign 4+ together and from that number we
subtract the products of the entries on diagonals denoted by the sign —, i.e.

detA=3-3-3+2-1-142-2-3-1-3-2—-3-1-3—-3-2-2=14.

Example 22. Calculate the determinant of the matrix

1 -1 2 4
0 1 -1 2
A=13 4 9 9
-1 0 3 2

Solution. We calculate the determinants of n X n matrix, where n > 4, by using
the expansion along an arbitrary row (column). It is suitable to choose a row or
column with the most zero entries.

Let us expanse the determinant along the first column:

1 -1 2 -1 2 4
det A=1-(-D)". -1 2 o0o[+0-(=1)*-|-1 2 0|+
0 3 2 0 3 2
-1 2 4 -1 2 4
+3- (=131 -1 2l (=) (=D -1 2.
0 3 2 -1 2 0
We can use the Sarrus’ rule to calculate each of the 3 x 3 determinants — we

get det A = 48.

In order not to calculate as much determinants of 3 X 3 matrices, it is suitable
to transform the matrix before the calculation by the row elementary operations of
the third type (which does not change the determinant value) to a matrix which has
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in one column only one non-zero entry. In case of our matrix A, we can proceed
this way: We copy the first and the second row, then we subtract three times the
first row and add the first row to the fourth row. That gives us the matrix

1 -1 2 4
0o 1 -1 2
0 2 -4 -12
0 -1 5 6

From the expansion along the first column and the Sarus’ rule, we get

1 -1 2
detA=1-(—1)t. |2 —4 —12|=48.
-1 5 6

Another way of calculation is to transform the matrix A € M (n x n) by the
row elementary operations of the first and the third type to the upper triangular
matrix A’. The determinant of the matrix A’ is equal to the product of the entries
on the main diagonal (see Theorem [I6). The determinant of the matrix A is then
equal to (—1)? det A’, where p denotes the number of row elementary operations
of the first type which we used in transformation of the matrix A to the matrix A’.
Since, while using row elementary operations of the first type, we need to consider
the change of a sign of a determinant. This way is suitable for big n and we can
take an advantage of using it in numerical calculations. »

2.4. Solving systems of linear equations

Let us consider a system of m linear equations in n variables x1, za, ..., Ty:

a11x1 + aiors + ... + a1px, = by,

a1 71 + a2 + . .. + azpxy, = b,
(S)
Am121 + AmaT2 + ...+ GmnTn = by,

whereaijeR,bieR,izl,...,m,jzl,...,n.
If we put

all .o Q1p b1 T
A= Cle= e E= ]

aml .- Gmn bm Tn,



86 2. MATRIX ALGEBRA

then we can write the given system (S) in a vector form AZ = b. We call the
matrix A the matrix of the system and the vector b the vector of the right-
hand sides. We call the matrix

—,

(Alb) =

aAml  --- Gmn | bm

the augmented matrix of the system (S).

Gaussian elimination. We show a method how to solve the systems of linear
equations effectively. Let A € M(m x n) and b € M(m x 1). Here and subse-
quently we assume that the matrix A is non-zero. In the opposite case the problem
is trivial. We can transform the matrix A by a transformation 7" to a matrix A’ in
a row echelon form (Theorem Eki)). Let us apply T also to the b and let the result
by denoted by &'. Then for §7 € M(n x 1) follows A7 = b if and only if A'§ = b’
(Theorem@ and Theorem Bkii)), in other words, the systems Ax = band A'Z = b
have the same solution set.

Now we distinguish two cases according to the last non-zero row of the matrix
(A’|0"). Let the k-th row be the last non-zero row, k € {1,...,m}.

1. If the k-th row of the matrix A’ is a zero vector, then the k-th equation of the
system A'Z = ¥ is of the form

0-a1+ 402, =t (£0)

and thus the system has evidently no solution.

2. Now we suppose that the k-th row of the matrix A’ is a non-zero vector. Let
Jp» p = 1,..., k, be the smallest natural number such that a;jp # 0. The entry a;jp
is thus the first non-zero entry in the p-th row. There exists such an entry, since the
matrix A’ is in a row echelon form and p < k. Let us put I; = {ji,...,jx} and
then I = {1,...,n} \ I1. Let us write the system A'Z = ¥/ as

’ / / .
E CLiSCCs'i‘E ;s =b;, 1=1,...k,

sel; s€lz
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which can be rewritten in the form

/ _ a7 / / o Y | .
ay, Ty, = bl — g A1Ts — A1, Ty — Q133 @15, T
s€ly
/ _ / ! e —qal. s
Qgj,Tjy = by — E A9sTs — Q23T j3 A2 Ly
s€ls
%)
/ 1/ / / .
U1 gy 1 Ljry = b1 — E Ap—1,5Ts = Q_1 j, Tjp.»
s€ls
/ g7 /
Wjy Tjp = by — E AfsTs-
s€ls

If we choose the numbers x,, s € I arbitrarily, then we can calculate uniquely z;,
t € I, from the system (3)): We calculate from the last (i.e. the k-th) equation the
variable xj, . We plug this number together with the numbers z, s € I, into the
(k — 1)-st equation and solve the equation for x;, ,. Now we repeat the procedure
in an obvious way, until we finally solve the first equation for x;,. The solution
set of the system (5] (and thus also of the system (S)) consist of the vectors § =
(y1,.-.,9n)", where the values ys, s € I, are chosen arbitrarily and the values
Ys, s € I, are determined by the system (3)).
Let us show this procedure in the following example.

Example 23. Find all solutions of the system AZ = I;, where
2

A: N g:

S =N =
— W Ut R
N W W
[NCRITNGEN s
DO W Ut

1
1
0

—,

Solution. We transform the augmented matrix of the system (A|b) by row elemen-
tary operations to the matrix in a row echelon form

1 21 2 1|1
011111
0 001 1|-1
0 00 0O O

It can be seen from the matrix form that the given system has a solution. The
matrix (6)) corresponds with the system

1+ 229 + 23 + 224 + 25 = 1,
To +x3+ x4+ 25 = 1, @)
T4+ x5 = —1.

(6)
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If we use the notation from the previous part, then it follows I; = {1,2,4}
and I = {3,5}. We could thus rewrite the system in the form

1 =1—2x9 — 23 — 204 — x5,
gy =1— 123 — x4 — w5, 8)
T4 =—1—x5.

Now we determine the set of all solutions of the system this way: We can choose

the values x3 and x5 arbitrarily. Thus, let us put x3 = s € Rand z5 = ¢t € R. Then
we can calculate consecutively from the system (8)):

gy =—1-—1t,
xg=1—s5—(—1—1t)—t=2—s,
x1=1-22-5)—s—2(-1—-t)—t=—-1+s+t.
The set of all solutions of the system is then
{(-1+s+t,2—s,s5,-1—-t,1)7; s,t € R}.
&
From the method of_’solution og the system described above and the fact that
h(A) = h(A’) and h(AJb) = h(A’|b), we get the following theorem.
Theorem 24 (Rouché-Fontené). The system (S) has a solution if and only if the

matrix of the system has the same rank as the augmented matrix of this system.

Let us now consider a special case, where the matrix of the system (S)) is square
and invertible above that. Let us examine what we get from the above method in
this case. Applying the Gaussian elimination, we obtain k = n, I; = {1,...,n}
and Iy = (). The system () is thus of the form

! Y / /
ayxy = by — a1pxs — - — 4y, Tn,

/ Y /
Ap—1n—1Tn—1 = 91 = Qp_1 nTn,

ay T, =b.
It can be seen that we can calculate the values x1, ..., z, uniquely and the sys-
tem (S) thus has exactly one solution. The relation between the solubility of the
system of linear equations and invertibility of its matrix is specified in the follow-
ing theorem.
Theorem 25. Let A € M(n x n). Then the conditions (i)—(iii) are equivalent:

(i) the matrix A is invertible,
(ii) the system (S) has exactly one solution for each b € M (n x 1),
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(iii) the system (S) has at least one solution for each b € M (n x 1).

Proof. (i) = (ii) If A is an invertible matrix, then the equation AZ = b has only
one solution ¥ = A~1b.

(ii) = (iii) Obvious.

(iii) = (i) We prove that non (i) = non (iii) holds. If A is not invertible, then
h(A) < n and thus there exists a transformation 77, which alter A to a matrix .S in
a row echelon form with a zero vector in the last row. If we put ¢ = (1,..., l)T €
M(n x 1), we get h(S]é) > h(S). Let T, be a transformation from Theorem [6{ii)

—.

and let b € M (n x 1) be such that &% 5. Since S %2 A and (S0 z (A]b), then
according to Theorem Ekiii) h(A|b) = h(S|é) > h(S) = h(A) holds. According
to Theorem [24] the system (S)) has no solution. [

We show one more possibility how to describe the solution of a system, whose
matrix is invertible. But this result has a rather theoretical (see the chapters ?? and ??)
than practical meaning , since its usage is usually more demanding for calculation
then Gaussian elimination.

Theorem 26 (Cramer’s rule). Let A € M(n x n) be an invertible matrix, b €
M(n x1),Z € M(n x 1)and AZ = b. Then

air ... a17j_1 b1 a17j+1 ... Qlp

= anpl ... an’j,l bn anJ‘Jrl oo App
=

aip ... G@15-1 G157 Q1441 ... Qln

Gpl ... Qngj—1 QAnj QAnj+1 ... Opn

forj=1,...,n.
Proof. Let & be a solution of the matrix AZ = b. Then:

aiy a2 ai; ain by

x| |tz |ttt =

Qan1 An?2 Qnj Qnn bn

We can rewrite the previous equality to
ain a12 a1 — b a1n 0

1 + a9 441 4tz =

anl an2 TjQn; — by Gnn 0
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From that we obtain that the matrix

ail anl
B = | xja1; — b Tjanj — by
Ain e Apn

ail anl arl anl
il x]alj ....... li]an] ) 7b1 ...... 7bn _
aln ......... ann alnann
a1 Gnl a1l Gnl
. .a.l; ....... am B .b.l ........ bn .
aln ....... am aln ....... am

According to Theorem [[9]it follows that

al ... Qi ... Qip a1 ... b1 ... ain
a ceeoagi ... a a b a
0=detB = x; 21 27 2n| |21 2 2n
Gnl Qnj Gnn Gnl bn Qnn
From the last equation, we can easily deduce the required equation. ]

Example 27. Solve the system of the equations
r1+x2 —x3—24 =0,
T1 + 229 —x3+ x4 = 5,
2x1 — w9 + 3 + 214 = 1,
—r1+ T2+ a3 — x4 =4

Solution. We use the method of Gaussian elimination on the augmented matrix of
the system.

1 —
1 2 -1 1
2 -1 1 2
-1 1 1 —-11/4

1. Let us copy the first row, subtract the first row from the second row, subtract
double of the first row from the third row and add the first row to the fourth row.
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We obtain
1 1 -1 —-110
0 1 0 2 15
0 -3 3 4 |1

0 2 0 =24

2. Let us copy the first and the second row, add three times the second row to
the third row, subtract double of the second row from the fourth row. The originated
matrix is of the form

11 -1 -1 0
01 0 2|5
0 0 3 10 16
00 0 —-6|-—6

By this transformation we obtain the system

1+ T2 —x3 — x4 =0,

To + 224 = 5,
3x3 + 10z4 = 16,
—6%4 = —6,

which has the same solution as the original system.

From the last equation we obtain x4 = 1, by plugging it into the third equation
we get 3 = 2; similarly, from the second equation we get xo = 3 and from the
first z; = 0. The vector (0,3, 2, 1) is thus the only solution of the system. *

Remark. If we have an objective to solve the systems with the same invertible
matrix of the system A, but for several right-hand sides b, it could be more ad-
vantageous to find a matrix A~! and get the solution by multiplying the system
AZ = b by the inversion matrix on the left: 7 = A~! . AZ = A~'b.

In our example it is

1/2 —1/9 1/3 1/18
0 1/3 0 1/3
0 -1/9 1/3 5/9
~1/2 1/3 0 -1/6

ATl =

The solution for general right-hand side b is then of the form

T by b1/2—b2/9—|—b3/3—|—b4/18
) :Ail- b2 _ b2/3+b4/3

T3 bg *b2/9+b3/3+5b4/9
T4 by —b1/2+bo/3 — by /6

And especially for (by, b2, b3, bs)T = (0,5,1,4)T we have the same solution

(371,372,373,$4)T = (0,3, 2, 1)T.
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Example 28. Solve the system of the linear equations
—x1 + 229 + 23 = =2,
3.731 - 8.752 - 2.753 = 4,

r1 +4xs = —2.
Solution. Let us use the Gaussian elimination:
-1 2 1 | -2 -1 2 1]|-2 -1 2 1|-2
3 -8 =24 |, 0o -2 1|-2]1, 0O -2 1|-2
1 0 4 | =2 0 2 5| -4 0 0 6|—-6
From that we easily get the result: 23 = $(—6) = —1, 20 = —3(-2+1) = 1,
T1=—(-2+1-2-3)=2 Fs

Example 29. Solve the system of the equations
2(a—1)z+ (3a+ 1)y + az = 2a,
(1—a)r—2y—z=2,
ar +2ay +az=a-+1
in dependence on a real parameter a.

Solution. As we know, the solubility of the system is related to the invertibility of
its matrix A. If the matrix is invertible (det A # 0), then the system has exactly
one solution. Let us then calculate
2@—1) 3a+1 a
detA=| 1—-a -2 =1l =ala+1)(a—2).
a 2a a

1.1f a # 0,a # —1 and a # 2, then the system has exactly one solution and it
is
1+ 3a _a+1 _a2—4a—3
e a(2 —a)’ VT=Ta o T a(2 —a)
We could easily get the result by using the Cramer’s rule (Theorem [26)).
2. If a = 0, then the third equation of the system is 0 = 1 and thus the system
has no solution in this case.

3. For a = —1 the augmented matrix of the system is of the form

-4 -2 —-1|-2
2 -2 -1 2

-1 -2 —-1]0
and we transform it to the matrix
1 2 1|0
0 -6 —3]|2

0 0 010
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For a = —1 are thus the rank of the matrix and also of the augmented matrix equal
to 2 and the original system is equivalent to the system
r+2y+2z=0,
—6y — 3z = 2,

which has infinitely many solutions: z = 2/3,y = t, 2 = —2/3 — 2t, where ¢ is
an arbitrary real number.
4. For a = 2 the augmented matrix of the system is

2 7 2|4
-1 -2 —-1]|2
2 4 2|3
We transform it by row elementary operations to the matrix of the form
1 2 1]-2
03 0| 81,
00 0|7

from this it can be seen that the rank of the matrix of the system, which is equal
to 2, differs from the rank of the augmented matrix of the system, which equals 3.
The system thus has no solution for a = 2. »

2.5. Matrices and linear mapping

Now, we will deal with linear mappings. Let us start with definition describing
the notion of a linear mapping.

Definition. We say, that the mapping f: R — R"" is linear, if:

(i) Y, v € R": f(d+ ) = f(d) + f(0).

(ii)) VA € RVa € R™: f(Ad) = \f(d).
Remark. In this section we will consider the elements of the space R™ as column
vectors, 1.e. as n X 1 matrices.

Leti € {1,...,n}. We call the following vector with n entries
0
4 01 . .
e = (1) i-th coordinate
0

the ¢-th canonical basis vector of the space R™. We call the set of all canonical
basis vectors in R” canonical basis of the space R™. The canonical basis has two
very important properties, which follow easily from the definitions:
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O VEeR": F=x,- +-- - +x, ",
(i) the vectors &', ..., " are linearly independent.
y p

Theorem 30 (representation of linear mappings). The mapping f: R® — R™ is
linear if and only if there exists a matrix A € M (m x n) such that

Vi € R": (i) = Ad.

Proof. = Let the i-th coordinate of the vector ¥ € R be denoted by (¥);. Let
f:R®™ — R™ be a linear mapping. Let us put a;; = (f(éj))i, i=1,...,m,
j=1,...,n, then it is sufficient to show that (f()), = (Ad);,i = 1,...,m, for
each @ € R™. Let us calculate

(f(@)), = <f<zujéj>> = Zuj (f(&), = Zug‘% = (Ad);.

<= This implication follows from the definition of a matrix multiplication and
from the theorem about matrix multiplication properties (Theorem 3)). ]

Remark. The matrix A from the previous theorem is determined uniquely. If f (%) =
Al should hold for each vector & € R", then it must follow in a special case
f(&7) = A& foreach j € {1,...,n}. At the same time A€; is the j-th column of
the matrix A. It shows that the matrix A is determined uniquely (it must have the
vector f(&’) in the j-th column) and explains why the matrix A was defined in a
certain way.

We call the matrix A from the previous theorem the representing matrix of a
mapping f or that the matrix represents a mapping f.

Example 31. From the previous theorem it follows that all linear mappings from R
to R are of the form x — ax, where a € R. Thus, these are the well known linear
functions.

Similarly, linear mappings from R2 to R are of the form L: 7 — ajx1 + aszo,
where a1,as € R. Let us note, that a graph of the function L is a plane in R3
passing through the origin and VL(Z) = (a1, as) holds for each ¥ € R?. See the
following figure.
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V|

—pa

FIGURE 1.

Example 32. Examples of the linear mapping from R? to R? are an anisotropic
dilatation or a rotation through an angle ¢. The representing matrix A is given by

a 0 cosp —sing .
<O b> , <sing0 cos ) , respectively.

Ae?k

- 5

A\ 4
y

FIGURE 3. A rotation through an angle ¢

Similarly, an example of a linear mapping from R? to R? is a dilatation repre-
senting by the matrix

o O
o o O
o OO
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or a rotation through an angle ¢ around the axis given by a vector 7' € R3.

FIGURE 5. Rotation in R?

Theorem 33. Let a mapping f: R” — R” be linear. Then the following conditions
are equivalent:
(i) f is a bijection (that is f is an one-to-one and an onto mapping from R to
R™),
(ii) f is an ono-to-one mapping,
(iii) f is a surjective mapping from R" to R".

Proof. (i) = (i1) This implication is obvious.

(i) = (iii)) We prove it by a contradiction. Let thus f be injective, but not
surjective. Let A be a matrix representing the mapping f. The matrix A is not
invertible (Theorem and thus AT is not invertible (Theorem . The rows of
the matrix A” are thus linearly dependent. Since the rows of the matrix A’ are
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the columns of the matrix A (let them be denoted by 5, ..., 5"), there exists their
non-trivial linear combination which is equal to a zero vector:
21§ 4 -+ 1,5 = 0.
x1
We could rewrite the last equality: AZ = 0, where & = | : > Then we have

Tn
AZ = 0, T # 0 and also Ad = 0. This contradicts the assumption that f is an
injective mapping.
(iii) = (i)  This implication follows from Theorem [25] about solving linear
equations systems. ]

Theorem 34 (composition of linear mappings). Let f: R™ — R™ be a linear
mapping representing by a matrix A € M(m x n) and g: R™ — R” be a linear
mapping representing by a matrix B € M (k x m). Then the composite mapping
go f: R® — RF is linear and represented by the matrix BA.

Proof. For v € R it follows that
(g0 F)(@) = g(f(v)) = g(AT) = B(AD) = (BA)v.

We used the asociativity of a matrix multiplication here. ]

Remarks. 1. The previous theorem shows us the relation between a composition
of linear mappings and a matrix multiplication. The representing matrix of linear
mappings composition is equal to the product of their representing matrices in
corresponding order.

2. Let a linear mapping f: R™ — R" be a bijection. It can be easily justified that
an inversion mapping f ! is also linear. Let an identity mapping on R™ be denoted
by Id. If f is represented by a matrix A and f~! is represented by a matrix B, then
due to the relation fo f~! = f~'o f =1d AB = BA = I holds (according to
Theorem . Thus B = A~!, in other words the mapping f~! is represented by
the matrix A~!.

3. Let AB = I holds for matrices A, B € M (n x n). If we take a linear mapping
f: R™ — R" represented by a matrix A and a linear mapping g: R" — R"
represented by a matrix B, then f o g = Id holds. Hence, g is an injection and f is
a surjection. According to Theorem [33| f and ¢ are bijections. From that it follows
that g is an inversion mapping to f. According to the previous points B = A~1
holds, especially we have BA = I. We proved that from relation AB = I follows
necessarily BA = I provided A, B € M(n x n).
Example 35. Let a mapping f: R3 — R3 be defined by
f(uh uz, u3) = (ul —Uu2,U1 — 2u27u1 - 3“‘2)T'

Show that f is a linear mapping and determine its representing matrix.
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Solution. Let @ = (uy,uz,u3)’ € R®and ¥ = (v1,v9,v3)" € R3. Then
fa+7) =
= (u1 + v — ug — vo,u1 + v1 — 2ug — 2vg,u1 + v — 3uy — 3@2)T =
= (u1 — ug,uy — 2ug, up — 3ug)? + (v — va,v1 — 2v9, vy — 3ve) =
= f(@) + ().
Let A be an arbitrary real number. Then
FOT) = (Auy — Aug, Mg — 2Xug, Auy — 3dug)? =
= Muy — up, uy — 2ug, u; — 3ug)’ = Af(i).

We checked that the mapping f has both properties from the definition of a linear
mapping and thus it is linear. From the function formula for f it can be easily seen
that
1 -1 0 Uy
f(g):f(UhUQ,U:g) =1 -2 0 U2

1 -3 0 us
But we can also realize that the columns of the representing matrix are the vectors
f(€), f(€%) and f(&®), see the proof of Theorem [30} *

By the end of this chapter let us show one more usage of determinants.

Example 36. Calculate the area of a triangle ABC, whose vertices has the coor-
dinates A = [1,1,0], B = [3,0,2],C = [0, —1,1] in R3.

Solution. It is known from geometry that the area of a triangle ABC can be cal-
culated according to the formula p = %bc sin a,, where b is the lenght of a line
segment AC, c is the lenght of a line segment AB and an angle « is an interior
angle of the triagle at a vertex A. For the calculation of the values b, ¢, sin a we
use the vectors @ = B — Aand ¥ = C — A. Itis in fact b = ||7||, ¢ = ||d|
and it can be proved that cosa = % (Let the symbol % denote the scalar

product of vectors @ = (u1,uz,u3)? and ¥ = (v1,v2,v3)T, which is defined by:
0 = ujv1 + ugvy + usvs. We use the symbol ||@| = /u? +u3 + u3 to de-
note the length of the vector .) The angle « from the interval (0, ) is uniquely
determined by the expression for cosinus of this angle. We can calculate easily
sina = V1 — cos? a.

In our case we have @ = (2, —1,2)T, 7 = (-1,-2,1)T, ||@| = 3, ||7]] = V6,
cosa = 1/6/9 and sin a = 5v/3/9. The area p of the triangle ABC! is thus equal
top = 5v/2/2.

We can use another interesting formula to calculate the area of a triangle in R?.
Let us define the vector product @ x @ of two vectors @ = (u1, ug,u3)’ and ¥ =
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T
ﬁ><172< >

By a direct computation we can immediatelly find out that ©u x ¥ = vu x v = 0,
in other words the vector product of two vectors is perpendicular to each of them.
We can easily calculate from the definition of the vector product

L 02212 T AT
Huva:\/HuH [9]]7 = @2 = ||d]| |9]] V1 — cos? a = ||| [|7]| sin ,

from that we obtain another way how to express the area of the triangle ABC,
namely p = % ||@ x . *

(v1,v2,v3) by

U2 U3
V2 U3

up us
V1 U3

Ur U2
U1 V2

) )

Remark. Let us derive a formula for volume of a parallelepiped ABCDA'B'C'D’.
We know that the volume is given by the formula V = P - h, where P is the area
of the base ABCD and h is the length of the two basis ABC'D and A’B'C'D’.
Letusputd = B— A, v =D — A, W = A — A. According to what we derived
previously, we can write P = ||@ x 7|

Now we need to calculate h. We know that the vector & x ¥/ is perpendicular
to a plane of the lower base ABCD. Let 6 denote the angle between vectors
and @ x v, then we get |cos @] = h/ ||@|| and thus h = |cos 0| ||T]].

Thus we obtain V' = ||@ x 7|| ||| |cos 0. But we have at the same time:
|cos @] = 7quj< vt .
[ ]| [l > ]

By plugging the expression into the formula for V', we finally get

Uy u2 U3
V=|wdxv|=|det | vi vy w3
wy w2 w3

Thus we can summarize this: the volume of a parallelepiped which is deter-
mined by three linearly independent vectors i, ¥, 1 in R? is equal to the absolute
value of the determinant of the matrix

Uy U2 U3
U1 V2 U3
wp w2 w3
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2.6. Cviceni

1. Calculate the product AB, where

1 2 3 x
A=|0 1 -1|, B=|y
-2 3 0 2

2. Calculate the products AB and B A, where

1 2 1 -1
A:<3 0>’ B:<1 1)‘
3. Calculate the product AB, where

121
A_G‘ll?)’ B={3 17
5 2 1

4. Determine a matrix X so that the equality AX = B holds, provided

() o)

5. Calculate A" = AA.--Aforeachn € N, if
—_—

n-times
1 1
().

6. Solve the matrix equations system
3X +2Y =124, 4X +3Y =174

with unknown matrices X and Y, where
1 1 1 0
A= <2 0 -1 1) '
7. Determine the rank h(A) of the matrix

-1 2 -3 5 1
1 -1 5 -2 -1
A=1]|-2 5 -2 10 1
o 1 4 0 -1
-1 3 1 5 0
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8. Determine the rank h(A) of the matrix

4 0 1 1
9 1 2 2
A= 2 -2 a 1
a 0 a+1 3
in dependance on a parameter a € R.
9. Find the inverse of the matrix
1 1 3
A=11 0 -2
2 1 1
10. Find the inverse of the matrix
1 0o -1 2
1 1 -1 1
A= -2 0 3 —6

-4 -1 6 -10

11. Find the inverse of a product AB of the matrices

0o 2 -4
1 -1 2 0 3 0 6 -2
A=|-2 1 0 -1 1], B=|2 -1 2
3 0 -1 2 -1 1 -4 9
-1 1 O
In the following four exercises find the determinant of a given matrix.
2 -1 2
12. (; _58> 13. (3 1 1
1 1 2
102 3 2 2 1 0 -1
9 1 3 9 2 1 0 -1 0
14. 15 1 0 -1 0 1
4 0 3 -1
3 9 1 _9 o -1 0 1 2
-1 0 1 2 2
Solve the following equations in R.
z 1 0 5—x 6 -3
16. 2 -1 1|=9 17. 6 9—=x 0 |=0

1 -2z -2 -3 0 9—=x
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Solve the systems of equations / the systems of equations with parameter a €

R.
18. 19.
dr+3y+2z=1 or—y+2z=1
r+3y+52z=1 3x+5dy—z=2
3z + 6y + 9z =2 20 — 6y + 3z =4
20. 21.
xr1 — X9 — 314 = —1 ax+y+z=1
Tx1 — 229 + 223 — 1024 = —2 r+ay+z=a
Tr1 — 20 + 23 — 924 = —4 x+y+az:a2
2x1 — 2x3 — 44y = —6
61 — xo + 223 — Txy = —1
22, 23.
x—5y—T7z=0, T4+ 2y+3z2+4t =1,
—2x+y+az = -3, 20 — 2y + 3z — 3t = =5,
—x+ay+3z=-1 c+y+z+t=>5,

dr +3y — 52+ 2t =3

24. Solve the system of equations
r1+ 29 — 23 =05,
x1 — 4x9 + 223 = —1,
r1—x2+x3=1
by using an inversion matrix (if it exists).

25. Find all solutions of the system AZ = b, where

1 3 2 4 (-1
A=[1 1 0o 3|, b=|[-4
~1 -3 —2 -2 ~1

26. Find all solutions of the system A¥ = b, where

1 21 3 2 0
2 315 3 - | -2
A=1110 921 °=|
01100 3
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27. Find all solutions of the system AZ = b, where

1 3 2 4 3 =2 —4
1 1 o 3 2 =2 > -7
A= -1 -3 -2 -2 -1 -3/’ b= -3
0 1 1 0 0 -1 1

28. Let mappings f, g and h from R3 to R* be given by:

() flur,ug, uz) = (ug +ug +uz, ut +us —uz, uy —ug +ug, —u1 +uz +uz)’,

(11) g(ula uz, u3) = (Ul, 2U2, —us + 5U17 O)T’
(i) h(u1,us,us) = (1,u1,u2,u3)’.

Examine in each case if the mapping is linear. If so, determine its representing
matrix.

29. Let f: R* — R? be a linear mapping determined by a matrix A and g: R3 —
R* be a linear mapping determined by a matrix B, where

1 0 2 1 1_21_11
A=[1 -3 -1 -1|, B=

0 0 3 1 oL

1 0 0

Determine a matrix of a mapping g o f: R* — R* and a matrix of a mapping
fog:R3— R3. Write formulas of these mappings.

Results of exercises

x4+ 2y + 3z

1.AB = y—z 2.AB:<§ _13> BA:<_42 g) 3.AB =
—2z + 3y

(%g 181 {1),3) 4. X = <_21 _31> 5. It can be proved by mathematical

induction that A" = (é g‘) holds. 6. X = 24 = (i (2) _22 g)

Y:3A:<2 o2 g) T.h(A) =3 8. h(A) =4 ifa £ 1

and a # 12; h(A)

=3fora=1,a =12 9. Inverse of the matrix does not
exist, since h(A) = 2.
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10.
3 0 1 0
1 |-2 2 =21
A7 = 0 2 -3 2
-1 1 -2 1
11.
22 8 =5
AB) =[5 2 -1
-3 -1 1
12. 31 13. 11 14. —24 15.8 16. The equation has two solutions:
T, = 1,29 = —2. 17. The equation has three solutions: x1 = 9, zo = 0,
xg = 14. 18. The system has infinitely many solutions: x = ¢,y = 1/3 — 2t,
z=t,teR. 19. The solution does not exists.
20. Given system has infinitely many solutions of the form 1 = —6/7 + 8t/7,

x9 =1/7—13t/7, x3 = 15/7 — 6t/7, x4 = t, where t € R.
21. For a # 1, a # —2 the system has one solution:
a+1 1 ~ (a+1)%
a2 YT ax2 T a2
for a = 1 the system has infinitely many solutions of the form:

r=1—-s—-t, y=s, z=t,
where s,t € R; for @ = —2 the system has no solution.
22. For a # 2 and a # 17 the system has one solution:
—26 -1 -3
Ta—17 YT aoar T aoar

for a = 2 the system has infinitely many solutions:

xr=5/3+1t/3, y=1/3—-4t/3, z=t,
where ¢t € R; for a = 17 the system has no solution.
23.x=-3,y=13,2=2,t = -7
24. The system has one solution:

/2 0 1/2 5 3
~1/4 —1/2 3/4|-[-1]=1{ 0
—-3/4 —1/2 5/4 1 -2

25. 01 = -3+t,xo=2—t,xg=t,xy = —1;t €R 26. 21 = —3+1t1 + 1o,
To=3—t1,x3 =11, 04 = —1—tg, x5 =t9;t1,t9 ER 27.x1 = =2+t —to,
To =12, x3 =21, xy = —1—11, x5 =1, 06 = 1; t1,t2 €R
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28. (i) The mapping f is linear and

1 1 1
1 1 -1
A=11 1 1
-1 1 1
(i1) The mapping g is linear,
1 0 O
02 0
A= 5 0 -1
00 O
(iii) The mapping h is not linear.
29. The matrix of the mapping g o f is
0o 3 6 3
3 -6 -3 -2
BA = 1 -3 2 0]
1 0 2 1

(g o f)(ula u2,us, U4) =
= (Bug + 6us + 3ug, 3u; — 6ug — 3uz — 2uy, up — 3ug + 2us, ug + 2us + uyg).
The matrix of the mapping f o g is

2 1 3
AB=|-3 -8 3],
1 3 3

(f og)(ul,uQ,ug) = (2u1 + uo 4+ 3usz, —3u; — Suo + 3us, u + 3uoe + 3U3).






CHAPTER 3

Integral

3.1. Primitive function

In this chapter we will be concerned with somewhat opposite operation to dif-
ferentiation. In other words, let a function f be given. Then we will look for a
function F* whose derivative is equal to the original function f. As we will see, this
problem is usually more complicated than finding a derivative of a given function.

Definition. Let a function f: I — R be given, where [ is an non-empty open
interval. We say that the function F': I — R is a primitive function of f over I
provided that for each = € I there exists F’(x) for which F’(x) = f(x) holds.

Remarks. 1. The process of finding a primitive function is sometimes called in-
tegration, the function f an integrand and the primitive function an indefinite
integral. We are always looking for a primitive function of a given function on a
non-empty open interval.

2.If F is a primitive function of the function f over I, then according to Theo-
rem ?? the function F' is continuous on [.

3. A primitive function of a given function f is not determined uniquely. If a
function F' is a primitive function of f over an interval I, then also a function
x +— F(x) 4+ ¢,z € I, where ¢ € R is a constant, is a primitive function of f
over I. However, the following theorem ensures that a primitive function is deter-
mined uniquely “up to a constant”.

Theorem 1. Let F' and G be primitive functions of a function f over an open
interval I. Then there exists ¢ € R such that F'(z) = G(x) + cforeach x € I.

Proof. Let us put H(z) = F(x) — G(z), x € I. Then for a derivative of H
follows H'(z) = f(x) — f(z) = 0 for each = € I. According to the Theorem
about monotonicity and the sign of the derivative, the function H is constant on
interval I, which would complete the proof. ]

Remark. Let the function f has a primitive function F' on an open interval I. Ac-
cording to a previous remark and the theorem it could be seen that we obtain a

107
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primitive function of the function f over I by adding a suitable constant function
to one primitive function F'.
Let the set of all primitive functions of a function f be denoted by a symbol

/ f(z) da.

However, a problem arises now how to describe this set precisely and simply. We
will use a notation

/f(ac)dxéF(:v), xel,

which means that for an arbitrary primitive function G of the function f there exists
a constant ¢ € R such that G = F' + ¢ on the interval [.

Theorem 2. Let f have a primitive function F' over an open interval I, a function g
have a primitive function GG over I and «, 8 € R. Then the function o F' + G is a
primitive function of a.f + Sg over I.

Proof. The assertion follows from the equation (aF + 8G)" = af + Bg which
holds on the interval 1. [

The following theorem is very important, however, it will be proved in the
latter section.

Theorem 3 (the existence of a primitive function). Let f be a continuous function
on an open interval I. Then f has a primitive function over /.

Remark. 1t is not difficult to realize, that there is no primitive function of the func-
tion signum on the whole R. Conversely, we can also find discontinuous functions
which have primitive functions.

Primitive functions of some important functions. We can check the validity
of the following formulas by differentiating:
n+1
+1’

forne Z,n < —1,
a+1

o cZ —
x dx—a+1,x€(0,+oo) fora e R\ {—1},

o/a:”d:cé x€R formeZ,n>0;2 € (—00,0)orz € (0,+00)

C
o | efdx=¢€% zER,

. Cc
° sinzdr = —cosz, z € R,

1,
. /dleogm, 2 € (=00,0) or € (0, +00),
xT
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C .
° cosxdxr =sinz, = € R,

1 c
. /COSQxdx:tg:c, x € (—m/2+km, /24 kn), k € Z,

-1
° deécotgzv, x € (km,m+ kn), k € Z,
sin“
1
° T deéarctg:c, r €R,
x
1 c
. /dx:arcsinx, z € (—1,1),
V1—2a2
/ L gp s € (~1,1)
o | ————dx =arccosz, ¥ € (— .
1_x2 £ )

Basic methods of calculation of primitive functions are described in Theorem[4]
and in Theorem [

Theorem 4 (integration by substitution).

(i) Let F be a primitive function of f over (a,b). Let ¢ be a function defined
on (a, #) with values in the interval (a,b) which is differentiable at each point of
the interval (v, 3). Then

/ F (@) (z) dz £ F(p(x)) over (a, B).

(ii) Let the function ¢ be differentiable at each point of the interval (v, 5) and
the derivative is either positive at all points or negative at all points and gp((a, I5; )) =
(a,b). Let the function f be defined on interval (a, b) and

[ Fe)e®dt £ 6(0) over (. 5).
Then
/f(ac) dz = G(p " (z)) over (a,b).

Proof. (i) The assertion follows from the theorem about the derivative of the com-
posite function (Theorem ??) which says in this case that for each = € («, 3) the
derivative is (F(¢(2))) = f(p(2))¢' (2).

(ii) According to the assumption, ¢ is either increasing on («, 3) or decreasing
on (v, 3). Thus, there exists ¢!, For each = € (a, b) then follows:

-1 r_ 1Mo (o= 1 — flx
(Gl () = fele™ ()¢ (@ @) i@y ~ /@)

We used the theorem about the derivative of a composite function and the theorem
about the derivative of an inverse function. ]
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x
V2 + 522

Solution. The given function is continuous on the whole R, thus it has a primitive
function on the whole R. For calculation of [ g(z) dz we use the substitution “¢ =
24522, i.e. the function ¢: R — (0, +00), p(z) = 2+ 522, since we notice that
¢'(z) = 10z and thus

Example 5. Determine a primitive function of the function g(x) =

/ T q 1 v z) g
—dr = — x
V2 + b2 10 \/p(x)

According to Theorem (4] [1) we need to calculate
C 1
Vi, te (0, .
10 / N (0, +20)

x'—>5 2+ 522 + ¢,

where ¢ € R is an arbitrary constant, is thus a primitive function of the function g
over R. &

1
V8 + 6x — 922

Solution. The functione g is continuous on its domain (—2/3,4/3), and thus has
a primitive function over the interval. We first manipulate the function g in the
following way:

Thus, each function

Example 6. Determine a primitive function of the function g(z) =

@)= = s

Let us then calculate

1/ L dx
3) STow-137°

This integral is similar to the integral

dt = arcsint.

1
V1—1t2
We use Theorem i). If we put p=x — = — 1/3 (its derivative equals to 1), then
we get

1/ L dx—l/(p < dz
3J) /1—(x—1/3)? 3. /1—¢%(x)

According to Theorem [{4]i) it is sufficient to calculate

1
dt £ - arcsint, te (—1,1),

Vi 3
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hence

£ %arcsin(x —1/3), xe€(-2/3,4/3).

1/ ! at
3) Vo132

Example 7. Determine a primitive function of the function f(z) = v/1 — 22.

Solution. Let us search the primitive function over the interval (—1, 1), which is the
maximal open interval contained in the domain of the function f. Here we choose
o(t) = sint, where t € (—m/2,7/2). The function ¢ has a positive derivative on
the interval (—7 /2,7 /2) and it maps the interval (—m/2,7/2) to (—1, 1). Next,

/f(w(t))w’(t) dt—/Icost|costdt— /cothdt_

/ 1+1 2t dtclt+1'2t
— — — COS = — — S1n
2 2 2" ' 4

holds on the interval (—7 /2, 7 /2). We can easily check the last equation by differ-
entiating, eventually by using the theorem about integration by substitution once
more. Then according to Theorem [4{(ii) we obtain

C 1 _1 1 . _1 1 . 1 . .
/f(a:) dz = 2% (x) + 1 sin(2¢~ ' (z)) = 5 arcsinz + 1 sin(2 arcsin z)

on the interval (—1, 1). *»

Remark. If we want to use Theorem [4[i) to calculate a primitive function to the
function g, it is necessary to find functions f and ¢ such that g = (f o ¢) - ¢’
holds. Often, the procedure is to choose the function ¢ at first and then assign the
function f to it. In Examples and@ we replaced the expression ¢’ (x) dx with the
expression dt and the rest of the integrand was then of the form f o . Formally,
we substitute p(z) = ¢ and ¢'(x)dz = dt. The last relation, although has no
mathematical meaning, is helpful in calculation.

In case, that we did not success in finding the function f in a previously men-
tioned way, but the derivative of the function ¢ is positive everywhere ( or negative
everywhere), we can proceed the following way. We replace the expression x with
the expression ¢ ~!(¢) and the expression dz with the expression (1) (¢) dt, so
we get the expression [ g(¢ ' (t))(¢~!)(t) dt. The integrand is then the searched
function f. In fact

fle(@) - ¢'(@) = g(¢™ () (™) (¢(2)) - /() = g(2)

holds, while the last equality follows from the theorem about the derivative of an
inverse function (Theorem ??).
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Theorem 8 (integration by parts). Let I be an open interval and functions f and g
be continuous on /. Let F' be a primitive function of f over I and G be a primitive
function of g over I. Then

/ F(@2)G() do = F(2)G(x) — / F(2)g(z) dz over 1. 0

Remark. The expression (I)) is an equality of two sets of functions. The set on the
right-hand side contains functions of the form F'G — Z, where Z is an arbitrary
primitive function of the function F'g over I.

Proof. 1t is sufficient to realize that the functions fG and F'g are continuous and
thus have primitive functions (Theorem [3) and that (F'G)' = fG + Fg holds on
the interval [. ]

Example 9. Determine a primitive function of the function ¢(x) = /= log? x.

Solution. The function ¢ is continuous on its domain (0, +00), thus it has a prim-
itive function over this interval. We use integration by parts for calculation of

[ ¢(x) dz (Theorem 3).
Letus put f(z) = /z, G(z) = log? x and calculate

/f(:z:) dr = %\/mig’ and  g(z) =G'(x) =2logz - é

We have
2 4
/\/Elongdx: 3\/az3log2x—3/\/§logx.

We use again integration by parts for calculation of the last integral. Let now
f(z) = y/z and G(z) = log z, then

/f(x) dz = %\/xj and  g(z) = G'(z) = 1

T

Finally we have on the interval (0, +00)
) 2 , 42 2 .
Ve log xdng\/ﬁ’bg T3 §Vx3logac—§ Vrdr | =
c 2 2
= g\/ac?’logzx — S\/x?’logac—i— % : g\/;:

2 4 8
= §Vx3 <log2x— 310gx+9> .
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Example 10. Let n € N. Determine a primitive function of — over R.

1
(14 22)

Solution. Letus put I, = / dz and calculate according to Theorem

1
L= 1 ———de=
/ 1+ a22)m x
~N
f G
1 2z
=@ -W—/ vy 2=

~ ——— ~—
F G F g

= (1+$2)n+ "] a2 T

T 1+22-1
(I+a2n n/(1+x2)n+l “
T

From that we calculate

T n 2n —1
2n(1 + a2)n 2n

Iy = I,, z€RneN.

Since I; = arctg x, this recurrence formula enables us to determine I,, for each
n € N. For example

Lt T L
— T 5% — arc X
c x 3

3
+ —arctgx.

I =
3T 11222 81142 8

L3

Theorem [3] says that a continuous function on an open interval has always a
primitive function. However, we cannot always express this primitive function by
elementary functions — more precisly by a finite number of addition, subtraction,
multiplication, division and composition eof elementary functions. This property
has for example the function e~ however, the proof is not easy. Now we show
some types of functions, which have not this difficulty. Basic class of these func-
tions are the rational functions. We show also some other types of functions, whose
integration is possible to transform to integration of rational functions by a suitable
substitution.
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We first introduce some facts from the algebra. Let us note that if we have a

polynomial
P(x) = apx™ + -+ -+ a1z + ao,

that we can plug into a variable x complex numbers as well and that the values then
will be also complex numbers. Thus, we could take each polynomial as a mapping
from C to C as well. In the rest of this section, we will consider also a polynomi-
als with complex coefficients, i.e. ag,...,a, € C. Degree of this polynomial is
defined by an obvious way. In what follows, let the degree of a polynomial P be
denoted by the symbol st P.

Lemma 11 (about polynomials division). Let P and () be two polynomials (gen-
erally with complex coefficients) and the polynomial () is not equal to zero. Then
there exist uniquely determined polynomials R and Z satisfying:

o st Z <stQ,
o P(x) =R(x)Q(z)+ Z(x) forall x € C.
If P and @ have real coefficients, then also R and Z have real coefficients.

Proof. We prove the existence of the polynomials R and Z by applying mathemat-
ical induction on a degree of P. If st P = —1, i.e. P is equal to zero, then put
R = Z = 0. Now let us assume that the assertion holds for all polynomials P of
degree less then k. Let us have a polynomial P of degree & > 0. If st P < st Q,
then put R = 0 and Z = P. Otherwise, we write m = st () and denote by a; and
b, the coefficient of the term x* of the polynomial P and the coefficient of the
term 2™ of the polynomial (), respectively. If we set
P(x) = P(x) - 752" Qo).
m

then we obtain st P < k and hence from the induction assumption there exist
polynomials R and Z such that P = RQ + Z and st Z < st Q holds. Now it
suffices to put R(x) = %J:k_m + R(x).

If the polynomials P and () have real coefficients, then from the previous pro-
cedure it can be seen that also polynomials 12 and Z have real coefficients.

It remains to prove the uniqueness. Let us suppose that

P=RiQ+ 71 = RQ + Zs
for any polynomials Ry, Re, Z1, Z5 and at the same time st Z; < st ) and st Zy <
st Q. Then 0 = (R1— R2)®Q+Z1— Z3 holds. The polynomial R; — Ry is necessarily
equal to zero. Otherwise, st ((R1 - RQ)Q) > st @ > st(Z; — Z3) must hold, which
contradicts with the equality (R; — R2)Q + Z1 — Z2 = 0. From that it follows that
R1 = RQ and Zl = ZQ. |

Corollary 12. If P is a polynomial and A € C its root (i.e. P(\) = 0), then there
exists a polynomial R satisfying P(z) = (z — A\)R(z) forall x € C.
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Proof. Letus put Q(x) = x — . Then according to Lemmathere exist polyno-
mials R and Z such that P = RQ) + Z, where st Z < st (Q = 1. The polynomial Z
is thus constant. We have 0 = P(\) = R(A\)(A — A) + Z(\) and then Z()\) = 0.
From that follows that Z is equal to zero. ]

Theorem 13 (factoring to root terms). Let P(x) = a,z™ + -+ + a1z + ap be a
polynomial of degree n € N. Then there exist numbers z1, ..., z, € C such that

P(z)=ap(zr—z1) - (xr — ), x€C. ()

Proof. We use mathematical induction. For n = 1 the assertion is obvious, since
P(z) = ai(z — (—Z—‘l))) and it suffices to put z; = —2%. Letthenn € N, n > 1,
and the assertion holds for all polynomials of degree less than or equal to n —
1. According to the fundamental theorem of algebra (Theorem ??) there exists a
root z,, € C of the polynomial P. Due to Corollary (12| P(z) = (z — x,)R(z)
holds for some polynomial R. Let us note that st R = n — 1 and above that the
coefficient of 2! of the polynomial R is equal to a,,. Thus, according to the
induction assumption there exists a factorization R(x) = a,(z—21) - - - (x—2p_1).
From that we obtain a required factorization of the polynomial P. ]

Remarks. 1. For each polynomial, the factorization (2)) is unique up to the order of
the terms. There are all roots of the polynomial P among the numbers 1, ..., Ty,.
From that it follows that a polynomial of degree n € N has at most n different
roots.

2. The assertion of Corollary[I2]can be strengthen even more in the following way.
If P is a non-zero polynomial and \ € C, then there exists exactly one k € NU{0}
and a uniquely determined polynomial R satisfying P(x) = (x — A\)*R(x) for all
x € Cand R(X\) # 0.

Since if we have P(z) = (z — A\)* R(x) for a polynomial R and k¥ € NU {0},
then the polynomial R is necessarily non-zero and £ < st P. We could thus find
the biggest £ € N U {0}, for which there exists a polynomial R satisfying P(z) =
(x — A)*R(x). From Corollary [12|it follows that R()\) # 0, otherwise we get a
contradiction with maximality of k.

Let us prove the uniqueness. Let us assume, that P(z) = (z — A\)'R(z) holds
for any | € NU{0} and a polynomial R satisfying R()\) # 0. Let us note that from
the choice of k follows I < k. Then we get (z — \)*'R(z) = R(x) for z # \
and from the continuity it follows that this relation is satisfied also for x = A. It
must be k& = [, otherwise by substituting z = \ we obtain R(\) = 0 and that is
contradiction. Then also R = R holds and this would complete the proof.

Definition. Let P be a non-zero polynomial, A € C and £ € N. We say that a
number )\ is the root of the multiplicity k£ of a polynomial P if there exists a
polynomial R satisfying R(A\) # 0 and P(z) = (z — \)*R(z) forall 2 € C.
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Remark. From the remark antecendent the definition it follows that the multiplicity
of a root is uniquely determined and is equal to the number of occurences of the
number \ in the n-tuple x1, z2, . .., &, from Theorem[I3]

Polynomials with real coefficients have the following important property.

Theorem 14. Let P be a polynomial with real coefficients and A € C is a root of
the polynomial P of multiplicity k. Then also a complex conjugate A is a root of
the polynom P of multiplicity k.

Proof. We first show that P(\) = 0 if and only if P(\) = 0. Let us assume that
the polynomial P is of the form P(x) = a,2™ + -+ + a1x + ag, where a; € R,
7 =0,...,n. Then

PA) =an(\)" + -+ aidA+ag=a\" + -+ a1 A+ ag =
= ap\" + -+ oA+ 8y = ap N + - a1 A+ ag = P()),

From that the foregoing assertion follows.

We prove the theorem by applying mathematical induction on the degree of P.
If st P = 1, then ) is real and thus the proposition holds. Let us assume that the
proposition holds for all polynomials of degree less than or equal to n» € N. Let P
be a polynomial with real coefficients of degree n + 1 and A € C a root of P. If
A\ = ), then the proposition is obvious. Let us suppose that A\ # ). According to
the first part of the proof, \ is also a root of P. According to Corollary |12 there
exists a polynomial () satisfying

P(z) = (z = A\)(z = N)Q(x),
where st () < st P holds. If we put
Rz)=(x-N(@—-X) =22 A+ Nz + I =22 — (2Re Nz + |\]?,

then we obtain that the polynomial R has (similarly to the polynomial P) real
coefficients. According to Lemma [IT] the polynomial () thus has real coefficients.
If X is not a root of (), then according to the first part of the proof neither A is a
root of  and both numbers A and X are thus roots of P of multiplicity 1. If X is a
root Q of multiplicity /, then according to the induction assumption X is also a root

of @ of multiplicity /. Hence A and \ are roots of P of multiplicity [ + 1. ]
Theorem 15. Let P(x) = a,z" +- - -+ a1x + ag be a polynomial of degree n with
real coefficients. Then there exist real numbers z1, ..., zg, a1,..., 07 B1,.-., 0
and natural numbers pq, ..., Pk, q1, - . ., q; such that
o P(x) = an(x—z1)P - (x — 2)P* (2 + arz + 1) - - - (2 + gz + B) %,
e none of the two polynomials x — x1,...,2 — Th, 2 + o + B, .2+

ax + (5; has a root in common,
o the polynomials 2?2 + a1z + B, ..., 2% + ayx + B have no real root.
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Proof. Let x1,...,xy be all real roots (each of them different to each other) of the
polynomial P with multiplicities p1,...,ps and z1,..., 2 be roots of the poly-
nomial P with positive imaginary part with multiplicities qq, . . ., ¢;. Then accord-
ing to Theorem [T4] the numbers Z7, .. ., % are also roots of P with multiplicities
q, - --,q. Thus we can write

P(z)=ap(x —x1)P - (z —z)Pk(x — 21) " (x — 20) D - - (2 — 27) % (z — Z7) 2.

Next (x — z;)(z — %) = 22 + (—2; — Z)x + 2% holds. Both numbers —z; — 7,
z;z; are real, and therefore we can put a; = —z; —z; and [3; = 2;%;. It can be easily
justified that the required properties are satisfied. ]

Theorem 16 (partial fraction decomposition). Let P, () be polynomials with real
coefficients such that st P < st @) and let

Q(z) = ap(x — 21)P* - (x — )P (2% + g + 1)1 -+ - (2% + e + By)
be a polynomial decomposition () from Theorem [I5] Then there exist uniquely
determined real numbers A%,..., A}Dl,..., A’f,...,A’;k, Bll, Cll,..., B(}I, C’l}l,...,
Bll, Cl..., Bfn, C(ln such that

1 k
P(l’): A% +...+¢+...+A711€+... 7147”“
Qx) (v —m) (x — 1) (x — zp) (z — xp)Pr
1 1
Bjz +Cf bt By +Cq NI
(22 + aqz + f1) (22 + aqx + )
Blz + Cl Béx—i—(}’l
+- 4 ; 4 xeR\{xy,..., x5}
(2 + gz + B)) (22 + ayx + 3@ \ k)

The proof of this theorem is difficult more formally then by an idea and we
will omit it.

Now we have prepared everything to search for a primitive function of a ratio-
nal function.

Algorithm for calculating the primitive function of a rational function.
Let P and () be polynomials. If we have to integrate a rational function P/Q), then
we proceed this way:

In case that the degree of P is greater than or equal to the degree of (), we
divide the polynomial P by the polynomial () (Lemma|IT]) and obtain a decompo-
sition

P(x) Z(x)

Q(z) Q(x)’
where R, Z are polynomials and the degree of Z is less than or equal to ). It
is easy to find a primitive function of R. If the polynomial Z is non-zero and
st P < st @, it remains to find a primitive function to the rational function Z/Q

= R(z) +
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and P/Q), respetively, where the degree of a numerator is less then the degree of
a denominator. We decompose this function to partial fractions according to the
previous theorem. Then we integrate each of the partial fractions.

Let us show now how to do it: We integrate a partial fraction corresponding to
a real root a in the following way:

/ 1 de & ﬁw over (—o0, a) and over (a, +o0) forn > 1,
(

T —a)" log |z — al over (—o0, a) and over (a, +00) forn = 1.

A partial fraction of the form
Bx+C
(22 + az + B)7’

where B, C, a, 3 € R, ¢ € N and the polynomial 22 4+ ax + /3 has no real root is
integrated in this way:

/( Bz +C dx:B/( 2r + « qu_i_

22 + ax + B)4 2 22 + azx + B)
L
Ba 1
+<C_2>/(w2+ax+ﬁ)qu'

Ip)
We could solve the integrals I; and I as follows:

over R forq > 1,

1
1, < | TaGTara
log(z? + ax + B) over R for ¢ = 1;
1
I, = d
’ / (+a/2?+8—a2/a)7 "

1 / 1 q
= x.
(B —a?/4)e (aww2f+1q
VB—a?/4
In the last manipulation we used the inequality 3 — a?/4 > 0, which follows from

the assumption that the polynomial 22 + ax + 3 has no real root. The discriminant
of the equation 22 + ax + 8 = 0 is therefore negative. By using the substitution

t = —2+92_ e ot an integrand of the form
VB—a?/4
1
(1+¢2)e

Integration of this function was shown in Example [10]
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Example 17. Determine a primitive function of the function

fz) =

T
(22 + 22 + 2)2(22 + 22— 3)°

Solution. First we determine the domain of the function f. The expression x? +
22 + 2 is always positive, 2 + 22 — 3 can be decomposed and z? + 2z — 3 =
(z—1)(2+3) holds. Hence it could be seen that Dy = R\ {—3, 1}. The function f
is continuous on the whole Dy. It thus has a primitive function over each of the
intervals (—oo, —3), (=3, 1) and (1, +00).

Since the polynomial in the numerator is of smaller degree than the polynomial
in the denominator, we can decompose the function f to partial fractions on Dy.
The decomposition is of the form

T
(22 + 22 +2)2(z — 1)(z +3)
Az + B Cz+ D E F ®)

_x2—|—2x—|—2+(x2+2x+2)2+x—1+m+3'

By multiplying this equation by the denominator of the left-hand side, we obtain
the equation
x = (Az + B)(2® + 2z + 2)(z — 1)(z + 3)+
+ (Cz+ D)(x — 1)(z + 3)+ 4)
+ E(2? + 224 2)%(x + 3) + F(2? + 2z + 2)*(z — 1),
which holds for each € R \ {—3,1}. However, polynomials are continuous on

R, and therefore the equation (4) holds for each x € R. Now we have two ways to
proceed:

a) We compare the coefficients of the corresponding powers of x on the left-
hand and right-hand side of the equation ().

z0: 0=A4+FE+F,

zt: 0=4A+ B+ 7E + 3F,

3 0=3A+4B + C + 20E + 4F,

z?: 0=—-2A+3B+2C+ D + 32F,

zt: 1=—-6A—2B—3C +2D + 28E — 4F,
2 0= —6B — 3D + 12E — 4F.

Thus we get a linear system of six equations in six variables.

b) We substitute six different numbers for x in (@) and we obtain again a linear
system of six equations in six variables. The most advantageous is to sustitute the
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numbers, for which some summand equals to O (i.e. real roots of the denominator
of the original fraction — in our case the number —3 and 1).

We usually combine those two method in a suitable way. By substituting 1 and —3
in () consecutively we obtain F = 1/100 and F' = 3/100. We plug these values
into the linear system obtained in a). From the first equation we get A = —1/25,
from the second B = 0, from the last D = 0 and finally from the fourth C' = —1/5.
Hence we have determined the coefficients of the decomposition (3], which thus is
of the form

F(2) 1 x 1 T n 1 1 n 3 1
25 2242x+2 5 (#2+42x+2)2 100 z—1 100 x+3

Now it remains to calculate primitive functions to individual partial fractions.

T 1 2x + 2 1
S S (s SN U [ S
x2 42z + 2 2] 22422+ 2 2422 +2

1 |
= “logz® +204+2)— [ ——da 2
3 log(@” +2z+2) /(x+1)2+1 “

1
< 5 log(z% 4 22 + 2) — arctg(z + 1), = € R,

/l’dx_l/?x”dx /1dx_
(22 +22+2)2 " 2 ) (22 +2z+2)2 +2r+2)2 7

(22
__1 1 _/ 1 dz =
222422+ 2 (& +1)% + )2
.1 1 1 z+1 1
T 0212 +2 22242542 2°

1
/ dxélog]m—l\, x € (—oo,1)and z € (1, +00),

r—1

arctg(r + 1), z € R,

1
/x+3dazélog|x—|—3, x € (—oo0,—3)and x € (—3,+00).

On each of the intervals (—oo, —3), (—3, 1) and (1, +00) the primitive function of
the function f is thus an arbitrary function of the form

7 1 x+2
_71 2 2) + — arct 1 G B a——
0 og(x? + 2z + )+5Oarcg(x+ )+ 102+ 22 42

1 3
+mlog]a:— 14+ — 100 log |z + 3| +¢, whereceR.
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Some useful substitutions. A polynomial in two variables is a function [u, v]
>z aiju'v!, where a;; € R, n € N U {0}. A rational function in two variables
is a ratio of two polynomials in two variables.

Let R be a rational function in two variables.

1. For integration of the function R(sinx,cosxz) we can use the following
substitution to change the integration of the function to the integration of a rational
function.

(i) If R(sinx, —cosz) = —R(sinx, cosx), the substitution sinx = ¢ can be
used.

(ii) If R(—sinz,cosz) = —R(sinz, cosz), the substitution cosz = t can be
used.

(iii) If R(—sinz, —cosz) = R(sinz,cosz), the substitution tgx = t can be
used.

(iv) The substitution tg(z/2) = t can be used always.

2. For integration of the function R (x,{’/ Z{fjg ) , where ¢ € N and the numbers

a,b,c,d € R satisfy ad — be # 0, the substitution t = {/ % can be used to

change the integration of the function to the integration of a rational function.

3. Integration of the function R(ZL’, Vazr? +br + c) can be also changed to
the integration of a rational function. Here we need to distinguish 3 cases.

(i) The polynomial az? + bz + ¢ has a real root 21 of multiplicity two. Then,
if the task have to make a sense, it must be a > 0, then it can be written
vaz? +bx + ¢ = \/a|x — x1|. The integrated function is thus rational on
each of the intervals (—o0, 1), (21, +00).

(ii) The polynomial ax? + bx + c has two real roots 21 < xo. Then it could be
written az? + br + ¢ = a(x — x1)(z — x2). If @ > 0, then we have

\/a(x—ml)(x—wg):\/&|x—x1“/§:i?.

This equation shows that the function R (m, Vax? 4+ br + c) could be on the

intervals (—oo, x1), (2, +00) written of the form from the case 2. We can
proceed similarly if a < 0.

(iii) The polynomial ax? 4 bz + c has no real roots. If the task have to make a
sense, it must be @ > 0 or ¢ > 0. Then we could use Euler substitutions

Var? +br+c=t++axr or Vax?+br+c=uat+/c

These substitutions can be used also in the case (ii) provided that a > 0 and
¢ > 0, respectively.
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1

Example 18. Determine a primitive function of f(z) = 1T 30022
cos? x

Solution. The function f is continuous on the whole R and it thus has a primitive
function over R. If we put

1

R ) = T 5 9
(u, ) 1+ 302
then f(x) = R(sinx,cosz). The equality R(—sinz, —cosz) = R(sinx, cos x)
holds and thus the substitution ¢ = tg = can be used for z € (—% +km, 5+ l<:7r),
k € Z. To use this substitution, let us calculate
cos? & = L _
T 1l4tg2z 1482

Next, from the equality x = arctgt we obtain dz = H% dt according to the
remark on page [IT1] We integrate the given integral by substitution

1 1 1 1 t
/ - 2dt:/2dtéarctg, teR.
1435 1+t 44t 2 2

According to the theorem about integration by substitution thus follows

1 c 1 tgx T T
————dxr = —arctg | — |, (—— km, — k),k: Z.
/1+3cos2ac T 2arcg<2> T € 2+7T2+7T €

If we put F(x) = % arctg (thx), then the function F' is a primitive function of f

over each of the intervals (—% + km, g + k:Tr), k € Z. However, we are searching
for a primitive function over whole R. Each primitive function G of f over R is
equal to F' + ¢, over the interval (—% +km, 5+ kﬂ'), where k € Z and ¢, € Ris
a suitable constant. Since G is continuous and the equalitites

™ s
li G(x)=— and li G(x)=——
i Gl = e o By OO = g F

hold, it must be ¢y 11 = ¢ + 5 pro k € Z. Hence ¢, = co + k%, k € Z and each
primitive function of f is thus of the form

1 t
Gla) = 5 arctg (%) +co+ kG5 forxe (—g + km, 5+ k),
Tto+ky forz = I + k.

The function G was made in a following way. On each interval (—% +km, 5+ kTr)
we added a suitable constant to the function F' such that the resulting function
would be continuous, see the figures. This procedure is called “sticking”.
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. o . . sin x cos x
Example 19. Determine a primitive function of the function f(r) = ——————.
sin* z + cos* z
Solution. The function f is continuous on R, it thus has a primitive function over
R. Let us put

uv
R(u,v) = —.
(u,v) ut 4+ vt
Then f(x) = R(sinx, cos z) and it could be seen that:
(i) R(sinz,—cosz) = —R(sinx,cosz). The substitution ¢ = sinz can be
used.
(il) R(—sinx,cosx) = —R(sinx,cosx). The substitution ¢ = cosx can be
used.

(iii) R(—sinx,—cosx) = R(sinz, cos x). The substitution ¢ = tg x can be used.

Certainly, we could also use the substitution ¢ = tg(x/2), which is an universal
substitution for transformation the integration of a rational function of sines and
cosines to the integration of a rational function.

Let us try first the substitution ¢ = tg(x/2) for x € (—m, 7). To use this
substitution, we calculate first

o . ox cos?E—sin?f  1—tg?f 12
COS & = COS §—sm 5= o oy T T2 - 1
cos* 5 +sin” 5 +1tg° 3 +
T T 2sin Z cos £ 2t
sinx = 2sin — cos — = 2 22 = 3
2 2 cos?% +sin®f 1+t
2
de = ——dt.
1+1t2

For determining dx we used the equality x = 2 arctgt and a remark on page
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By substitution, we manipulate the given integral to the integral
2t 1-¢2

/( 1462 1142 2 dt—4/t(1_t2)(1+t2) dt.

2t \4 1—2\4 25" T 7] — V4
W) +(1+t2) 1+t 16¢ +(1 t)

It can be seen, that we achieved our goal. However, the resulting function is com-
plicated and above that we would have to overcome difficulties thatour substitution
is valid only for z € (—m,7), eventually on an interval which is shifted by 2k,
k € Z. Thus, let us try another substitutions.

1. The substitution ¢t = sin z. In our case we could manipulate the function f
to the form

@) sinz
x) = - COS .
sintz + (1 — sin? )2

If we realize that d¢ = cos x dx holds for the given substitution, we obtain

t
—_dt
/2t4—2t2+1

By using a substitution u = ¢ we then simplify the integrand and get

1 1 .1
Y du= [ —————du< Carctg2u— 1), uE R,
/4u2—4u+2 ! /(2u—1)2+1 u= garctg(Zu—1). v

The result is formed by the functions

1
§arctg(251n2aj —1)4+c¢,zeR, ceR.

2. The substitution ¢ = cos x. We could manipulate the function f to the form
cosx

flz) = (1= cos?2)? + cosia -sinx.
If we realize that d¢t = — sin z dx, we obtain
t | N
‘/u—t?vwdt = garcte(2 1) teR

(The calculation is analogous to the previous calculation.) The primitive function
of f over R is every function of the form

1
D) arctg(2cos’z — 1) + ¢,

where ¢ € R is an arbitrary constant.
3. Let us try one more substitution which can be used in our case — ¢ = tg x. We
divide the numerator and the denominator in the formula of f(x) by the expression

cos® z and we get

fz) =

T osinztg?z+cosaz  tglz+1 coslx

tgx tgx 1
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Now we use the equality dt = —5— dz. Then we need to evaluate
cos“ x

t c ]. 2
/Mdt_2arctgt s tER

Thus we get the primitive function  arctg(tg®z), but only over the intervals
(=5 + km, § 4 km), k € Z. However, we know that the function f has a prim-
itive function over the whole R (since it is continuous on R). We could find this
primitive function by the way described in the previous example.

Let us summarize: The substitution ¢ = tgx was the easiest for computation.
However, we did not get a primitive function over the whole D . We could solve
this be “sticking” at the points which have to be omitted. By substituting ¢ =
tg(z/2) there is a similar situation — however, mostly leading to more complicated
rational functions than in case of others substitutions. It is thus better — if the form
of an integrand enables that — to avoid using it and to use some of the other three
substitutions.

It could be seen from the foregoing that a form of the result could substantially
depends on the substitution used, however, they are always functions which differ
by a constant. &

z—1
Example 20. Determine a primitive function of the function f(z) = ——————.
x <\/§ + V a;2>
Solution. The function is continuous on Dy = (0,400) and thus has a primitive
function there.
If there are expressions

Py pn
ar +b\ a1 ax + b\
cx+d) 777 \ex+d ’
where a,b,¢c,d € R, ad —bc # 0, p1,...,pn € Z, q1,-..,qn» € N in the func-

ax+b
cr+d

tion formula of f, then we use the substitution ¢ = ( )i, where s is the least
common multiple of the numbers qi, . . ., gn.

In our case we have the powers /2 and 2%/3 in the function formula of f. The
least common multiple of numbers 2 and 3 is 6. We thus use the substitution ¢ =
x/6, 2 € (0,+00). Hence we could derive dz = 6t° dt. Then we are searching

for a primitive function over the interval (0, +00)

-1 t5—1
T 6Pdt=6 [ —— dt.
/tﬁ(t3+t4) 0 6/t5+t4
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Since in the last integrand (it is a rational function of the variable ?) is the degree of
the numerator greater then the degree of the denominator, we have to divide first:

tt—1
- +th=t—1+ 7 =
(=1 + ) S
. 2
g DD+
tH(t+1)
SR
- tot2 3

Now we could integrate

t0 5 1 1
6/t5+t4dt_3t —6t+610gt—|—67 3t—2+2t—3, t € (0,+00).

From the theorem about integration by substitution, a primitive function of f over
(0, +00) is every function of the form

1 1 1
where ¢ € R is an arbitrary constant. »
1
Example 21. Determine a primitive function of the function f(x) = .
P P o) = Ve sl

Solution. The function f is continuous on the domain Dy = (—o0, —1)U(—1, +00).
The expression under a radical sign is positive on the whole R, we thus use the Eu-
ler substitution 22 +x +1 = x + t. By exponentiating we obtain 2 + x + 1 =
2?42t +12ie x = %, and calculate dz = —2 fl_é‘[)l dt. We need to express
the formula /22 + x + 1 in terms of a new variable ¢, which is simple:

Valt+z+l=a+t= . +t

- C1-2t

Now we substitute and after manipulation we obtain

202 — 2t + 2
/ EDCE

Let us realize that we use the Theorem @ii) for p(t) = 12 57~ Next it follows

that ' (t) = —2517;; <0fort € (—00,3)U(3,+), ¢((3,2)) = (-1, +00)
and ¢((2, +00)) = (—o0, —1).

The achieved rational function has the degree of the polynomial in the numer-
ator the same as the degree of the polynomial in the denominator, thus we have to
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divide first:
3t

t—2)(2t— 1)

We decompose the second summand to partial fractions and obtain

2% — 2t +2 1 1 .
T gt = [ 1dt 42 - dt £
/(t—2)(2t—1) / + /t—2 /Qt—l

1
§t+2log|t—2|—§log|2t—1|

(262 =2t +2): (26> =5t +2) =1+

on the intervals (3,2) and (2, +00).
According to the Theorem [](ii) the primitive function of the function f over

each of the intervals (—oo, —1) and (—1, +00) is of the form

\/:c2+x+1f:c+210g‘\/x2+:c+17x72‘f
1
—§log‘2\/x2—|—fc+ —2x—1‘+c, ceR. &

3.2. Riemann integral

The introduction of the Riemann integral is motivated, among other things, by
a problem how to define an area of more complicated sets in a plane than are basic
geometric shapes like a rectangle, a triangle etc.

Let f be a bounded non-negative function defined on a bounded closed interval
[a, b]. We want to define an area under the graph of the function f to be consistent
with measuring an area of basic geometric shapes.

One of the possibilities is to aproximate the shape by finite unions of rectan-
gles with known areas and then “in the limit” get the area of the shape. The whole
idea is illustrated on the following figures. At the first two figures there are up-
per approximations of the area of the shape, on the second two there are lower
approximations on the contrary.

7'_<

/N

FIGURE 3. FIGURE 4.
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FIGURE 5. FIGURE 6.
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Let us express this intuitive reasoning by exact mathematical notions.

Definition. Let a,b € R, a < b. A finite sequence {z;}}_ is the partition of the
interval [a, b] provided that

a=xg<x1 < <z =b.

WEe call the points xg, . . ., x,, the parting points. We say that partition D’ of the
interval [a, b] is the refinement of the partition D of the interval [a, b], if each
parting point of D is also a parting point of D’.

Definition. Let a,b € R, a < b, the function f be bounded on the interval [a, b]
and D = {z;}"_ be a partition of [a, b]. Let us put

g(f, D) = Z Mj({L‘j - Ct?j_l), where Mj = Sup[zjil,mj] f,
j=1

S(f,D) =" mj(w; —xj-1), wherem; = infl, , o1 f,
j=1

b
/ f=inf{S(f,D); D is a partition of the interval [a, ] },

b
/ f =sup{S(f,D); D is a partition of the interval [a, b] }.
Ja_

We say that the function f has the Riemann integral over the interval [a, b] if
ff f= ff f. The value of the integral of the function f over the interval [a, b] is

then equal to the identical value of E) fand ff f and we denote it by f; f-Ifa>b,
we define fab f=—[; f,and in the case that a = b, we define f(f f=0.
Remarks. 1. We call the number S(f, D) (S(f, D)) the upper (lower, respec-

tively) sum with partition D and we call f: f( ff f) the upper (lower, respectively)
integral.

2. From the boundedness of f on the interval [a,b] it follows that S(f, D) € R
and S(f, D) € R for each partition D of the interval [a, b] and also both f: feR
and ff f € R. This follows i.e. from the following inequalities:

(b—a)inf f < 5(f,D) < (b—a)sup .
[a,b] [a,b]

3. Traditionally the symbols ff f(z)dz, f; f(t)dt, etc. could be used for the Rie-

mann integral instead of f; f, especially in cases where the variable of the func-
tion f need to be emphasized.



130 3. INTEGRAL

Remark. Let f be a bounded non-negative function on an interval [a, b]. If the
function f has the Riemann integral over [a, b], then the number fab f can be taken
as the area of the set under the graph of the function f, i.e. the set {[z,y] € R?; a <
r<b,0<y< f(z)}

Example 22. It can be shown easily from definition that for the function f(z) = 1,
x € [0,1] follows fol f = 1, since in this case S(f, D) = S(f, D) = 1 holds for
each partition D of the interval [0, 1]. Similarly ff cdz = ¢(b — a) holds for each
constant function z — ¢ € Raa,b € R.

Example 23. Let a function f: R — R be defined by

)1 forzeQ,
f(x){O forz € R\ Q.

We call it the Dirichlet function. From the Theorem ?? it follows that S(f, D) =

1 and S(f,D) = 0 for each partition D of the interval [0, 1]. Thus, fol f=1
and fol f = 0hold and therefore the Dirichlet function has not the Riemann integral
over the interval [0, 1].

From the foregoing example it could be seen that not every bounded function
has the Riemann integral. In this section we will derive some properties of the
Riemann integral and we will show that at least the continuous functions on a
bounded interval have the Riemann integral. In the following remark we will look
first at some properties of the upper and lower sums.

Remark. Let a,b € R, a < b, and f: [a,b] — R be a bounded function. From
the definition it can be seen at once that for an arbitrary partition D of the interval
[a, b] we have
S(f, D) < S(f,D). )
Let now D, D’ be partititons of the interval [a, b] and D’ be the refinement of D.
Then it is not difficult to show that
S(f,D) < S(f,D') < S(f, D) < S(£, D). (©6)

Let Dy, D5 be two arbitrary partitions of the interval [a, b]. Let D’ be a refinement
of both Dy and Ds. (It suffices to take for D’ a partition which consist of all points
from both D; and D5.) According to (6) it then follows

Hence, it could be easily derived that the following inequality always holds

/:fﬁ/:f- ®)
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In fact, according to the fab f < S(f, D) holds for a fixed partition D. The
inequality (8) now follows from the definition of an infimum.

If we summarize the foregoing thoughts, we obtain that for arbitrary two par-
titions D and D3 of the interval [a, b] follows

b b
S(f,Dﬂg/ fg/fgS(f,m ©)

Now we will prove a key lemma which enables us to avoid the notions of upper
and lower integral by using the Riemann integral.

Lemma 24 (criterion of existence of Riemann integral). Leta,b € R, a < b, and f
be a bounded function on the interval [a, b].

@) f; f =1 € Rif and only if for each ¢ € R, ¢ > 0 there exists a partition D
of the interval [a, b] such that

I—ec<S(f,D)<S(f,D)<TI+e. (10)

(ii) The function f has the Riemann integral over [a, ] if and only if for each
e € R, e > 0 there exists a partition D of the interval [a, b] such that

S(f,D) - S(f,D) <e. (11)
Proof. Let us first prove the assertion (i).

= Let us choose an arbitrary € > 0. Since f; f = I there exists a partition D

of the interval [a, b] such that S(f, D1) > I — e. Similarly f: f = I holds and thus
there exists a partition Dy of the interval [a, b] such that S(f, Do) < I + ¢. Let D
is a refinement of both D; and D5 on the interval [a, b]. Then according to the
follows

I—e<S(f,D1) <S(f,D) < S(f,D)<S(f,D2) <I+e.

< Let us choose an arbitrary € > 0. Let us find a partition D of the interval
[a, b] which satisfies the inequalities (I0) for the given e. From the inequalities (9]
and (I0) follows

b T b
I—6<S(f,D)S/fS/fSS(f,D)<I+e.
Ja_ a
We thus have for eache > 0

b b
I—e</f§/f<[+€,
Ja_ a

which means that fabf = f;f =1.
Now we prove the assertion (ii).
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= This implication follows from assertion (i), which was proved above.

<« Let us choose an arbitrary € > 0. Let us find a partition D of the interval
[a, b] which satisfies the inequality (TI]) for the given . From (9) and (T1)) we thus
obtain

b b
os/f—/fss<f,D>—s<f,D><a

Since ¢ is an arbitrary positive number, it must be fab f= f; f- ]

In the following assertions we will show some basic properties of the Riemann
integral.

Theorem 25.

(i) Let a function f have the Riemann integral over the interval [a, b] and let
[c,d] C [a,b]. Then f has the Riemann integral also over the interval [c, d].

(ii) Let ¢ € (a,b) and a function f have the Riemann integral over the intervals
[a, c] and [c, b]. Then f has the Riemann integral over [a, b] and the following

equality holds
b c b
[o=[s+]t (12)

Proof. (i) Let us prove the assertion for the case a < b < ¢ < d, the other
cases can be proved similarly. Let us choose an arbitrary ¢ > 0. According to
the Lemma ii) there exists a partition D of the interval [a, b] satisfying the in-
equality (TT). According to (6) we could assume without loss of generality that the
partition D contains both the points ¢ and d. Let a partition of the interval [a, c],
which contains all parting points of D from the interval [a, |, be denoted by D,
a partition of the interval [c, d], which contains all parting points of D from the in-
terval [c, d], be denoted by Ds and a partition of the interval [d, b], which contains
all parting points of D from the interval [d, b], be denoted by Ds.
It follows obviously that

S(f, D) = S(f, D1) + S(f, D2) + S(f, D3),
S(f, D) = S(f,D1) + S(f, D2) + S(f, Ds3).
Applying () we thus get
0 < S(f,D2) = S(f,D2) <
< S(f, D2) = S(f,D2) + S(f, D1) = S(f, D1) + S(f, D3) — S(f, D3) =
=S(f,D)-S(f,D) <e.

According to Lemma ii), we thus obtain that the Riemann integral fcd f exists.
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(i) Letus put [; = [ f and I = fcb f. Let us choose an arbitrary £ > 0.
According to Lemma i) there exists a partition D; of the interval [a, c| and a
partition Dy of the interval [c, b] satisfying

Il—g<§(f,D1)§§(f,D1)<Il+§, (13)
I — g < S(f,Dy) <S(f,Dy) < Ip + g (14)

Let D be a partition of the interval [a, b], which consist of all the points of the
partition D1 and the partition Ds. Then obviously

g(faD) :g(f)Dl) +§(f7D2) a ﬁ(faD) :ﬁ(faDl) +§(f7D2)
By adding the inequalities (13]) and (14) together we obtain
L+I—e<S(f,D)<S(f,D)<I+ I +e.

According to Lemma i) is thus ff f=5L+I. ]

Remark. It can be easily realized that the formula (T2)) holds for every a, b, c € R,
provided that there exists an integral of the function f over the interval [min{a, b, ¢}, max{a, b, c}|.

Theorem 26 (linearity of Riemann integral). Let f and g be functions which have
the Riemann integral over the interval [a, b] and let « € R. Then

(i) the function avf has the Riemann integral over [a, b] and

/:afza/:f,

(ii) the function f + g has the Riemann integral over [a, b] and

/Cbb(f+9)=/abf+/abg- 5)

Proof. Let us notice that for a = b are both assertions obvious. In what follows,
we thus suppose that a < b.

(i) Assume first that & > 0. Then for each partition D of the interval [a, b]
follows S(af, D) = aS(f, D) and S(af, D) = aS(f, D). Thus we obtain at
once f;a f=a fab f and faba f=a f(f f, which gives us the required equality.

Next, let D = {z;}", be an arbitrary partition of the interval [a, b]. Since
SUP[y,_, 2,](—f) = —infl,, | .7 f holds fori = 1,...,n (see the remark on the
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page ??), we obtain S(—f, D) = —S(f, D). Thus we have

b
/ (-f) = inf{g(—f, D); D is a partition of [a, b}

= inf{—S(f, D); D is a partition of [a,b]} =
= —sup{S(f,D); D is a partition of [a,b]} =

[

we could obtain similarly fab(— f)=- f; f.
Finally according to the previous we get for av < 0

/af / ~lal f) = /a|f— |a|/f—a/f

(ii) Let us choose an arbitrary ¢ > 0. From the Lemma [24{i) we can find
partitions D and D3 of the interval [a, b] such that

b b
[ -5 <suy <o)< [ 145,

b g — b g
/g2<S(9,D2)§S(9,D2)</g+2-

Let D be a refinement of both D; and Ds on the interval [a, b]. Then according
to (7)) it follows that

[r-5<sum<sum< 1+

/abg—;<5(g,D)§S(97 D) < /ag+

From the definitions of the upper and lower sums and from the Example ??,
we obtain the inequalities S(f + g, D) < S(f, D)+ S(g,D) and S(f + g,D) >
S(f, D)+ S(g, D). This together with the inequalities (16) yields

(16)

b b
/f+/ g—c<S(/,D)+8(9.D)<S(f+9,D) <

<S(f+9,D) <5(f,D) +S(¢g, D /f+/g+s
According to Lemma[24{i) the equality (I3) thus holds.

Theorem 27. Let a,b € R, a < b, and let f and g be functions which have the
Riemann integral over the interval [a, b]. Then:
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(i) If f(x) < g(z) for each x € [a, b], then f(ff < fab g
(i) The function |f| has the Riemann integral over [a,b] and | f fl < ff |f]
holds.

Proof. (i) Applying Theorem we obtain ff g— f; f= ff(g — f) >0, since
S(g — f, D) > 0 holds for each partition D of the interval [a, b].

(ii) If we know that the function | f| has the Riemann integral over [a, b], then
the required equality could be proved easily. It is because — | f(¢)| < f(t) < |f(¢)]
holds for each ¢ € (a, b) and thus according to (i) and Theorem 26 ll) we have

/m / |f!</f</\f|

From that we obtain the equality from assertion and the proof is completed.

Let us prove now that the function |f| has the Riemann intergral over [a, b].
Let us choose ¢ > 0, then from the Lemma [24{ii) we could find a partition D =
{x;}1"_, of the interval [a, b] such that S(f, D) — S(f,D) < e.Fori =1,...,n
let us put

M;= sup f, m;= inf [,

[i—1,24] [i—1,2;
M; = sup |f], m;=_inf |[f].
[i—1,24] [ 1,24

According to Example ?? the inequality ]\//.7, —m; < M; — m; holds for ¢ =
1,...,n. By using these inequalities we obtain

S(IfI,D) - S(/f].D) = ZM i) = Y mw — i) =
=1

i=1

<> (M; —m Ti-1)
i=1

:iMi@:i—xi 1) Zmz i~ Ti-1)
i=1

:g(faD)_ﬁ(.ﬁ )

However, according to Lemma ii) it means that the integral f; | f| exists. ]

To show that every continuous function on a closed interval has the Riemann
integral, the following notion will be needed.
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Definition. We say that a function f is uniformly continuous on an interval 7,
provided that

VeeR,e>030€R,0>0Ve,yel,|lx—yl<d: |[f(z)— fly)] <e.

Remark. Let us note the difference between the definition of a function which is
continuous on the interval I and the definition of a function which is uniformly
continuous on the interval /. The function f is continuous on [ if and only if it is
continuous at each point of I with respect to I, in other words

VrelIVeeRe>03I0€eR,0>0Vyel,|lx—y|l<d: |f(z)— fly)] <e,
which is equivalent to
VeeRe>0VeelIFeR, >0yl jlx—y|l<o: |f(z)— fly)] <e.

Both definitions thus differ only in the order of quantifiers. The difference is that
in definition of continuity for a given € we are searching for § separately for each
point & € I (and thus the value § generally depends on x and can be different for
different x), in definition of uniform continuity for a given € we are searching for
one ¢, and this §-neighbourhood is then used at each point x € I, in other words
this ¢ is the same for all x € 1.

From what we have just said it can be seen that every uniformly continuous
function on [ is a continuous function on I. However, the converse implication
generally does not hold. It is not difficult to show that the function f(x) = 1/,
x € (0,1), is continuous on this interval, but not uniformly continuous.

Theorem 28. If a function f is continuous on a bounded closed interval [a, b], then
it is uniformly continuous on [a, b].

Proof. Let us suppose that f is continuous, but not uniformly continuous on [a, b].
Then there exists € > 0 such that

Vo eR, 6> 03w,y € la,b], [z —y| < &: [f(z) - fy)| = e

Hence we get especially that for each n € N there exist z,,, y, € [a, b] satisfying
|z, — yn| < 1/nand |f(x,) — f(yn)| > €. Due to compactness of the set [a, b],
we could from the sequence {x,, }52; choose a convergent subsequence {x,, } 3>,
which converges to = € [a, b]. Concurrently it must hold kli)ngo Yn, = T, Since

’ynk —.%" < |ynk _mnk’ + ’xnk —(IJ‘ < l/nk+ ‘xnk —.I'|.

The function f is continuous at x, hence according to the Heine theorem fol-
lows klim f(zn,) = f(z) and klim f(Yn,) = f(z). On the other hand we have
— 00 — 00

| f(zn,) — f(yn, )| > € and that is a contradiction. [

Theorem 29. Let the function f be continuous on the interval [a, b]. Then f has
the Riemann integral on [a, b].
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Proof. Let us choose an arbitrary £ > 0. According to the previous theorem we
could find 6 > 0 such that

e

Va,y € la,0] o —yl <60 [f(2) = fFW) < 5 —-

Let us choose a partition D = {z;}_, such thatz; —z;1 < 6,5 = 1,...,n.
From the Example ?? we obtain

M;—mj= sup f— inf f<

[:Bj_l,xj] [zj—l"rj] N bi CL‘

It thus follows that

0<5(f,D)=S(f,D) =Y (M —mj)(z; — xj-1) <

Now we use Lemma [24]ii) once more. [

Theorem 30. Let f be a continuous function on an interval (a, b) and let ¢ € (a, b).
If we put F(z) = [ f for z € (a,b), then F'(z) = f(x) for each z € (a,b), in
other words F' is a primitive function of f over (a, b).

Proof. According to Theorem 29 F(z) € R holds for each = € (a,b), so F is a
real function defined on (a,b). Let us now choose a point z € (a,b) fixedly. We
want to show that F’(x) = f(x) holds, in other words

lim
h—0

(F(:c + h}z ~F(z) f(x)> e

Let us choose an arbitrary € € R, ¢ > 0. Since the function f is continuous at the
point x, we could find § € R, 0 < § < min{b — x, 2 — a}, such that for each
t € B(z,¢) the inequality |f(t) — f(x)| < € holds. Let us take now h € P(0,0).
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Then we have z + h € (a,b). For h > 0 we could write

’i(F(;x +h) = F(@)) - f(x)

([ rwa- [ swar) - s

x+h
/ f(tydt — f(x)

1

S= = S

>

x+h
/ f(tydt — f(z)-

z+h
| dt‘ _
T
<

[ w0 sw) a

IN

x+h
= / () - f(o)] dt <

1
h
1
h Je
1 z+h 1

Sh/ edt = —-he ==¢.

h

(We used in this order Theorem [23](ii) together with the following remark, Theo-

rem [26] Theorem [27]ii) and Theorem 27(i).) For 1 < 0 can be shown the same

inequality similarly, it is only necessary to pay attention to the fact that in this case

we have  + h < x . Hence, it is justified F'(z) = }lLin% F(F(x+h) — F(z)) =
%

f(x). [

The previous theorem enables us to prove Theorem [3about the existence of a
primitive function.

The proof of Theorem[3] Let us choose ¢ € (a, b) and put
F(z) = / ft)dt, =z € (a,b).

The function F' is defined on the whole interval (a, b) (Theorem and according
to Theorem 30| for each z € (a,b) F'(z) = f(z) holds. The function F is thus a
primitive function of f over (a, b). [

The following theorem gives instructions, how to calculate the Riemann inte-
gral from a primitive function.
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Theorem 31 (Newton-Leibniz formula). Let f be continuous on a bounded closed
interval [a, b], a < b, and F’ is a primitive function of f over (a, b). Then there exist
limits lim F(z) € R, lim F(z) € R and

r—a+ r—b—

b
/ f= lim F(z)— lim F(z). (17)

z—b— r—ra+
Proof. Let the function f be defined on the interval [a—1,b+1]b

fla) forz e (a—1,a),
f(z) =14 f(x) forx € [a,b],
f(b) forz e (b,b+1).

LetnextG: (a—1,b+1) — Rbe defined by G(z) = [ f. The function f is con-
tinuous on (@ — 1,b + 1), according to Theoremis thus G a primitive function
of f over (a—1,b+1). The function G |(a,5) 1s @ primitive function of f over (a, b)
and therefore there exists ¢ € R such that F' = G/, 3)+¢. The function G is contin-

uous at the points a and b, hence there exists limits lim F(x) = lim G(z)+c €
R, lim F(z) = lim G(z)+ c € R. We thus ha¥e ™ z—b—
r—a+ z—a+

b
/ f=Gb) = Gb) - Gla) = lim G(z) — lim Gla) =

x—b— r—a+
= ( lim F(z ) ( lim F(z > =
r—b— r—a+
= lim F(x)— lim F
xi{II)l— ( ) :c—lgl-f— ( )

Remark. Let us put

lim F(z) — lim F(x) fora < b,

[F]b — r—b— r—a+
lim F(z) — lim F(x) forb < a.
T—b+ T—a—

Then the Newton-Leibniz formula can be written as
b
/ f -
a

From the Newton-Leibniz formula follows the following two theorems often
used in calculation.

also for b < a.
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Theorem 32 (integration by parts). Let the functions f, g, f’ and ¢’ be continuous

on an interval [a, b]EIThen
b , b
| ro=tsat- [ 1s.

Proof. The function fg is a primitive function of the function f'g + fg’ over the
interval (a, b). Therefore

b
[ o+ 1) =gl
a
holds according Theorem [31] The formula then follows from Theorem [26] ]

Theorem 33 (integration by substitution). Let the function f be continuous on an
interval [a, b]. Let next the function ¢ have a continuous derivative on an interval
[, B] and map it to the interval [a, b]. Then

B ©(B)
/ f(%@(w))w’(w)dwz/ F(t) dt.

o(a)
Proof. Let us notice first that due to continuity both of the integrals exist. Let the
function f be defined on the interval (a — 1,b 4 1) by:

i f(a) forte (a—1,a),
f(t)=4q f(t) fort € [a,b],
f(b) forte (b,b+1).

Let GG be a primitive function of f over (a —1,b+ 1). From the Theorem |31{and
Theoremi) (since cp((a, ﬁ)) C (a—1,b+ 1) holds) we get

B

A ’ / B
/ fle(@)¢'(x) da =/ flo(@))¢'(z)dz = [G(p(2))], =

w(B) _ »(B)

— G(9(8)) - G(p(a) = / - Fwmar / T

and the third equality follows from the continuity of the function G o ¢ on the
interval [, (]. [
By using Riemann integral we now prove Theorem ??.

Theorem. There exist exactly one function log satisfying these properties:
(1) Dlog = (07 +OO),
(ii) log is increasing on (0, +00),

(iii) Vx,y € (0,400): logxy = logz + logy,

Here, a value of f' at the points a and b stands for corresponding one-sided derivatives.
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logz __
-7 = L.

(iv) lim
z—1
Proof. Let us put
xr
1
F(x) :/ ;dt, x € (0,+00).
1

We show, that the function F' has the required properties.

(i) From Theorem [29] it follows that the function F' is defined on the interval
(0, +00).

(ii) The function F' is increasing on the interval (0, +-00) since F'(z) = + >0
for each = € (0, +00) according to Theorem 30}

(iii) Let x > 0 and y > 0. Then it follows

,ryl Ltl ZEyl xyl 1
F = —dt = —dt —dt=F — . —dt=
(zy) /1 . /1 ; +/m ; ($)+/z % .
Y1
:F(a:)—i-/ ;dz:F(m)—i-F(y),
1

where the last but one equation follows from Theorem for o(t) =
(iv) Here we have

8 |+

lim F@) = lim Flz) = F(1) =F'(1)=1.
z—1lx —1 z—1 r—1

Now it remains to prove the uniqueness. Let us suppose that the function G
satisfies the conditions of the theorem as well. Then we could derive (similarly to
Section ??) that G'(z) = 1, z € (0,+00), and G(1) = 0. The function F' has
also these properties. Therefore, according to Theorem (I} F' = G on the interval
(0, +00) and this is what had to be proved. ]

1

—_— duz.
Va2 +5r+1

~ _ 1
Solution. Let us put f(x) = P
interval [1, 3], it thus has the Riemann integral over this interval. We evaluate it by

3
Example 34. Evaluate /
1

. The function f is continuous on the

applying Theorem 31}
We use the Euler substitution v/x2 + 5x + 1 = = + t and get
1—t? —2(t? — 5t + 1)
ST v (2t —5)2

Then we need to calculate

2 t—1
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The function
Vrl+bhr+1—xz—1
g\/x2+5$+1—:c+1

is thus a primitive function of f over the interval (1, 3).
Now it can be calculated easily

3 1 VT -2 VT 7T+ 2V7
T8 (e - _
/1 f=1F)3 _log3 log 77 = log 37— 2) = log 9

Another possibility is to use Theorem for calculation. For (t) = % we

have ¢ (v/7 — 1) = 1 and ¢(2) = 3, and thus according to Theorem follows

F(x)=1lo

2 3
2 1
JA Ty L —
Vi1 tt =1 1 zvVa?+ 5z +1
This yields

3 1 2 2
[ —w- [ 2oa-
1 xvaZ+5r+1 Vicitf =1

t—17? 7+ 2V7
= |log =log——.
t+1] 5y 9
*
T 1
Example 35. Evaluate / ——dux.
o 1+3cos?zx
Solution. According to Example
5 arctg (‘&%) for z € (0, §),
F(z)=17% forz = 7,

Sarctg (8%) + 2  forz € (5, m)

is a primitive function to the integrand over (0, 7). Then we have
4 1 0 m

= dr=[Ff=0+—--0==

/0 1+3cosz Flo 3 2

There is a very frequent mistake in omitting the sticking, i.e. in the wrong
reasoning that the function % arctg(thm) (which is not defined at the point ) is a
primitive function of the integrand over the whole interval (0, 7). We would thus

get
™ 1 1 tgx\ 1"
——  do=|-arctg( =2 )| =0-0=0.
A 1+3cos2a [2mcg<2 ”0

At this point it should surprise us that an integral of a positive continuous function
is equal to zero — which is not possible!
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Note that at this particular example we could avoid the sticking of a primitive
function by using the substitution ¢ = tg(x/2). Another possibility of solving the
problem is using Theorem [23] According to it follows

[ w0
——dzx = ——dx ——dzx =
o 1+ 3cos?zx o 1+3cos?z x 1+ 3cos?x

[ () e (5)] -

T
2’

Ma

Ty
_4

Let us now look at some geometric applications of the definite integral.

Example 36. Let a,b,p,qg € Rand 0 < a < b, 0 < p < q. Calculate the area of
the shape bounded by graphs of the functions

x? x?
r— —, x+— —, xT+—+ar and xz+— Vbzx.

p q

x?/q

x2/p V bx

Jax

X xaxg X4
FIGURE 7.

Solution. We could easily calculate x-coordinates of the four intersections of the
curves:

= ap?, w9 = Vbp?, x3=+vaq®? and x4 = v/bg?.



144 3. INTEGRAL

The area of the shape is equal to

T2 1:2 x4 x3 x4 x2
/ dx+/ \/%dx/ \/a:ﬁdx/ —dx =
1 P To T z3 4
B [wi’)]“ N [2\/@] - [2@] " [xS]M

3p 3 3

1

T2 1

1

=30 —-a)g—p)

We could also calculate the length of curves using a definite integral. We will
not try to define a curve generally — that is not easy. In our case the curve will be
an arbitrary set of the form

{[z,y] eR* a <2 <by= f(x)},

where f is a differentiable function on the interval [a, b], whose derivative is con-
tinuous on [a, b].

Let the length of a curve be defined as follows. Let D = {x},}}_, is an arbitrary
partition of the interval [a,b] and P, = [xg, f(zx)] for & = 0,1,...,n. Line
segments connecting the points P,_q and Px, k = 1, ..., n form a polygonal chain,

whose lenght is
n

(D) =Y |Pi1Pyl,

k=1
where | P,_1 Px| denotes the length of the line segment, which connects the points
Pi_1 and Py. The length of a curve is defined to be the number

L = sup {I(D); D is a partition of the interval [a, b] }.
For the length of the polygonal chain (D) it holds:

(D) = " /(o — w0)? + (f(an) — Flan)* =
k=1

. Flag) — far—1))”
=> (z —a:)\/l—i— .

Tl — Tk—1

From the Lagrange Mean value theorem (Theorem ??) we obtain that for each
k € {1,...,n} there exists a number &, € (xx_1, z)) such that

f(ar) — flar-1)

T — Tk—1

= f'(&)-
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Hence

3

(D) = 1+ (&))" - (xp — zp—1)-

k=1

Let us put g(z) = /1 + (f (:/c))2 From our assumptions it follows that the func-
tion g is continuous on [a, b]. Next, we have
n n
inf g (zp—2p-1) SUD) <D sup g~ (zp — 1),
k=1 [zk—1,2%] b1 [Tr—1,Zk]

The length of the polygonal chain is thus between lower and upper sum of the
function g corresponding to the respective partition D. Since g has the Riemann
integral over [a, b], it could be deduced that

L:/abg(:z)dx:/ab\/le (f'(x))* de.

By the end we will write (without derivation) formulas for calculation of the
surface area and the volume of a solid of revolution. We will take these notions
only intuitively and we will not write their exact definitions here.

Let a non-negative continuous function f have a continuous derivative on an
interval [a, b]. Rotating the graph of this function around the z-axis forms a surface
of a solid of revolution, whose area P could be calculated by the formula

P= QW/abf(.%')\/l + (f’(a:))de.

FIGURE 8.

Let f be a continuous non-negative function on an interval [a,b]. Then the
volume V of a solid of revolution obtained by rotating of the set { [z, y] € R?; a <
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x < b;0 <y < f(z)} around the xz-axis could be calculated by the formula

V_Tl'/be(l')d.%'

Example 37. Calculate the volume of a ball with centre in the origin and the ra-
dius r > 0.

Solution. Letus put f(z) = Vr? — 22, x € [—r,r| and calculate according to the
foregoing formula

T 2 T
V_ﬂ'/ ( 7“2—1'2) dw—ﬂ/ (r? — 2?)dz =

-r -r

4 3

3.3. Zobecnény Riemannuv integral

V tomto oddilu zobecnime pojem Riemannova integralu tak, abychom mohli
integrovat i nékteré neomezené funkce a také nékteré funkce definované na neomezenych
intervalech.

Lemma 38 (spojitost Riemannova integralu). Necht’ a,b € R, a < b, a funkce f
m4d na intervalu [a, b] Riemanniv integral. Pak plati

/f_xlgl? / f—xlir&/;f.

Proof. Dokazeme pouze prvni rovnost, druhou lze dokazat obdobné. Protoze f
ma Riemanndv integrdl na [a, b], je na [a,b] omezend, a tedy existuje M > 0
takové, ze | f(z)| < M pro kazdé = € [a,b]. Zvolme libovolné £ > 0. Polozme
d = min{e/M,b — a}. Pak pro x € P~ (b, ) plati

[=[4-

pficemz jsme postupné pouzili Vétu[25]a Vétu [

bf‘g/bf\g/bMdt:M(b—a:)<a,

Lemma 39. Necht a,b € R*, a < b, a funkce f md Riemanniv integral na
kazdém podintervalu [z, y] C (a,b). Necht’ ddle ¢ € (a, b), existuji limity limJr N
Tr—a
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a hm f Y f a jejich soucet md smysl (tj. je definovany). Pak pro kazdé d € (a,b)
y—
ex1stup hm f fa hm f 7 f aplati

d Y c
lim / f+ lim / f= lim / f+ hm / I
T—a+ x y—b— d T—ra+ z

Proof. Zvolme libovolné d € (a, b). Dle pfedpokladu existuje Riemanniv integral

z M2

fcd f, coz je redlné Cislo. Plati tedy

c Y c d Y
i [ [Cr= e ([ )5
c d Y
:lim</f—|—/f>+lim/f:
r—ra+ T c y—b— Jq
d Y
B wliIcILlJr/l, f+ygr£/cl f7

pficemz jsme nékolikrat pouzili Vétu [25]spolu s pozndmkou za ni. ]

Definition. Necht’ a,b € R*, a < b, a necht’ funkce f je definovana na intervalu

(a,b). Mé-li funkce f Riemannuv integral na kazdém podintervalu [z, y] C (a,b)

a existuje-li ¢ € (a,b) takové, 7e limity lim [ fa lim [” f existujf a jejich
z—a+ y—b— €

soufet ma smysl, pak definujeme zobecnény Riemannuv integral funkce f na

intervalu (a, b) jako
/f—hm/f—l—hm/f

Remark. Podle Lemmatu|39)je tato definice korektni, nebot’ hodnota souctu hm+ f f+
r—ra

hIlI)l [ f nezavisi na volb& d&liciho bodu ¢ € (a,b). VSimn&me si, Ze z Véty [25
y—rb—

az Lemmatu.plyne, 7e ma-li funkce f Riemanniv integrél na intervalu [a, b], ma
i zobecnény Riemanniv integrdl na intervalu (a,b) a oba integrély jsou si rovny.
To nds opraviiuje pouZivat symbol fab f 1pro zobecnény Riemanntv integral na in-
tervalu (a, b). Déle si uvédomme, Ze hodnota zobecnéného Riemannova integralu
miiZe byt i 400 nebo —oo na rozdil od Riemannova integrélu.
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Example 40. Zkoumejme existenci ndsledujicich zobecnénych Riemannovych in-
tegralt:

“+o00 1 Y
/ e ¥dr = lim e ¥dz+ lim e ¥dx =
0

z—0+ P y—+oo Jq

1 _—z7l : _ T

o z1—1>I(?+[ € ]'Z + yginoo[ ¢ h

= lim (—e ' +e )+ lim (—e ¥V +el)=1;
z—0+ y—++00

z y—>+00 1
1 1..211 . 1..219 _ 1 _ .
= Jip Bl (37 = 5 + (o) = oo

oo z——00 [, y—;—‘roo 0
= _lim [32°]]+ lim [52%]§ = 00+ (+00),

tento soucet limit vSak neni definovany, a tedy zobecnény Riemanntv integral
| T rde neexistuje a rovnosti v poslednim vypoctu nemaji smysl.
—0o0

Nésledujici lemma ukazuje, Ze pro omezené funkce na omezenych intervalech
pojmy Riemannova integrilu a zobecnéného Riemannova integralu splyvaji.

Lemma 41. Necht' a,b € R, a < b, a funkce f je omezenad na intervalu [a, b].
Jestlize existuje Riemanndv integral funkce f na kaZzdém podintervalu [c,d] C
(a,b), pak existuje i Riemanntv integrdl funkce f na intervalu [a, b].

Proof. Necht” M > 0 je konstanta spliiujici |f(z)| < M pro kazdé x € [a,b].
Zvolme libovolné € € R, € > 0, a ddle body ¢, d € (a,b) tak, aby c < dac—a <

sar» b — d < g5 Podle pfedpokladu existuje Riemanniiv integrdl fcd f. Podle

Lemmatu ii) existuje d€leni D' intervalu [c, d] takové, ze S(f, D')—S(f, D) <
5. Necht' D je déleni intervalu [a, b], které vznikne pfiddnim bodi a, b k déleni D’.
Pak

S(f,D) = (c—a) ?ur})f +S(f, D)+ (b—d) ?urff <
a,c d,b

< M(c—a)+8(f, D)+ M — d) <§(f,D’)+Z.

Obdobnym zplisobem obdrzime S(f, D) > S(f, D') — §. Celkové tedy dostdvame
S(f,D) — S(f.D) < S(f,D') — 8(f,D') + § < &, coz podle Lemmatu [24ii)

e o . b
znamend, Ze existuje Riemanndv integral fa I ]
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Miize se stat, Ze funkce f md Riemanniv integrdl na vSech podintervalech
intervalu (a, b) a pfesto nemd zobecnény Riemanniv integrél (viz Pfiklad |40). Pro
nezaporné funkce ovSem tato potiz nevznika.

Lemma 42. Necht’ a,b € R*, a < b, f je nezdpornd na (a,b) a f ma Riemanntv
integrél na kazdém podintervalu [z, y] C (a,b). Potom f mé zobecnény Rieman-
nuv integral na (a, b).

Proof. Zvolme ¢ € (a,b).Je-lic < x <y <b,pakz Vetnu) all) plyne

[r-[rfr[s

coZ znamend, Ze funkce y — fcy f je neklesajici na intervalu (c, b). Podle véty
o limit€ monoténni funkce (Véta ??) tedy existuje lirzl fcy f. Podobné se lze
y—b—
presvédtit o existenci lim [< f. Podle Véty i) a véty o limit& a usporddéni
Tr—ra
(Véta ??) jsou obé limity nezdporné. Jejich soucet je tedy definovany, a tudiZ exis-
tuje zobecnény Riemanndv integrél f na (a,b). ]

Pro zobecnény Riemannuv integral plati analogie nékterych vét o Riemannové
integralu.

Theorem 43. Necht' a,b € R* ac € (a,b).

(i) Jestlize funkce f ma zobecnény Riemanntiv integral na (a,b), pak ma f
zobecnény Riemanndv integrél i na (a, ¢) a (¢, b) a plati

/abf=/:f+/cbf-

(ii) Necht' funkce f md zobecnény Riemannuv integral na (a,c) a (¢, b), f je
omezend na néjakém okoli bodu ¢ a soucet f(f f+ fcb f ma smysl. Pak f ma
zobecnény Riemanntv integrdl na (a, b) a plati

b c b
fo=fo ]
a a C
Proof. (i) Zvolme u € (a,c). Z Lemmatu [39| plyne existence lim+ [} f. Déle
r—ra

podle Lemmatu 38| plati lim [” f = [“ f, kde posledni integrdl je Riemanniv,
y—rc—

a tedy redlné Cislo. Zobecnény Riemannuv integrél funkce f na (a, ¢) tedy existuje
a plati

Jr=gim [ g = pim [T [r= i [,
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pficemz posledni rovnost plyne z véty o aritmetice limit a z V&ty [25[ii). Obdobné

obdrZzime
/ f= lim / /.
y—b—

Tvrzeni nyni snadno plyne z definice zobecnéného Riemannova integralu.

(ii) Necht u € (a,c), v € (c,b) jsou takové body, Ze funkce f je omezend
na [u, v]. Podle definice zobecnéného Riemannova integrdlu existuji Riemannovy
integraly funkce f na podintervalech [z,y] C (a,c). Z Lemmatu 41] plyne, Ze

existuje Riemanniiv integral [ f aLemmapak davarovnost [ f = lim [ f
y—c—

Dostavame tedy podobné jako v dikazu (i)

/acf - zl—i>%l+ /: 5
[rom [

Pravé provedené tvahy spolu s Vé&tou [25] implikuji existenci Riemannova inte-
gralu funkce f na libovolném podintervalu [z,y] C (a,b), odkud spolu s vyse
uvedenymi rovnostmi plyne tvrzeni véty. ]

Analogicky ukdZeme i

Theorem 44 (linearita zobecnéného Riemannova integralu). Necht a,b € R*,
a < b, f a g jsou funkce majici zobecnény Riemannuv integral na intervalu (a, b)
anecht’ o € R. Potom

(i) funkce aif md zobecnény Riemanniv integral na (a, b) a plati

/abaf=a/abf,

(ii) je-li soucet | : I+ f g definovany, pak md funkce f + g zobecnény Rieman-
ntv integral na (a, b) a plati

/ab(f+g)=/abf+/abg

Tuto vétu 1ze dokazat pomoci Lemmatu [39] Véty 26]a véty o aritmetice limit
(Véta ??).

ma-li prava strana smysl,

Theorem 45. Necht’ a,b € R*, a < b,anecht’ f a g jsou funkce majici zobecnény
Riemanntiv integral na intervalu (a, b). Potom plati:

(i) Je-li f(z) < g(z) pro kazdé x € (a,b), pak fabf < f; g.
(ii) Funkce |f| md zobecnény Riemanndv integral na intervalu (a, b) a plati ’ ff f ‘ <

SP17-



3.3. ZOBECNENy RIEMANNV INTEGRAL 151

Proof. (i) Zvolme pevn& ¢ € (a,b). Pro kazdé y € (c,b) plati dle Véty 27\i)
[ f < ¥ g. PouZitim véty o limit& a uspofadani (V&ta ??) dostdvame nerovnost

lim [Yf < lim [Yg. Podobné ukdZeme, 7e plati i nerovnost lim [ f <
—b— fc /< y—b— fc g P z—a+ f$ f=

. (& v 3 v ’ 2z~ z [
lim f g. Sectenim téchto nerovnosti dokdzeme tvrzeni (i).
z—a+ 7T

(ii) Podle definice ma funkce f Riemanntv integral na kazdém podintervalu
[z,y] C (a,b). Podle Véty R7|ii) m4 tedy také funkce |f| Riemanndv integrdl na
kazdém podintervalu [z,y] C (a,b). Podle Lemmatu 42| tak existuje zobecnény
Riemanniv integrdl funkce |f| na intervalu (a,b). Zbytek tvrzeni se dokdZe ana-
logicky jako v diikazu Véty 27(ii). [

Theorem 46. Necht' a,b € R*, a < b, f je spojitd na (a,b), a F' je primitivni
funkce k f na (a, b). Pak zobecnény Riemanntiv integral funkce f na (a, b) existuje,
praveé kdyz existuji hrmty hm F(z)a lim F(z) ajejich rozdil md smysl. V tom
piipadé plati z=b=

r—b— r—ra+

/ f=[F’= lim F(z)— lim F(z). (18)

Proof. = Zvolme ¢ € (a,b). Pro libovolné = € (a,b) existuje Riemannav integral
[ f aplati

| 1 =1w =P - Fe, (19)

kde prvni rovnost plyne z Newtonovy-Leibnizovy formule (Véta [3T)) a druhd ze
spojitosti funkce F' v bodech ¢ a . PouZitim (19) dostaneme

lim F(x) = )+ lim / fs
r—b— x—b—
$1_1>I£1+ F(.I) B wl—lgl-l-/ I

Obé limity tedy existuji, jejich rozdil ma smysl a plati vzorec (18).
< Podobé jako v predchozi ¢asti dikazu vyjdeme ze vztahu a limitnim
prechodem dokdZeme poZadovana tvrzeni. ]

Pokud zobecnény Riemanniv integrdl funkce f na intervalu (a,b) existuje
a pritom je konecny, pak fikame, Ze fab f konverguje. Pokud je roven 400 nebo
—00, pak fikdme, Ze diverguje. Mame tedy nasledujici mozZnosti:

b L redlnému Cisluy, tj. konverguje,
existuje a je roven o )
f +00 nebo — oo, tj. diverguje,
¢ neexistuje.
+00 1

Example 47. Spoctéte integral / ——— da.
oo TP+
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Solution. Integrovana funkce je spojitd na R, primitivni funkci k ni je funkce arctg.
Podle Véty 46| tedy dostdvame

T T T

—+o0
dxa/ a: dex.

+oo
Example 48. Spoctéte integraly / 5
0 —x & +1

2 +1

Solution. Integrovana funkce je spojitd na R a primitivni funkci k ni je funkce
F(z) = +log(2? + 1). Plati

— 2
F0)=0, lim F(z)= lim F(z)=+oc0.

T—>+00 T—>—00
Z Vétypak plyne, Ze f0+oo srpde =+ooa fj;o o7 da neexistuje. *

1
Example 49. Spoctéte / log x dz.
0

Solution. Funkce log je spojitd na intervalu (0, +00). Primitivni funkci k ni spo¢teme
pomoci metody per partes

1
/logazdx =zxlogx — /ar: Zdz £ zlogx — .
x
Hodnota uvedené primitivni funkce v bodé 1 je —1 a déle podle Prikladu ?? plati

JCl_1>r(131+(:1€ logz —z) =0.

Odtud a z Véty 46|dostdvame, Ze fol logxdx = —1. *

+oo
Example 50. Integral / % dx konverguje, pravé kdyz a < —1.
1

Proof. Pro a # —1 je primitivni funkci k funkci ¢ na intervalu (1, +o00) funkce
$a+1
a+l1 -’

S pomoci Véty @ dostaneme

+00 a+1 +oo 1 — 1 —
/ xadx:[x ] :{0—a+1— ari  broa< -1,
1

a+1], +00 — —- =400 proa > —1.

a+1

Pro a = —1 plati

—+00 —+o00 1
/ xadx:/ —dz = [logz]{> = +00 — 0 = +o0.
1 1T

Je vhodné porovnat tento priklad s Vétou ??. ]
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1
Example 51. Integral / % dx konverguje, pravé kdyz o« > —1.
0

Proof. Pro a # —1 je primitivni funkci k funkci ® na intervalu (0, 1) funkce
dostaneme

1
/1xadx:[$a+1] - m—o_m pro a > —1,
0 at1lo =5 — (—00) =400 proa < —1.

Pro o = —1 plati

1 1
1
/azadx:/ —dmz[log:c]ézO—(—oo):—i—oo. n
0 0o <L

Remark. Podobné jako v predchozim prikladu lze ukazat, Ze je-li ¢,d € R, ¢ < d,
pak fcd(a: — ¢)® dx konverguje, pravé kdyz plati « > —1. Stejné tak pro d < ¢
integral f;(c—m)o‘ dx konverguje, pravé kdyZ oo > —1. Toto pozorovani vyuZijeme
pozdéji v konkrétnich piikladech.

U fady integrald pozname, zda konverguji, pokud je porovname s vhodnou
funkci z — z®. K tomu ndm poslouZi ndsledujici dvé véty.

Theorem 52 (srovndvaci kritérium). Necht’ a,b € R*, a < b, funkce f a g spliuji
0 < f(x) < g(x) pro vSechna = € (a,b) a f je na (a, b) spojitd. Pokud konverguje
ff g, pak konverguje i f: f.

Proof. Ze spojitosti funkce f a z Lemmatu 42| plyne existence zobecnéného Rie-
mannova integralu f; f. Podle Véty i) potom tento integral konverguje. ]
Theorem 53 (limitni srovnavaci kritérium). Necht' f a g jsou spojité nezdporné
funkce na intervalu [a, b), b € R*, a existuje limita h He ((xg =y e R".

o Je-liy € (0,+00), pak fa f konverguje, pravé kdyz konverguje f; g.
e Je-li v = 0, pak z konvergence fab g plyne konvergence fab f.
e Je-li v = +o0, pak z divergence ff g plyne divergence ff I
Proof. Predpokladejme nejprve, Ze v € (0, 400). Z definice limity plyne, Ze ex-

’f z) 7| < 1. Specidlné pro

istuje takové ¢ € R, Ze pro vSechna = € (c,b) je
z € (c, b) médme 0 < fgx)) < y+1,neboli 0 < (z) < ('y—i—l) (x). Pfedpokldaddme-
li, Ze f g konverguje, pak z Véty 43(i) plyne konvergence integralu f b g. Konver-
guje tedy také fc (v + 1)g (Véta|44(i)), a proto dle Véty |52/ konverguje i integral
fcb f. Funkce f je spojitd na [a, c], a tedy podle Véty integrél fac f konverguje.
Podle Véty ii) tak konverguje i integral f; f. Odtud plyne druhy bod tvrzeni
a jedna implikace v prvnim bodé.
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Nyni pfedpokladejme, Ze plati v € (0, +00)U{+0o0}. Potom mame lirg % €

T—r
[0, +00), €ili podle jiz dokdzaného plati, Ze konverguje-li f; f, pak konverguje
i fa g. Odtud plyne tfeti bod tvrzeni a zbyvajici implikace v prvnim bodeg. ]

Remarks. 1. Analogicka tvrzeni plati pro funkce na intervalu (a, b].

2. Porovnejte srovndvaci kritérium a jeho limitni verzi s analogickymi kritérii pro
konvergenci fad uvedenymi v kapitole ??.

UkaZme si nékolik prikladi, jak tyto véty pouZzivat.
+00
Example 54. Zjistéte, zda / 220" dg konverguje.
1

Solution. Funkce f(z) = 2% " je spojit a kladnd na intervalu [1, +00). Vime,
~ 400 1 . v P .
7e fl ~z dz konverguje (Piiklad . Dile plati

22
lim f(laz) = lim x—Q =0,
T—+00 = r—+o0 ¥
a tedy podle Véty [53]integral ze zadani konverguje. »

17+ 36
218 + 5127 +5
Solution. Integrovand funkce je spojitd a kladnd na intervalu [1,+00). Protoze

stupeni Citatele je o jedna menSi neZ stupen jmenovatele, je vhodné srovnat inte-
grovanou funkci s funkei 1/z:

+00
Example 55. Zjistéte, zda / dz konverguje.
1

z'74+36
1' 1815127 +5 - . $18 + 36z -
1m -1 = 1m 8 L r 1T i
z—+00 - z—+o0 ' + 5lax’ 4+ 5

Podle Vétyintegrél ze zaddni konverguje, pravé kdyz konverguje integral | 1+°° %
Tento integral viak diverguje podle Piikladu [S0} TudiZ i zadany integrél diver-

guje. *
’7T
Example 56. Zjistéte, pro které hodnoty o € R konverguje / sin® z dzx.
0

Solution. Integrovand funkce je spojitd a kladnd na intervalu (0, 7). Rozdélme in-
terval (0, ) na dvé &4sti — zkoumejme foﬂ/ *sin®zdra f;/Q sin® z d, nebot’ inte-
grél ze zadani konverguje, praveé kdyZ konverguji oba uvedené integraly pies mensi
intervaly (Véta[d3). '

Funkce = — sin® z je spojitd na intervalu (0,7/2] a ml_i)r& Sl‘;ﬁ# = 1. Tedy

f07r 2 sin® z dz konverguje, pravé kdyz konverguje foﬂ/ % 2% dz. Tento integral kon-
verguje, pravé kdyz oo > —1 (Pfiklad [51]a pozndmka za nim).

dex.
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Zbyva vysetfit f;r/2 sin® z dz. Protoze v8ak sin(m—x) = sin z, je tento integrél
roven integralu z predchoziho odstavce, a tedy konverguje, pravé kdyz o > —1.
Integral ze zadani tedy konverguje, praveé kdyz o > —1. &

3.4. Cviceni

K zadané funkci naleznéte na co nejvétSich intervalech né€jakou primitivni
funkci F'.

1. (a:2 —z)expx 2. 5%sinz
3l 4., L
T 4 — x4
5 1 6 2z
T3z -2 -1 oz + D) (2t + 222 +1)
cotgx 3 sinz
sinz 4+ cosx — 1 T osin®z + cos
V2x +1 T+ 2
9, ———— 10.
z? (@2 +z+1)%(z—1)
11. ! 12. !

(x+DVaz+x+1 V24 x — 22

Spoctéte nasledujici urcité integraly.

o [ ey, w [ L
o sinx—2cos?z —1/2 V8 + 2z — a2
™ 1/2
15. / 22 sin? z dz 16. / arccos x dz
0 0
1 " 1 )
17. —dx 18. zlog® x dx
/1 Vo —4dx /0 &
+00 +oo
19. / 22e % dx 20. / 22e*dx
0 —00
+oo 5 +0o0 9
21. / 22 dx 22. / 22 do
oo 0

23. Vypocitejte obsah obrazce ohrani¢eného grafy dvou funkci z — H% azr—
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24.  Vypocitejte obsah obrazce ohrani¢eného grafy funkci z +— 2% — 6z + 8,
r— -4z +T7ax— 2z —8.

25.  Vypocitejte délku kiivky, kterd je grafem funkce f(z) = log(cosx) pro
x € [0,7/6].

26. Vypocitejte obsah rotaéni plochy, kterd vznikne rotaci kfivky x ~ x2/2,
x € [0, 3/4], kolem osy x.

27. Vypocitejte objem rotacniho télesa, které vznikne rotaci obrazce leZiciho
v roviné z,y kolem osy x. Obrazec je ohranicen kiivkami, jejichZ rovnice jsou
x2—%y2:1ay2—m2:1.

1
28. Pro které hodnoty parametrd p, ¢ € R konverguje / 2P (1 — x)?dx?
0

29. Zjistéte, pro které hodnoty parametrii «, 5,y € R konverguje integral

3
/ sin® z cos” (1 — cos x)? du.
0

Vysledky cviceni
1. F(x) = (#®2—3x+3) exprnacelémR 2. F(z) = ﬁ(log 5-sin x—cos x)
na celém R 3. F(z) = %log’x na intervalu (0, +o00) 4. F(x) =

1 arcsin($2?) na intervalu (—v/2,v/2) 5. F(z) = tlog ‘ 3“;11‘ na kazdém

z intervall (—oo, —1/3), (—1/3,1) a (1, +00) 6. F(z) = —Lloglz + 1| +
1log(2? + 1) + 35 na intervalech (—oo, —1) a (=1, +00) 7. F(x) =
—% cotg 5 + 1 5 log ‘tg 2‘ na libovolném intervalu neobsahujicim body mnoZiny
{km; k € Z} U{r/2 + 2k7r' ke Z} 8. F(z) = —3logltgz + 1| +
1 ¢ log(tg? z —tgx+1)+ % arctg 252=1 pa libovolném intervalu neobsahujicim
body mnoziny {(2k + 1)7/2; k € Z} U{—n/4 + kn; k € Z} 9. F(x) =

log ’\/zzi;y — V2§+1 na intervalech (—1/2,0) a (0, +00) 10. F(z) =

tloglz — 1| — tlog(z? + 2 +1) — 5\[ arctg (2%1) — % i‘;rl na intervalech

(—o0,1)a(l,400) 11. F(z) =log ‘7%‘ na intervalech (—oo, —1)
FESUNES

a(—1,400) 12. F(z) = \}log %{ na intervalech (—1,0) a (0, 2)
V2

ISR

3 s 3
13. T(arctg i arctg \[) 14. 7/6 15. % — 16. = — ¥3 +1
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17.1/6 18.1/4 19.2 20. +o00 21.0 22.1/2 23.m—2/3
24.9/4  25.3log3  26. 7% (%2 —2log2) 27.3m(3v3-2)  28.Integral
konverguje, pravé kdyZp > —laqg > —1. 29. Integrdl konverguje, pravé kdyz
B>—-laa+2y> -1
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