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CHAPTER 1

Functions of several variables

In the previous chapter we studied functions of one real variable. However, it
is usual that some quantity depends on more variables. That takes us to concept
of function whose values depends of several real variables. In next sections we
are going to deal at first with sets, which are domains of these functions, then we
introduce basic notions of differential calculus of multivariate functions.

1.1. The set Rn as a metric and linear space

Let n ∈ N. Remind that the set Rn consists of all n-tuples of real numbers,
since it is a Cartesian product of n sets:

Rn = R× R× · · · × R︸ ︷︷ ︸
n-times

.

If ~x ∈ Rn, then we denote its i-th coordinate by xi, and hence we can write ~x =
[x1, . . . , xn]. There are some important elements in set Rn. First of all it is origin,
that is an element, whose all coordinates equals zero. We denote it by ~o. For i ∈
{1, . . . , n} we define ~ei ∈ Rn as follows:

~ei = [0, . . . , 0, 1
i-th coordinate

, 0, . . . , 0].

These elements will be important to us further.
Elements of Rn can be added together and multiplicated by a real number: if

~x ∈ Rn, ~x = [x1, . . . , xn], ~y ∈ Rn, ~y = [y1, . . . , yn], λ ∈ R, then we define

~x+ ~y = [x1 + y1, . . . , xn + yn],

λ~x = [λx1, . . . , λxn].

For operations addition and multiplication by a real number we introduced
now, there are number of counting rules, derived from similar rules for real num-
bers (e.g. ~x+~y = ~y+~x, λ(~x+~y) = λ~x+λ~y). Think over that we can write every
element ~x = [x1, . . . , xn] ∈ Rn in a form ~x =

∑n
i=1 xi~e

i.
The set Rn with operations addition and multiplication by a real number we

will call the space Rn and the elements of Rn will be called the points of this space.
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2 1. FUNCTIONS OF SEVERAL VARIABLES

However, sometimes it is useful to look at a given element ~x from Rn as a vector,
that means a directed line segment starting at the origin and ending in the point ~x.

Now we introduce an important notion of distance.

Definition. The Euclidean metric (distance) on Rn is a function ρ : Rn ×Rn →
[0,+∞) defined by:

ρ(~x, ~y) =

√√√√ n∑
i=1

(xi − yi)2.

We call the number ρ(~x, ~y) the distance between points ~x and ~y.

Theorem 1 (properties of the Euclidean metric). The Euclidean metric ρ has the
following properties:

• ∀~x, ~y ∈ Rn : ρ(~x, ~y) = 0⇔ ~x = ~y,
• ∀~x, ~y ∈ Rn : ρ(~x, ~y) = ρ(~y, ~x) (symmetry),
• ∀~x, ~y, ~z ∈ Rn : ρ(~x, ~z) ≤ ρ(~x, ~y) + ρ(~y, ~z) (triangle inequality),
• ∀~x, ~y ∈ Rn ∀λ ∈ R : ρ(λ~x, λ~y) = |λ| ρ(~x, ~y) (homogeneity),
• ∀~x, ~y, ~z ∈ Rn : ρ(~x+ ~z, ~y + ~z) = ρ(~x, ~y) (translation invariance).

Proof. We prove only the triangle inequality. The other proofs are simple. Let ~x =
[x1, . . . , xn], ~y = [y1, . . . , yn], ~z = [z1, . . . , zn] ∈ Rn. We want to prove that:

ρ(~x, ~z) =

√√√√ n∑
i=1

(xi − zi)2 ≤

√√√√ n∑
i=1

(xi − yi)2 +

√√√√ n∑
i=1

(yi − zi)2 =

= ρ(~x, ~y) + ρ(~y, ~z).

(1)

We could write ai = xi − yi, bi = yi − zi for i = 1, . . . , n. Then (1) is equivalent
to √√√√ n∑

i=1

(ai + bi)2 ≤

√√√√ n∑
i=1

a2i +

√√√√ n∑
i=1

b2i . (2)

Since all sums in (2) are non-negative, then (2) is equivalent to

n∑
i=1

(ai + bi)
2 ≤

n∑
i=1

a2i + 2

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i +
n∑
i=1

b2i .

We alter this expression:

n∑
i=1

a2i + 2

n∑
i=1

aibi +

n∑
i=1

b2i ≤
n∑
i=1

a2i + 2

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i +

n∑
i=1

b2i . (3)



1.1. THE SET Rn AS A METRIC AND LINEAR SPACE 3

Firstly, inequality (3) corresponds to inequality (1). On the other hand, the in-
equality (3) follows from Cauchy’s inequality (Example ??). That completes the
proof. �

The following notions, based on the distance definition, play the key role in the
multivariate function theory.

Definition. Let ~x ∈ Rn, r > 0. We call B(~x, r) defined by the expression

B(~x, r) = {~y ∈ Rn; ρ(~x, ~y) < r}

the open ball with centre ~x and radius r or the neighbourhood of point ~x.

Definition. Let ~xj ∈ Rn for each j ∈ N and let ~x ∈ Rn. We say that a sequence
{~xj}∞j=1 converges to ~x if lim

j→∞
ρ(~x, ~xj) = 0. We call the element ~x the limit of

the sequence {~xj}∞j=1. A sequence {~yj}∞j=1 of the elements of Rn is convergent
if there exists ~y ∈ Rn so that {~yj}∞j=1 converges to ~y.

Remark. It follows directly from the definition that an element ~x ∈ Rn is the limit
of the sequence {~xj}∞j=1 if and only if

∀ε ∈ R, ε > 0 ∃j0 ∈ N ∀j ∈ N, j ≥ j0 : ~xj ∈ B(~x, ε).

Compare with the definition of the limit of a sequence of real numbers on page ??.

Theorem 2. Let ~xj ∈ Rn for each j ∈ N a ~x ∈ Rn. The sequence {~xj}∞j=1

converges to ~x if and only if for each i ∈ {1, . . . , n} the number sequence {xji}∞j=1
converges to number xi.

Proof. Suppose that sequence {~xj} converges to ~x, according to the definition it
means

lim
j→∞

√√√√ n∑
k=1

(xjk − xk)2 = 0. (4)

Choose fixedly i ∈ {1, . . . , n}. Then for arbitrary j ∈ N holds√√√√ n∑
k=1

(xjk − xk)2 ≥
∣∣xji − xi∣∣ ≥ 0. (5)

From (4), (5) and the sandwich theorem (Theorem ??) follows lim
j→∞

xji = xi.

Now suppose that lim
j→∞

xji = xi for each i ∈ {1, . . . , n}. Applying the theorem

about limit arithmetic (Theorem ??) and using the continuity of function t 7→
√
t

on interval [0,+∞) we deduce (4). �
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Remark. Theorem 2 says that convergence in the space Rn is the same as conver-
gence by coordinates. It also implies that a sequence {~xj} of elements of Rn has
at most one limit. Therefore it is correct to denote the limit of a sequence {~xj}
(if it exists) by the symbol lim

j→∞
~xj . We will sometimes write ~xj → ~x instead of

lim
j→∞

~xj = ~x.

Definition.
(i) Let M ⊂ Rn. We say that ~x ∈ Rn is an interior point of a set M if there

exists r > 0, such that B(~x, r) ⊂M .
(ii) We call M ⊂ Rn open in Rn, if all of its points are interior points.

(iii) A interior of a set M is the set of all interior points of M . We denote the
interiorof the set M IntM .

Example 3. Let ~x ∈ Rn and R > 0. An open ball B(~x,R) is an open set in Rn.

Proof. We have to prove that each point of the set B(~x,R) is its interior point.
Let ~y ∈ B(~x,R). We want to find r > 0, such that B(~y, r) ⊂ B(~x,R). Choose
r = R − ρ(~x, ~y). The number r is positive, because ρ(~x, ~y) < R. Provided that
~z ∈ B(~y, r), we could use the triangle inequality

ρ(~x, ~z) ≤ ρ(~x, ~y) + ρ(~y, ~z) < ρ(~x, ~y) + r = R,

and then ~z ∈ B(~x,R). We have proved that B(~y, r) ⊂ B(~x,R), and then the
point ~y is an interior point of the set B(~x,R). Draw a figure for n = 2. �

Now we provide some basic properties of open sets.

Theorem 4 (properties of open sets).
(i) The empty set and the whole space Rn are open in Rn.

(ii) Let A is an non-empty set of indexes. Let the sets Gα ⊂ Rn, α ∈ A, are open
in Rn. Then

⋃
α∈AGα is open set in Rn.

(iii) Let m ∈ N. Let sets Gi, i = 1, . . . ,m, are open in Rn. Then
⋂m
i=1Gi is an

open set in Rn.1

Proof. (i) This proposition is obvious.
(ii) If ~x ∈

⋃
α∈AGα, then α0 ∈ A can be found such that ~x ∈ Gα0 . Due

to openness of the set Gα0 there exists r > 0 satisfying B(~x, r) ⊂ Gα0 , and
thus B(~x, r) ⊂

⋃
α∈AGα. It means that ~x is an interior point of the set

⋃
α∈AGα

and the proposition is thus proved.
(iii) If ~x ∈

⋂m
i=1Gi, then for each i ∈ {1, . . . ,m} there exists ri > 0 such as

B(~x, ri) ⊂ Gi, because Gi is open. Put r = min{r1, . . . , rm}. Then we get r > 0
and B(~x, r) ⊂

⋂m
i=1Gi. �

1The symbol
⋂m
i=1 means the same as

⋂
i∈{1,...,m}.
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Definition.
(i) Let M ⊂ Rn and ~x ∈ Rn. We say that ~x is a a limit point of the set M ,

provided that for each r > 0 it is true that

B(~x, r) ∩M 6= ∅ & B(~x, r) ∩ (Rn \M) 6= ∅.

(ii) The set of all limit points of M is called a boundary of M . We denote it by
H(M).

(iii) A closure of the set M is the set M ∪H(M). We denote the closure of the
set M by M .

(iv) We say that the set M is closed in Rn if it contains all of its limit points (i.e.
H(M) ⊂M or M = M ).

Theorem 5 (Characterization of closed sets). Let M ⊂ Rn. Then the following
conditions are equivalent.

(i) The set M is closed in Rn.
(ii) The set Rn \M is open in Rn.

(iii) If ~x ∈ Rn is the limit of a convergent sequence {~xj} of points of the set M ,
then ~x ∈M .

Proof. The structure of the proof will be as follows: First, we shall prove that the
condition (i) imply (ii), than we shall prove the implication (ii)⇒ (iii) and in the
third step we shall prove from (iii) the condition (i). This would complete the proof
of the theorem is what had to be proved, because from proved implications follow
the rest.

(i) ⇒ (ii) Let ~x ∈ Rn \M . From the assumption that the set M is closed,
we get x /∈ H(M). It implies that there exists r > 0 such that B(~x, r) ∩M = ∅
or B(~x, r) ∩ (Rn \M) = ∅. The second eventuality could not happen in our case,
because ~x ∈ Rn \M . Hence B(~x, r)∩M = ∅, in other words B(~x, r) ⊂ Rn \M ,
and thus ~x is an interior point of Rn \M .

(ii) ⇒ (iii) Consider the sequence {~xj} of points of the set M which con-
verges to the element ~x ∈ Rn. For each r > 0 there exists j ∈ N such that
~xj ∈ B(~x, r). It means that ~x is not an inner point of Rn \M . The set Rn \M is
open and thus contains only its inner points, so ~x /∈ Rn \M , i.e. ~x ∈M .

(iii)⇒ (i) We assume that (iii) holds and we want to deduce H(M) ⊂ M .
Let ~x ∈ H(M). Then for each j ∈ N we obtain B(~x, 1/j) ∩ M 6= ∅. Thus
there exists ~xj ∈ B(~x, 1/j) ∩ M for each j ∈ N. Then lim ~xj = ~x, because
0 ≤ ρ(~x, ~xj) ≤ 1/j, j ∈ N. According to (iii) we obtain ~x ∈ M and this is what
had to be proved. �

Theorem 6 (properties of closed sets).
(i) The empty set and the whole space Rn are closed in Rn.
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(ii) Let A be an non-empty set of indexes. Let the sets Fα ⊂ Rn, α ∈ A, be
closed in Rn. Then

⋂
α∈A Fα is a closed set in Rn.

(iii) Let m ∈ N. Let sets Fi, i = 1, . . . ,m, be closed in Rn. Then
⋃m
i=1 Fi is a

closed set in Rn.2

Proof. All propositions could be easily proved from Theorem 4, the equivalence
of (i) and (ii) in Theorem 5 and De Morgan’s laws (Theorem ??). �

In the following theorem we will deduce important properties of closure and
interior of a set.

Theorem 7. Let M ⊂ Rn. Then:
(i) The set M is closed in Rn.

(ii) The set IntM is open in Rn.
(iii) The set M is open in Rn if and only if M = IntM .

Proof. (i) Suppose that ~x ∈ Rn \M . Then ~x /∈ H(M) and thus there exists δ ∈ R,
δ > 0, such that B(~x, δ) ∩M = ∅ or B(~x, δ) ∩ (Rn \M) = ∅. Since ~x /∈ M ,
the second eventuality could not happen. For each point ~y ∈ B(~x, δ) there exists
η ∈ R, η > 0 such that B(~y, η) ⊂ B(~x, δ) and thus B(~y, η) ∩M = ∅. It implies
~y /∈ H(M). Hence B(~x, δ) ∩H(M) = ∅. This yields B(~x, δ) ∩M = ∅ and thus
Rn \M is open in Rn. According to the theorem 5 is then M closed in Rn.

(ii) Suppose that ~x ∈ IntM . Thus, there exists δ ∈ R, δ > 0 such that
B(~x, δ) ⊂ M . Then for arbitrary ~y ∈ B(~x, δ) there exists η ∈ R, η > 0 such
thatB(~y, η) ⊂ B(~x, δ) ⊂M . The point ~y is then an interior point ofM . From that
we obtain B(~x, δ) ⊂ IntM , what we wanted.

(iii) If M is open, then each of its points is an interior point of M and thus
M = IntM . The implicational converse follows directly from the definition of an
open set. �

Remark. Remark that IntM is the biggest open set contained inM in the following
sense: If G is a set open in Rn satisfying G ⊂ M , then G ⊂ IntM . Similarly M
is the smallest closed set containing M .

Definition. We say that a set M ⊂ Rn is bounded if there exists r > 0 satisfying
M ⊂ B(~o, r). A sequence of the points of Rn is bounded provided that the set of
its terms is bounded.

Theorem 8. A set M ⊂ Rn is bounded if and only if the set M is bounded.

Proof. Suppose that the set M is bounded. Thus, there exists r > 0 such that
M ⊂ B(~o, r). If ~x ∈M , then there exists ~y ∈M such that ρ(~x, ~y) < 1. If ~x ∈M ,
we could choose ~y = ~x, on the other hand if ~x /∈M , then ~x ∈ H(M) and ~y could

2The symbol
⋃m
i=1 means the same as

⋃
i∈{1,...,m}.
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be an arbitrary point of the set B(~x, 1)∩M , which has to be non-empty. From the
triagle inequality we get

ρ(~o, ~x) ≤ ρ(~o, ~y) + ρ(~y, ~x) ≤ ρ(~o, ~y) + 1 < r + 1.

Thus M ⊂ B(~o, r + 1) holds and then M is bounded.
Thus also M is bounded, because M ⊂M . �

Example 9. LetM = {[x, y] ∈ R2; x > 0, y ≥ 0}. Decide if the given set is open
or closed, determine its boundary, closure and interior.

Solution. It can be easily proved thatB([x, y],min{x, y}) ⊂M . Hence, if [x, y] ∈
(0,∞)× (0,∞), it is an interior point of the set. NeighbourhoodsB([x, y], |x| /2),
where x < 0, and B([x, y], |y| /2), where y < 0, are contained in the complement
of the set M . A neighbourhood in a form B([0, y], r), where r > 0, y ≥ 0, always
intersect both the set M and its complement, because for example [r/2, y+ r/2] ∈
M ∩ B([0, y], r) and [−r/2, y] ∈ (R2 \ M) ∩ B([0, y], r). Similarly we could
show, that a neighbourhood of the form B([x, 0], r), where r > 0, x ≥ 0, always
intersects both M and its complement.

Hence, we get

IntM = {[x, y] ∈ R2; x > 0, y > 0},
H(M) = {[0, y] ∈ R2; y ≥ 0} ∪ {[x, 0] ∈ R2; x ≥ 0} a

M = {[x, y] ∈ R2; x ≥ 0, y ≥ 0}.

It can be seen that M 6= IntM a M 6= M . That is, the set M is neither open nor
closed. ♣

Example 10. For each k ∈ N let a set be defined by

Mk = {[x, y] ∈ R2; x2 + y2 < (1 + 1/k)2}.

Determine a set
⋂∞
k=1Mk.3 Decide if the sets Mk,

⋂∞
k=1Mk are open or closed.

Solution. Each of the sets Mk is an open disc with radius 1 + 1/k and for each
k ∈ NMk+1 ⊂Mk holds. It seems that

⋂∞
k=1Mk = {[x, y] ∈ R2; x2 + y2 ≤ 1}.

Now we try to prove this conjecture.
Let us set M = {[x, y] ∈ R2; x2 + y2 ≤ 1}. First, prove inclusion M ⊂⋂∞

k=1Mk. If [x, y] ∈ M , then x2 + y2 ≤ 1 < 1 + 1/k for each k ∈ N and thus
[x, y] ∈

⋂∞
k=1Mk.

Next,
⋂∞
k=1Mk ⊂ M holds. Since if [x, y] is contained in each set Mk, is

x2 + y2 < 1 + 1/k for each k ∈ N and it follows that x2 + y2 ≤ inf {1 + 1/k; k ∈
N} = 1 and [x, y] ∈M .

3The symbol
⋂∞
k=1 means the same as

⋂
k∈N.
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The set Mk, k ∈ N, is an open ball and hence it is open; Mk is not closed,
because e.g. the point [1 + 1/k, 0] ∈Mk \Mk. It is not difficult to think over that
H(M) = {[x, y] ∈ R2; x2 + y2 = 1} and the set M is thus closed. However, it is
not open, because e.g. the point [0, 1] ∈M \ IntM .

The given example shows that the intersect of infinitely many open sets does
not have to be an open set. Compare with the theorem 4. ♣

1.2. Continuous functions of several variables

In this section we will show how the notion of continuity could be defined for
functions of several variables, i.e. for functions of the type f : M → R,M ⊂ Rn.
We also introduce some basic properties of this notion.

Definition. LetM ⊂ Rn, ~x ∈M and f be a function of n variables. We say that f
is continuous at a point ~x inM , provided that

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀~y ∈ B(~x, δ) ∩M : f(~y) ∈ B(f(~x), ε).

To say that f is continuous at ~x, means that f is continuous at ~x in some neigh-
bourhood of the point ~x, i.e.

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀~y ∈ B(~x, δ) : f(~y) ∈ B(f(~x), ε).

We state two theorems which shows behaviour of the defined notion while us-
ing arithmetic operations and function composition. They can be proved by a mod-
ification of the proofs of the theorem about function limit arithmetic (Theorem ??)
and the theorem about a limit of a composite function (Theorem ??) respectively.
We omit theese proofs.

Theorem 11. Let M ⊂ Rn, ~x ∈ M , f : M → R, g : M → R and c ∈ R. If
f and g are continuous at a point ~x in M , then so are functions cf , f +g and fg. If
above that g(~x) 6= 0 holds, then also function f/g is continuous at a point ~x in M .

Theorem 12. Let r, s ∈ N and let M ⊂ Rs, L ⊂ Rr and ~̃x ∈ M . Let ϕ1, . . . , ϕr
are functions defined onM , continuous at the point ~̃x inM and [ϕ1(~x), . . . , ϕr(~x)] ∈
L for each ~x ∈ M . Let f : L → R is continuous at the point [ϕ1(~̃x), . . . , ϕr(~̃x)]
in L. Then the composite function F : M → R defined by

F (~x) = f
(
ϕ1(~x), ϕ2(~x), . . . , ϕr(~x)

)
, ~x ∈M,

is continuous at ~̃x in M .

The connection between continuity of a function and convergence of a se-
quence is stated in already mentioned Heine theorem.
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Theorem 13 (Heine theorem). Let M ⊂ Rn, ~x ∈ M and f : M → R. Then the
following conditions are equivalent:

(i) f is continuous at ~x in M ,
(ii) lim

j→∞
f(~xj) = f(~x) for every sequence {~xj}∞j=1 provided ~xj ∈ M for j ∈ N

and lim
j→∞

~xj = ~x.

Proof. (i)⇒ (ii) Choose an arbitrary sequence {~xj}∞j=1 of points of the set M ,
which converges to ~x. Choose ε > 0. From the continuity of f at the point ~x
in M follows the existence of δ > 0 such that f(~y) ∈ B(f(~x), ε) holds for each
~y ∈ B(~x, δ) ∩M . For that δ > 0 we can find j0 ∈ N satisfying ρ(~xj , ~x) < δ for
j ≥ j0. If thus j ≥ j0, then ~xj ∈ B(~x, δ) ∩M and thus f(~xj) ∈ B(f(~x), ε).

(ii)⇒ (i) Prove non (i)⇒ non (ii). Suppose (i) does not hold. That is

∃ε ∈ R, ε > 0 ∀δ ∈ R, δ > 0 ∃~y ∈ B(~x, δ) ∩M : f(~y) /∈ B(f(~x), ε).

For each j ∈ N we can find a point ~yj ∈ B(~x, 1/j) ∩ M satisfying f(~yj) /∈
B(f(~x), ε). We have ~yj → ~x, but the sequence {f(~yj)}∞j=1 does not converge
to f(~x), and thus (ii) does not hold. �

Definition. LetM ⊂ Rn and f : M → R. We say that f is continuous on a setM
if and only if it is continuous at each point ~x ∈M in M .

Remark. The definition is consistent with the previously defined notion continuity
on an interval.

Example 14. Let i, n ∈ N, i ≤ n. A function πi : Rn → R defined by πi(x1, . . . , xn) =
xi is continuous on Rn. We call these functions coordinate projections.

Proof. Prove that πi is continuous at an arbitrary point ~̃x = [x̃1, . . . , x̃n] ∈ Rn. Let
ε > 0 be given, then set δ = ε. Then for each ~x ∈ B(~̃x, δ) it follows that∣∣πi(~x)− πi(~̃x)

∣∣ = |xi − x̃i| ≤ ρ(~x, ~̃x) < δ = ε.

�

Example 15. The function ~x 7→ ρ(~x, ~o) is continuous on Rn.

Proof. The following inequalities hold for each ~u,~v ∈ Rn:

ρ(~u, ~o) ≤ ρ(~u,~v) + ρ(~v, ~o) a ρ(~v, ~o) ≤ ρ(~v, ~u) + ρ(~u, ~o),

from that it easily follows

|ρ(~u, ~o)− ρ(~v, ~o)| ≤ ρ(~u,~v).

Choose now a point ~x ∈ Rn fixedly and let ε ∈ R, ε > 0 be given. Then for each
~y ∈ B(~x, ε) from the previous inequality it follows that

|ρ(~y, ~o)− ρ(~x, ~o)| ≤ ρ(~y, ~x) < ε,

and the continuity of the given function at the point ~x is proved. �
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Theorem 16. Let f be a continuous function on Rn and c ∈ R. Then:
(i) The set {~x ∈ Rn; f(~x) < c} is an open set in Rn.

(ii) The set {~x ∈ Rn; f(~x) > c} is an open set in Rn.
(iii) The set {~x ∈ Rn; f(~x) ≤ c} is a closed set Rn.
(iv) The set {~x ∈ Rn; f(~x) ≥ c} is a closed set Rn.
(v) The set {~x ∈ Rn; f(~x) = c} is a closed set Rn.

Proof. (i) Let us set M = {~x ∈ Rn; f(~x) < c}. If ~̃x ∈ M , then we want to
prove that we can find a neighbourhood B(~̃x, r) which is a subset of M . Since
f(~̃x) < c, we can set ε = c − f(~̃x) and notice that ε > 0. From the continuity of
the function f at the point ~̃x it follows that we can find r > 0 such that

∀~x ∈ B(~̃x, r) : f(~̃x)− ε < f(~x) < f(~̃x) + ε. (6)

From the definition of the number ε and from (6) follows

∀~x ∈ B(~̃x, r) : f(~x) < c,

and thus B(~̃x, r) ⊂M .
Statement (ii) can be proved similarly or we can use the function −f . State-

ment (iii) follows from (ii) and the theorem 5, statement (iv) follows from (i) and
Theorem 5. It remains to prove the statement (v). It follows that

{~x ∈ Rn; f(~x) = c} = {~x ∈ Rn; f(~x) ≤ c} ∩ {~x ∈ Rn; f(~x) ≥ c}.
This relation, (iii), (iv) and the theorem 6 imply (v). �

Definition. We call a set M ⊂ Rn compact if and only if every sequence of
elements of the set M has a convergent subsequence whose limit is in M .4

The following theorem gives an important characterization of the compact sub-
sets of Rn, which we will use in finding extremes of a multivariate function.

Theorem 17 (characterization of compact sets in Rn). A set M ⊂ Rn is compact
if and only if it is closed and bounded.

In the proof we will use the following lemma.

Lemma 18. Let {~xj}∞j=1 be a bounded sequence in Rn. Then it has a convergent
subsequence.

Proof. We prove the result by applying mathematical induction on n. For n = 1 it
is the Bolzano-Weierstraß theorem (Theorem ??).

Suppose that the statement holds for every bounded sequence in Rn. Let {~xj}∞j=1

be a bounded sequence in Rn+1, that means we can find R > 0 such that ~xj ∈
4We will define subsequence of a sequence of elements of Rn in a similar way to defining

subsequence of the real numbers.
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B(0, R) for each j ∈ N. Denote ~yj = [xj1, . . . , x
j
n] ∈ Rn, j ∈ N. Then ρ(0, ~yj) ≤

ρ(0, ~xj) < R holds for each j ∈ N, and the sequence {~yj}∞j=1 is thus bounded.
According to the induction assumption, the sequence {~yj}∞j=1 has a convergent
subsequence {~yjk}∞k=1. Next

∣∣xjkn+1

∣∣ ≤ ρ(0, ~xjk) < R holds for each k ∈ N,
and the sequence of real numbers {xjkn+1}∞k=1 is thus bounded. According to the

Bolzano-Weierstraß theorem, it has a convergent sebsequence {xjkin+1}∞i=1.
From the Theorem 2 follows that the sequence of real numbers {yjkl }

∞
k=1 is

convergent for each l ∈ {1, . . . , n}. From the theorem about a limit of a subse-
quence (Theorem ??) follows that the subsequence {yjkil }

∞
i=1 is convergent. ~xjki =[

y
jki
1 , . . . , y

jki
n , x

jki
n+1

]
holds, and therefore according to Theorem 2 the sequence

{~xjki}∞i=1 is convergent. �

Proof of the Theorem 17. ⇒ Let M be compact and not bounded. Then for each
j ∈ N there exists ~xj ∈M \B(~o, j). But the sequence {~xj}∞j=1 has a subsequence
{~xjk}∞k=1 which converges to a limit ~y ∈M . Then

jk ≤ ρ(~xjk , ~o) ≤ ρ(~xjk , ~y) + ρ(~y, ~o).

We get lim
k→∞

jk = +∞ and concurrently lim
k→∞

(
ρ(~xjk , ~y) + ρ(~y, ~o)

)
= ρ(~y, ~o) ∈

R. With the Theorem ?? we get a contradiction.
Show the closeness of the setM . Suppose that {~xj}∞j=1 is convergent sequence

of the elements of the set M . We denote the limit of this sequence by ~x. The set M
is compact, and thus {~xj}∞j=1 has a subsequence, which converges to a limit in M .
However, this limit must equal to ~x (Theorem ?? and Theorem 2), thus ~x ∈ M .
Closeness of the set M now follows from the Theorem 5.
⇐ Let M ⊂ Rn be bounded and closed set. Take an arbitrary sequence

{~xj}∞j=1 of the elements of the setM . This sequence is bounded, according Lemma 18
it has a subsequence {~xjk}∞k=1, which converges to any ~x ∈ Rn. From the close-
ness of the set M follows according to the Theorem 5, that ~x ∈ M . This is what
had to be proved. �

Remark. From the previous theorem follows that:
• closed intervals in R are compact,
• finite unions of the closed intervals in R are compact,
• interval (0, 1) is not compact in R.

Definition. Let M ⊂ Rn, ~x ∈ M and f be a function defined at least on M (i.e.
M ⊂ Df ).
• We say that f has a maximum (minimum, respectively) at a point ~x on M

provided that

∀~y ∈M : f(~y) ≤ f(~x) (∀~y ∈M : f(~y) ≥ f(~x), respectively).
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We call the point ~x maximum point ( minimum point, respectively) of the func-
tion f on M .
• We say that f has a local maximum (local minimum, respectively) at a

point ~x onM , if there exists δ > 0 such that

∀~y ∈ B(~x, δ)∩M : f(~y) ≤ f(~x) (∀~y ∈ B(~x, δ) ∩M : f(~y) ≥ f(~x) respectively).

We call the point ~x a local maximum point (local minimum point, respectively)
of the function f on a set M .
• We say that f has a strict local maximum (strict local minimum, respec-

tively) at a point ~x onM , if there exists δ > 0 such that

∀~y ∈ (B(~x, δ) \ {~x}) ∩M : f(~y) < f(~x)

(resp. ∀~y ∈ (B(~x, δ) \ {~x}) ∩M : f(~y) > f(~x)).

We call the point ~x a strict local maximum point (strict local minimum point,
respectively) of the function f on the set M .
• We denote the biggest (smallest, respectively) value of the function f on M

(provided that this value exists) by the symbol maxM f (minM f respectively).

Remark. Speaking about a local extrem of the multivariate function (without men-
tioning the set) means a local extrem on some neighbourhood.

Theorem 19. (about having extremes) Let M ⊂ Rn be a non-empty compact set
and f : M → R be continuous on M . Then f has both maximum and minimum
on M .

Proof. Denote G = sup f(M). According to Lemma ?? there exists a sequence
{yj} of elements of the set f(M) such that lim yj = G. For each j ∈ N we can find
~xj ∈ M satisfying f(~xj) = yj . The set M is compact, thus the sequence {~xj}∞j=1

has a subsequence {~xjk}∞k=1, which cinverges to a limit ~x∗ ∈M . The function f is
continuous at the point ~x∗ inM and thus according to Heine theorem (Theorem 13)
lim
k→∞

f(~xjk) = f(~x∗) holds. On the other hand we have lim
k→∞

f(~xjk) = G. Then

f(~x∗) = G. This had proved that f has a maximum on M .
We could prove the existence of minimum similarly, or we can use a func-

tion −f , as in the proof of the Theorem ??. �

From the previous theorem immediately follows the next corollary.

Corollary 20. LetM ⊂ Rn be a compact set and f : M → R be continuous onM .
Then f is bounded on M .

Definition. We say that a function f of n variables has a limit at a point ~a ∈ Rn,
which is equal to A ∈ R∗ if and only if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀~x ∈ B(~a, δ) \ {~a} : f(~x) ∈ B(A, ε).
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We denote it lim
~x→~a

f(~x) = A.

Remarks. 1. If the function f should have a limit at a point ~a according to our
definition, it must exist δ0 > 0 such that f is defined at each point of the set
B(~a, δ0) \ {~a}. We could extend this definition by introducing a notion of the limit
of the function at a point in a set. However, we do not need this extension in the
following reading.
2. Every function has at a fixed point at most one limit.
3. Notice that lim

~x→~a
f(~x) = f(~a) if and only if f is continuous at ~a.

For limits of multivariate functions holds similar theorems to theorems about
limits for for functions of one real variable (e.g. theorem about limit arithmetic or
sandwich theorem). We will formulate explicitly one variant of the theorem about
the limit of the composite function.

Theorem 21. Let r, s ∈ N, ~a ∈ M ⊂ Rs, L ⊂ Rr, ϕ1, . . . , ϕr be functions
defined on M satisfying lim

~x→~a
ϕj(~x) = bj , j = 1, . . . , r, a~b = [b1, . . . , br] ∈ L. Let

f : L→ R is continuous at a point~b. Define composite function F : M → R by

F (~x) = f
(
ϕ1(~x), ϕ2(~x), . . . , ϕr(~x)

)
, ~x ∈M.

Then lim
~x→~a

F (~x) = f(~b).

Example 22. Determine the domain of the function f(x, y) =
√

log(x− y); ex-
amine continuity of the function and draw some contour lines (i.e. sets f−1({c}),
c ∈ R).

Solution. The domain of the function f is a set

Df = {[x, y] ∈ R2; log(x− y) ≥ 0} = {[x, y] ∈ R2; x− y ≥ 1}.
Since the coordinates projections π1 and π2 are continuous on the whole R2 (see
Example 14), is the function g(x, y) = π1(x, y) − π2(x, y) = x − y continuous
on the whole R2 (and thus also on Df ⊂ R2). The function log is continuous on
(0,+∞), and therefore the function log(x− y) is continuous on Df (composition
of the continuous functions). The function u 7→

√
u is continuous on [0,+∞), and

thus the function f(x, y) =
√

log(x− y) is also continuous on Df .
Since the function f is non-negative, f−1({c}) = ∅ holds for each c < 0. Set

c equal the numbers 0,
√

log 2 and
√

log 3 one by one:

f−1({0}) = {[x, y] ∈ R2; x− y = 1},
f−1
({√

log 2
})

= {[x, y] ∈ R2; x− y = 2},
f−1
({√

log 3
})

= {[x, y] ∈ R2; x− y = 3}.
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Draw these sets in R2. ♣

Example 23. Examine continuity of the function defined by

f(x, y) =

{
2xy
x2+y2

pro [x, y] 6= [0, 0],

0 pro [x, y] = [0, 0]

in R2 and draw some of its contour lines.

Solution. Continuity at points of the open set R2 \ {[0, 0]} can be shown similarly
to the way in the previous example.

From the Heine theorem follows very easily that at the point [0, 0] the func-
tion f is not continuous: take an arbitrary sequence {an} ⊂ R such that, lim an =
0 and an 6= 0. The sequence {[an, an]} converges to the point [0, 0] in R2, but
lim f(an, an) = 1 6= 0 = f(0, 0).

If we realize that (x± y)2 ≥ 0 holds for all pairs of the real numbers x and y,
we get immediately, that for all points [x, y] ∈ R2 \ {[0, 0]} is −1 ≤ 2xy

x2+y2
≤ 1.

The function f is thus bounded and we see that for each c < −1 and for each c > 1
also f−1({c}) = ∅ holds.

Try to formulate some of the contour lines:

f−1({−1}) = {[x, y] ∈ R2; y = −x} \ {[0, 0]},

f−1({−1/
√

2}) =

= {[x, y] ∈ R2; (y +
√

2x− x)(y +
√

2x+ x) = 0} \ {[0, 0]} =

= {[x, y] ∈ R2; y = (1−
√

2)x ∨ y = (−1−
√

2)x} \ {[0, 0]},
f−1({0}) = {[x, y] ∈ R2; x = 0} ∪ {[x, y] ∈ R2; y = 0},

f−1({1/
√

2}) = {[x, y] ∈ R2; y = (
√

2 + 1)x ∨ y = (
√

2− 1)x} \ {[0, 0]},
f−1({1}) = {[x, y] ∈ R2; y = x} \ {[0, 0]}.

♣

Example 24. Examine continuity of the function defined on R2 by

f(x, y) =

{
x2y
x2+y2

for [x, y] 6= [0, 0],

0 for [x, y] = [0, 0],

and determine if the function has a maximum and minimum on R2.

Solution. Continuity of the function is obvious at all points except the origin. Ex-
amine continuity of the function at th point [0, 0]. We will estimate the subtraction
|f(x, y)− f(0, 0)| = |f(x, y)|. For each point [x, y] ∈ R2 \ {[0, 0]} it is

|f(x, y)| ≤ (x2 + y2) |y|
x2 + y2

= |y| .
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Let ε > 0. For each [x, y] ∈ B([0, 0], ε) it is

|f(x, y)| ≤ |y| ≤
√
x2 + y2 < ε.

Given any positive number ε > 0 we cab find δ > 0 (for example δ = ε) such that
for [x, y] ∈ B([0, 0], δ) is |f(x, y)− f(0, 0)| < ε, that means that the function f
is continuous at the point [0, 0].

The function f is not bounded above on R2, because for each c > 0 there
exists a point [x, x] such that f(x, x) = x/2 > c. Similarly, we can prove, that
the function f is not bounded below. Since f is bounded on R2 neither above nor
below, it has neither maximum nor minimum on that set. ♣

Example 25. Determine the domain of the function f(x, y) =
√

1
x2
− y2

x2
− 1.

Examine continuity of the function on Df and maximum and minimum of the
function f and draw some of its contour lines.

Solution. The domain is Df = {[x, y] ∈ R2; x 6= 0, 1 − y2 − x2 ≥ 0}. It is then
a circle with radius 1 with points, where x-coordinate is equal to zero (part of the
y-axis), being removed. Continuity on the domain can be proved similarly using
composition of continuous functions.

Determine some contour lines:

f−1({0}) = {[x, y] ∈ R2; x2 + y2 = 1} \ {[0, 1], [0,−1]},
f−1({1}) = {[x, y] ∈ R2; 2x2 + y2 = 1} \ {[0, 1], [0,−1]},
f−1({2}) = {[x, y] ∈ R2; 5x2 + y2 = 1} \ {[0, 1], [0,−1]}.

The function attains onDf the smallest value 0 at each point of the contour line
f−1({0}). It does not have a maximum, because is not bounded above. If we are

getting closer to the point [0, 0] along the x-axis, we get lim
x→0

f(x, 0) =
√

1
x2
− 1 =

+∞. ♣

Example 26. Determine the distance from the point [−5,−1] to the sets

M1 = {[x, y] ∈ R2; y = x2} a M2 = {[x, y] ∈ R2; y > x2}.

Solution. We know the notions of the distance from a point to a line and the dis-
tance from a point to a plane from the high school: we find the closest point on
the line (the plane, respectively) to a given point and the searched distance is the
distance between these two points. If we want to define the distance from a point
~a ∈ Rn to a general set M ⊂ Rn, we find a difficulty that the closest point does
not have to be included in M . Thus we define the distance from a point to the set
in a following way. Let ~a ∈ Rn and M ⊂ Rn, M 6= ∅. Then we call the number

ρ(~a,M) = inf {ρ(~a, ~x); ~x ∈M}
the distance from the point ~a to the setM .
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According to this definition, in our example then follows

ρ([−5,−1],M1) = inf
{
ρ([−5,−1], [x, x2]); x ∈ R

}
=

= inf
{√

(x+ 5)2 + (x2 + 1)2; x ∈ R
}
.

We can find that function f(x) =
√

(x+ 5)2 + (x2 + 1)2 on R has a mini-
mum at the point x = −1. Thus ρ([−5,−1],M1) = f(−1) = 2

√
5. In this case

the set M1 contains the point [−1, 1], which is closest to the [−5,−1]. Prove on
your own, that ρ([−5,−1],M2) = 2

√
5, and that the set M2 does not contain the

closest point of the point [−5,−1]. ♣

1.3. Partial derivative and tangent hyperplane

In this section we will show, how to generalize the notion the derivation of a
function of one variable for the multivariate functions.

Definition. Let f be a function of n variables, j ∈ {1, . . . , n} a ~a ∈ Rn. Then we
call the number

∂f

∂xj
(~a) = lim

t→0

f(~a+ t~ej)− f(~a)

t(
= lim

t→0

f(a1, . . . , aj−1, aj + t, aj+1, . . . , an)− f(a1, . . . , an)

t

)

the (first order) partial derivative of the function f with respect to the j-th
variable at the point a ~a (provided that the limit exists).

Remarks. 1. If ∂f
∂xj

(~a) should exist, then there must exists δ > 0 such that line
segment {~a+ t~ej ; |t| ≤ δ} is a subset of Df .

2. Setting

g(y) = f(a1, a2, . . . , aj−1, y, aj+1, . . . , an),

then g′(aj) exists, if and only if there exists ∂f
∂xj

(~a). If both derivatives exist then
they are equal. On the following figure we can see the geometric meaning of the
function g.
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FIGURE 1.

This remark gives us instruction, how to calculate the partial derivatives of the
multivariate functions with the use of the derivatives of the function of one variable.

The value of the notion of a partial derivative will be already demonstrated in
the following theorem.

Theorem 27 (necessary condition for a local extrem). LetG ⊂ Rn be open, ~a ∈ G
and a function f : G → R has a local extrem (on G) at the point ~a. Then for each
j ∈ {1, . . . , n} holds: the partial derivative ∂f

∂xj
(~a) either does not exist, or is equal

to zero.

Proof. Choose j ∈ {1, . . . , n} and set g(t) = f(~a+ t~ej). The function g is defined
on some neighbourhood of 0 and at the point 0 it has a local extrem. According to
the Theorem ?? we obtain that the derivative g′(0) either does not exist, or is equal
to zero, and because g′(0) = ∂f

∂xj
(~a)holds (provided that at least one limit exists),

the proof is finished. �

Partial derivatives are a very useful tool in examining the properties of the
multivariate functions. However, there is a disadvantage that every partial deriva-
tive at some point describe behaviour of the derived function only in one particular
direction.

If we consider only functions, which have continuous all partial derivatives on
the open set G ⊂ Rn, then partial derivatives give us more complex knowledge
about behaviour of the original function (see e.g. Theorem 30 and Theorem 31).

Definition. Let G ⊂ Rn be nonempty and open. Let the function f : G → R has
continuous all partial derivatives at each point of the set G (that is, the function
~x 7→ ∂f

∂xj
(~x), j = 1, . . . , n, are continuous at each point of G). Then we say that



18 1. FUNCTIONS OF SEVERAL VARIABLES

the function f is of class C1 on G. We denote the set of all such functions f by
C1(G).

Remark. Let G ⊂ Rn is nonempty open set and f, g ∈ C1(G). Then th functions
f + g, f − g, fg are also of the class C1(G). Provided that g does not attain zero
value in any point of the set G, then also f/g ∈ C1(G).

Remark. An important task is finding extremes of the function f on K. We are
often in situation that K ⊂ Rn is closed nonempty bounded set, f is continuous
function on K and is of the class C1 on the interior of the set K.

According to the characterization of the compact sets in Rn (Theorem 17),
we get that the set K is compact, and hence f attains its maximum and minimum
values on K (Theorem 19). Each point of the extrem is also a local extrem point
on K and lies either on the border, or in the interior of the set K. If there is an
extrem at a point ~x ∈ IntK then applies

∂f

∂xj
(~x) = 0, j = 1, . . . , n. (7)

The function f could attain a extrem value only at points which satisfy the condi-
tion (7) or lies on the border ofK. We introduce the methods, which enables to find
points on the border suspicious to be an extrem, in the following example, and par-
ticularly in section 1.5, where we show one general example. Since the necessary
condition for local extremes are often satisfied for only a finite number of points
of the set K, then it is sufficient to calculate values of the function in these points,
compare them and thus find extremes.

Example 28. Find extremes of the function f(x, y) = 3x2 + 4y3 on the set M =
{[x, y] ∈ R2; x2 + y2 ≤ 1}.

Solution. The function f is continuous on the whole R2 and thus is continuous on
the set M . The set M is bounded and closed (see the Theorem 16), and therefore
it is compact. The function f has a maximum and minimum on it. The suspicious
points (i.e. the points, at which only could be an extrem) are the points of the bor-
der M and – since f ∈ C1(IntM) – points inside M , satisfying the condition (7).

Find all suspicious points inside M at first. Calculate both first order partial
derivative:

∂f

∂x
(x, y) = 6x,

∂f

∂y
(x, y) = 12y2.

To find points, where both partial derivative equal 0, we have to solve the linear
system:

6x = 0,

12y2 = 0.
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The function f has both partial derivative equals 0 only at the point [0, 0], which
lies in the set IntM .

Now determine the points on the border. Define a supporting partial function
ϕ, which maps an interval [0, 2π] on H(M):

ϕ(t) = [cos t, sin t], t ∈ [0, 2π].

Define a function g : [0, 2π]→ R in a following way: g(t) = f
(
ϕ(t)

)
, t ∈ [0, 2π].

Thus g(t) = 3 cos2 t + 4 sin3 t holds for the function g. Find a maximum of the
function g on the interval [0, 2π]: g′(t) = −6 cos t sin t + 12 sin2 t cos t holds.
Inside the interval [0, 2π] is the derivation of the function g equal to zero at the
points π/6, π/2, 5π/6, π, 3π/2. The function g is continuous on bounded and
closed interval [0, 2π], and hence it has a maximum and minimum on the interval.
Extrém tedy může mít pouze v bodech, kde g′(t) = 0, a v krajních bodech intervalu
[0, 2π]. It is easily determined, that function g has a maximum on the interval at
the point π/2 and a minimum at the point 3π/2.

Now return to the function f . From the previous paragraph it follows, That the
extrem could by only at points [0, 0], [0, 1], [0,−1]. For the function values of f at
these points f(0, 0) = 0, f(0, 1) = 4, f(0,−1) = −4 holds. Hence, the function f
has a maximum on M at the point [0, 1] and has there the function value equal to 4
and f has a minimum on M at the point [0,−1] and has the function value equal
to −4. ♣

Convention. Let a, b ∈ R. Then we denote a closed interval with endpoints a a b
by the symbol [a, b], also in the case, where a > b.

Theorem 29 (weak version of the Lagrange theorem). Let n ∈ N, I1, . . . , In ⊂ R
be open intervals, I = I1 × · · · × In, f ∈ C1(I), ~a,~b ∈ I . Then we can find points
~ξi ∈ I , i = 1, . . . , n, satisfying ξij ∈ [aj , bj ] for all i, j ∈ {1, . . . , n} such that,

f(~b)− f(~a) =
n∑
i=1

∂f

∂xi
(~ξi)(bi − ai).
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FIGURE 2.

Proof. Firstly, proof the assertion for n = 1. If a = b, choose ξ1 = a. If a < b, is
the function f continuous on interval [a, b] (since it is differentiable on I) and has
a derivation at each point of the (a, b), thus the Lagrange theorem (Theorem ??)
can be used, from it we obtain that exists ξ1 ∈ (a, b) such that

f(b)− f(a) = f ′(ξ1)(b− a) =
∂f

∂x1
(ξ1)(b− a).

If a > b, we can get similarly the existence of the number ξ1 ∈ (b, a) satisying
f(a)− f(b) = f ′(ξ1)(a− b), thas f(b)− f(a) = ∂f

∂x1
(ξ1)(b− a) also holds.

Then we follow by proving the theorem for n = 2. Define functions g1 : I1 →
R and g2 : I2 → R by g1(t) = f(t, a2) and g2(t) = f(b1, t). Then

f(~b)− f(~a) = f(b1, b2)− f(b1, a2) + f(b1, a2)− f(a1, a2) =

= g2(b2)− g2(a2) + g1(b1)− g1(a1).
(8)

The function g1 is of the class C1 on I1 and the function g2 is of the class C1
on I2. According to the first part of the proof there exist numbers ξ11 ∈ [a1, b1]
and ξ22 ∈ [a2, b2] such that,

g1(b1)− g1(a1) = g′1(ξ
1
1)(b1 − a1) =

∂f

∂x1
(ξ11 , a2)(b1 − a1),

g2(b2)− g2(a2) = g′2(ξ
2
2)(b2 − a2) =

∂f

∂x2
(b1, ξ

2
2)(b2 − a2).

Setting ~ξ1 = [ξ11 , a2] a ~ξ2 = [b1, ξ
2
2 ], we get

f(~b)− f(~a) =
∂f

∂x1
(~ξ1)(b1 − a1) +

∂f

∂x2
(~ξ2)(b2 − a2).

from the (8).
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Finally for n > 2 we have

f(~b)− f(~a) =
n∑
i=1

(
f(b1, . . . , bi−1, bi, ai+1, . . . , an)−

− f(b1, . . . , bi−1, ai, ai+1, . . . , an)
)

and the proof can be completed similarly to the one in the previous step. �

Definition. Let G ⊂ Rn be an open set, ~a ∈ G and f ∈ C1(G). Then we call the
graph of the function T : Rn → R defined by the formula

T (~x) = f(~a) +
∂f

∂x1
(~a)(x1 − a1) + · · ·+ ∂f

∂xn
(~a)(xn − an) (9)

a tangent hyperplane to the graph of the function f at the point [~a, f(~a)].

FIGURE 3.

Observe that the point [~a, f(~a)] is an element of the tangent hyperplane. Notice
that in the case n = 1 and n = 2 respectively, we say tangent (see the chapter ??)
and tangent plane, respectively, instead of tangent hyperplane.

The following theorem justify the use of adjective “tangent”. It says that, tha
error we make by replacing the value f(~x) by the value T (~x), approach 0 faster
than ρ(~x,~a) for ~x approaching ~a.

Theorem 30 (about tangent hyperplane). Let G ⊂ Rn be an open set, ~a ∈ G,
f ∈ C1(G) and T be a function, whose graph is a tnagent hyperplane to the graph
of the function f at the point [~a, f(~a)]. Then

lim
~x→~a

f(~x)− T (~x)

ρ(~x,~a)
= 0.
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Proof. Let ε ∈ R, ε > 0 by given. Since the function f has all partial derivatives
continuous at the point ~a, we can find ∆ > 0 such that B(~a,∆) ⊂ G and for
each i ∈ {1, . . . , n} and each ~x ∈ B(~a,∆) is

∣∣ ∂f
∂xi

(~x) − ∂f
∂xi

(~a)
∣∣ < ε

n . Setting
δ = ∆/

√
n and I = (a1−δ, a1+δ)×· · ·×(an−δ, an+δ), we obtain I ⊂ B(~a,∆),

what we can calculate easily. For each i ∈ {1, . . . , n} and each ~x ∈ I is thus∣∣∣∣ ∂f∂xi (~x)− ∂f

∂xi
(~a)

∣∣∣∣ < ε

n
. (10)

Let ~y ∈ B(~a, δ) by given. Then ~y ∈ I and thus according to the Theorem 29 there
exist points ~ξ1, . . . , ~ξn ∈ I such that

f(~y)− f(~a) =
n∑
i=1

∂f

∂xi
(~ξi)(yi − ai).

This yields∣∣∣∣f(~y)− T (~y)

ρ(~y,~a)

∣∣∣∣ =

∣∣∣f(~y)− f(~a)−
∑n

i=1
∂f
∂xi

(~a)(yi − ai)
∣∣∣

ρ(~y,~a)
=

=

∣∣∣∑n
i=1

(
∂f
∂xi

(~ξi)− ∂f
∂xi

(~a)
)

(yi − ai)
∣∣∣

ρ(~y,~a)
≤

≤

∑n
i=1

∣∣∣ ∂f∂xi (~ξi)− ∂f
∂xi

(~a)
∣∣∣ |yi − ai|

ρ(~y,~a)
<

<
ε

n
·
∑n

i=1 |yi − ai|
ρ(~y,~a)

≤ ε

n
·
∑n

i=1 ρ(~y,~a)

ρ(~y,~a)
= ε.

�

Theorem 31. Let G ⊂ Rn be open and f ∈ C1(G). Then f is continuous on G.

Proof. Let ~a ∈ G and T be a function in a form (9). According to the Theorem 30
then follows

lim
~x→~a

f(~x) = lim
~x→~a

(
f(~x)− T (~x)

ρ(~x,~a)
· ρ(~x,~a) + T (~x)

)
= 0 · 0 + f(~a) = f(~a).

According to the remark on the page 13, the function f is thus continuous at the
point ~a. �

Now we will introduce an analogy of the theorem about the derivative of the
composite function.



1.3. PARTIAL DERIVATIVE AND TANGENT HYPERPLANE 23

Theorem 32 (derivative of the composite function). Let r, s ∈ N and G ⊂ Rs,
H ⊂ Rr be open sets. Let ϕ1, . . . , ϕr ∈ C1(G), f ∈ C1(H) and for each ~x ∈ G
is the point [ϕ1(~x), . . . , ϕr(~x)] ∈ H . Then the composite function F : G → R
defined by a formula

F (~x) = f
(
ϕ1(~x), ϕ2(~x), . . . , ϕr(~x)

)
, ~x ∈ G,

is of the class C1 on G. Let ~a ∈ G and~b = [ϕ1(~a), . . . , ϕr(~a)]. Then

∂F

∂xj
(~a) =

r∑
i=1

∂f

∂yi
(~b)

∂ϕi
∂xj

(~a) (11)

holds for j ∈ {1, . . . , s}.

Remark. The symbol ∂f
∂yi

(~b) in the formula (11) denotes the partial derivative of

the function f with respect to the i-th variable at the point~b.

Proof. According to the remark on the page 16 we can assume without loss of
generality that s = 1. We will calculate the derivative of the function F at the point
a ∈ R, that is the limit lim

x→a
F (x)−F (a)

x−a .

The set H is open, and hence there exists ∆ > 0 such that B(~b,∆) ⊂ H . Now
we can find open intervals I1, . . . , Ir ⊂ R such that

~b ∈ I = I1 × · · · × Ir ⊂ H.

It can be easily shiwn by calculation, that the choice Ii =
(
bi−∆/

√
r, bi+∆/

√
r
)
,

i = 1, . . . , r satisfy the condition . Since the set G be open and the functions
ϕ1, . . . , ϕr are continuous, there exists δ ∈ R, δ > 0, such that (a− δ, a+ δ) ⊂ G
and for each x ∈ (a − δ, a + δ) and i ∈ {1, . . . , r} is ϕi(x) ∈ Ii. From the
Theorem 29 thus follows, that for each x ∈ (a − δ, a + δ) exist points ~ξi(x) ∈ I ,
i = 1, . . . , r, satisfying ξi(x)j ∈ [bj , ϕj(x)] for all i, j ∈ {1, . . . , r} and

f
(
ϕ1(x), . . . , ϕr(x)

)
− f(b1, . . . , br) =

r∑
i=1

∂f

∂yi

(
~ξi(x)

)
(ϕi(x)− bi).

This way we defined the functions x 7→ ξi(x)j , i = 1, . . . , r, j = 1, . . . , r on the
interval (a− δ, a+ δ).

This yields

F (x)− F (a)

x− a
=
f
(
ϕ1(x), . . . , ϕr(x)

)
− f(b1, . . . , br)

x− a
=

=

r∑
i=1

∂f

∂yi

(
~ξi(x)

)ϕi(x)− ϕi(a)

x− a
.
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From the continuity of the functions ϕj at the point a (according to the Theo-
rem ??,eventually the Theorem 31), we obtain lim

x→a
ϕj(x) = bj . According to

the sandwich theorem (Theorem ??(iii)) is thus lim
x→a

ξi(x)j = bj for all i, j ∈

{1, . . . , r}. The functions ∂f
∂yi

are continuous at ~b, hence due to the theorem about
the limit of the composite function (Theorem 21) we get

F ′(a) = lim
x→a

F (x)− F (a)

x− a
=

r∑
i=1

∂f

∂yi
(~b) · ϕ′i(a).

�

Definition. Let G ⊂ Rn be an open set, ~a ∈ G a f ∈ C1(G). We call a vector

∇f(~a) =

[
∂f

∂x1
(~a),

∂f

∂x2
(~a), . . . ,

∂f

∂xn
(~a)

]
.

a gradient of the function f at the point ~a

Remark. A gradient of the function sometimes helps us to know behaviour of the
function better, because it determine the direction of the biggest growth at the point
in the following sense. LEt G ⊂ Rn be an open set, ~a ∈ G and f ∈ C1(G). If
∇f(~a) 6= ~o, ~v ∈ Rn, ~v 6= ∇f(~a) and ρ(~v, ~o) = ρ

(
∇f(~a), ~o

)
, then it can be

shown, that exists δ > 0 such that

∀t ∈ R, t ∈ (0, δ) : f
(
~a+ t∇f(~a)

)
> f(~a+ t~v).

On the first figure, there is a graph of some function f and on the second, there
are gradients ∇f(~a) drawn on yhe plane for some values of ~a ∈ R2. Notice the
mutual relationship of both figures.

FIGURE 4. The graph
of the function f FIGURE 5. The gradient array

Definition. We call the point ~a ∈ Rn satisfying ∇f(a) = ~o a stationary (some-
times also critical) point of the function f .

We could define higher order partial derivative similarly to the definition of the
higherof the function of one real variable.
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Definition. Let G ⊂ Rn be a nonempty open set, i, j ∈ {1, . . . , n}, the function
f : G → R has a real i-th partial derivative at each point of G and ~a ∈ G. We
denote a partial derivative of the function ~x 7→ ∂f

∂xi
(~x) with respect to xj at the

point ~a by

∂2f

∂xi∂xj
(~a) =

∂
(
∂f
∂xi

)
∂xj

(~a)

and we call it a second order partial derivative of the function f . If i = j, then
we use a notation ∂2f

∂x2i
(~a). We define a higher order partial derivatives analogically.

Generally, it matters if we derive firstly with respect to i-th and then with re-
spect to j-th variable or conversely. However, the following theorem holds. We
omit its (rather difficultier) proof.

Theorem 33. Let i, j ∈ N, i ≤ n, j ≤ n, and the function f has both derivatives
∂2f

∂xi∂xj
, ∂2f
∂xj∂xi

on the neighbourhood of the point ~a ∈ Rn. These derivative are
continuous at the point ~a. Then

∂2f

∂xi∂xj
(~a) =

∂2f

∂xj∂xi
(~a).

We will end this section by one more definition.

Definition. Let G ⊂ Rn be an open set and k ∈ N. We say that a function f is of
the class Ck onG, provided that f has all partial derivative up to order k and they
are continuous on the set G. We denote the set of all functions of the class Ck on
the set G by Ck(G).

We say that a function f is of the class C∞ on G, provided that f has all
partial derivative of all orders and they are continuous on the set G. We denote the
set of all functions of the class C∞ on G by C∞(G).

If we say that the function f is of the class Ck (without mentioning the set), it
means that the function is defined on some nonempty open setG and is of the class
Ck on G. We introduce similar convention also for C∞.

Example 34. Determine the domain of the function f(x, y) =
√
|xy|. Calculate

the partial derivatives at every point, where they exist. Find a tangent plane to the
graph of the function f at the point [1,−2,

√
2].

Solution. The domain of the function f is R2 and the function f is continuous on
R2. We can rewrite f(x, y) =

√
|x| ·

√
|y| and then we can easily calculate:

∂f

∂x
(x, y) =

√
|y| · sgnx

2
√
|x|

pro [x, y] ∈ R2, x 6= 0,

∂f

∂y
(x, y) =

√
|x| · sgn y

2
√
|y|

pro [x, y] ∈ R2, y 6= 0.
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At the points, where previous formulas does not hold, calculate the partial
derivatives of the function f from the definition. Firstly, calculate both partial
derivative at the point [0, 0]:

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x− 0
= lim

x→0
0 = 0,

∂f

∂y
(0, 0) = lim

y→0

f(0, y)− f(0, 0)

y − 0
= lim

y→0
0 = 0.

If y0 6= 0, then

∂f

∂x
(0, y0) = lim

x→0

f(x, y0)− f(0, y0)

x− 0
=

= lim
x→0

√
|xy0|
x

= lim
x→0

sgnx√
|x|

√
|y0|;

this limit does not exist, and thus ∂f
∂x (0, y0) does not exist. For x0 6= 0 we can prove

similarly, that ∂f∂y (x0, 0) does not exist.
The function f has continuous first order partial derivative on the neigbourhood

of the point [1,−2]. The tangent plane at the point [1,−2,
√

2] is the graph of the
function

T (x, y) =
√

2 +
1√
2

(x− 1)− 1

2
√

2
(y + 2).

♣

Example 35. The function f is on R2 defined by

f(x, y) =

{
(x2 + y2) sin

(
1

x2+y2

)
pro [x, y] 6= [0, 0],

0 pro [x, y] = [0, 0].

Calculate partial derivatives at all points, where they exist.

Solution. The domain of the function f is the whole R2 and the function f is
continuous on R2. For the points [x, y] 6= [0, 0] is

∂f

∂x
(x, y) = 2x sin

(
1

x2 + y2

)
+ (x2 + y2) cos

(
1

x2 + y2

)
−2x

(x2 + y2)2
=

= 2x sin

(
1

x2 + y2

)
− 2x

x2 + y2
cos

(
1

x2 + y2

)
,

∂f

∂y
(x, y) = 2y sin

(
1

x2 + y2

)
− 2y

x2 + y2
cos

(
1

x2 + y2

)
.
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Calculate partial derivatives at the point [0, 0] according to the definition:

∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x− 0
= lim

x→0

x2 sin 1
x2

x
=

= lim
x→0

x sin
1

x2
= 0,

∂f

∂y
(0, 0) = 0.

♣

Example 36. Determine the tangent plane at the point [0, 3,
√

3] to the torus de-
fined by the equation (x2 + y2 + z2 + 12)2 − 64(x2 + y2) = 0.

Solution. By expressing z as a function of two variables we find out that the plane
can be described as the union of two graphs of the following functions f and g:

f(x, y) =

√
8
√
x2 + y2 − x2 − y2 − 12,

Df = {[x, y] ∈ R2; 4 ≤ x2 + y2 ≤ 36},

g(x, y) = −
√

8
√
x2 + y2 − x2 − y2 − 12,

Dg = Df .

Since f(0, 3) =
√

3, the point [0, 3,
√

3] is a point of the graph of the func-
tion f . The partial derivatives

∂f

∂x
(x, y) = x

4−
√
x2 + y2√

x2 + y2
√

8
√
x2 + y2 − x2 − y2 − 12

,

∂f

∂y
(x, y) = y

4−
√
x2 + y2√

x2 + y2
√

8
√
x2 + y2 − x2 − y2 − 12

are continuous on the neigbourhood of the point [0, 3], hence at this point there
exists a tangent plane and is described by the function T defined by

T (x, y) =
√

3 + 0 · (x− 0) +
1√
3

(y − 3) =
√

3 +
1√
3

(y − 3) =
y√
3
.

♣

In next examples we will examine extremes of the multivariate functions.

Example 37. Find local extrems of the function f(x, y) = xy log(x2 +y2). Deter-
mine if the function f attains a maximum and a minimum values on Df maxima
a minima; if so, calculate them.
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Solution. The domain of the function is the set Df = R2 \{[0, 0]}. The function f
is continuous on the whole Df . It the point [0, 0] we have

lim
[x,y]→[0,0]

xy log(x2 + y2) = 0.

For calculation of this limit we will use the following estimate |xy| ≤ (x2 + y2)/2
and the result lim

u→0+
u log u = 0 (Example ??).

Since

lim
x→+∞

f(x, x) = lim
x→+∞

(x2 log 2x2) = +∞,

lim
x→+∞

f(x,−x) = lim
x→+∞

(−x2 log 2x2) = −∞,

we can see that the function f is bounded neither above nor below on Df , and thus
it can attaint neither maximum nor minimum value on Df .

Find points, where the function f could attain a local extrem value. Calculate
first order partial derivatives at first:

∂f

∂x
(x, y) = y log(x2 + y2) +

2x2y

x2 + y2
,

∂f

∂y
(x, y) = x log(x2 + y2) +

2xy2

x2 + y2
,

whenever [x, y] ∈ Df . The partial derivative exists at all points of Df , and thus we
can find suspicious points of Dfby solving the system of linear equation.

y

(
log(x2 + y2) + 2

x2

x2 + y2

)
= 0, x

(
log(x2 + y2) + 2

y2

x2 + y2

)
= 0.

The first equation holds if and only if y = 0 or log(x2 + y2) = − 2x2

x2+y2
, the second

holds if and only if x = 0 or log(x2 + y2) = − 2y2

x2+y2
. By testing all possibilities,

we get the following suspicious points

[0, 1], [0,−1], [1, 0], [−1, 0],

[1/
√

2e, 1/
√

2e], [1/
√

2e,−1/
√

2e],

[−1/
√

2e, 1/
√

2e], [−1/
√

2e,−1/
√

2e].

Now, draw the domainDf = R2\{[0, 0]} and the set K inside itK = {[x, y] ∈
Df ; f(x, y) = 0}. The setK jis the union of the coordinate axis without the origin
and the circle with the centre [0, 0] and radius 1. The set K divides R2 at areas,
kwhere the function f does not change a sign:
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FIGURE 6.

Now it is obvious, that the function does not have a local extrem at any of the
point [1, 0], [0, 1], [−1, 0] and [0,−1] – each of them has a function value equal to
zero, but in any neigbourhood of any of them there are points with both positive
and negative function values.

We shall now prove, that f has at points [−1/
√

2e, 1/
√

2e] a [1/
√

2e,−1/
√

2e]
local maximum and at the points [1/

√
2e, 1/

√
2e] a [−1/

√
2e,−1/

√
2e] má f lo-

cal minimum. Define the function f̄ : R2 → R this way:

f̄(x, y) =

{
f(x, y) pro [x, y] ∈ Df ,
0 pro [x, y] = [0, 0].

Take for example the point ~a = [1/
√

2e, 1/
√

2e]. This point lies in the interior of
the set J = {[x, y] ∈ R2; x ≥ 0, y ≥ 0, x2 + y2 ≤ 1}. The set J is compact, the
function f̄ is continuous on it and thus has there a maximum and a minimum.

At each point of the set H(J) the function f̄ attains the value zero, which is
its maximum on J (since it is non-positive on J). Since the functionf̄ is negative
at the points of Int J , it has a minimum at some interior point of the set J . From
the previous part of the solution we know, that the only suspicious point is ~a. The
function f̄ has thus a minimum at the point ~a on the set J , and since ~a ∈ Int J ,
then f̄ has a local minimum at the point ~a. Since f = f̄ on the neighbourhood of
the point ~a, then also the function f has a local minimum at the point ~a. ♣

Example 38. Find local extrems of the function f(x, y) = x+2y+ 3
4x

2+xy+2y2

on the set M = {[x, y] ∈ R2; y2 − 2 ≤ x ≤ −y2 + 2}.
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Solution. Draw a figure of the set M .

FIGURE 7.

The set M is compact.Since f is continuous on M , it has a maximum and a
minimum on M . Examine firstly suspicious points in the interior of the setp M ,
i.e. solve the linear system

1 +
3

2
x+ y = 0, 2 + x+ 4y = 0.

Only one point makes this linear system valid: [x, y] = [−2/5,−2/5] ∈ IntM .
We can rewrite the boundary H(M) in the form H(M) = M1 ∪M2, kde

M1 = {[x, y] ∈ R2; x = y2 − 2, |y| ≤
√

2},

M2 = {[x, y] ∈ R2; x = 2− y2, |y| ≤
√

2}.
Find points suspicious from being an extrem on the setM1. We define support-

ing funcion ϕ by:

ϕ(y) = f(y2 − 2, y) =
3

4
y4 + y3 + 1, y ∈ R.

We are interested in extremes of the function ϕ on the set [−
√

2,
√

2]. We have
ϕ′(y) = 3y2(y+1), and thus ϕ′(y) = 0 for just two points: y = 0 a y = −1. These
points together with the points −

√
2 and

√
2 gives us the following points suspi-

cious from being an extrem on M1 for the function f : [0,
√

2], [0,−
√

2], [−2, 0],
[−1,−1].

We take a similar approach on the setM2. In this case we examine a supporting
function

ψ(y) = f(2− y2, y) =
3

4
y4 − y3 − 2y2 + 4y + 5

and we solve the equation ψ′(y) = 3y3 − 3y2 − 4y + 4 = 0 on (−
√

2,
√

2). One
root of the equation is 1, and thus we can write ψ′(y) = (y − 1)(3y2 − 4). The
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second bracket is equal to zero for y = 2/
√

3 and y = −2/
√

3. Hence we get
another suspicious points [1, 1], [2/3, 2/

√
3] and [2/3,−2/

√
3].

since we know, that f has a maximum and minimum on the set M it is suffi-
cient to compare the function values at the suspicious points:

f(−2/5,−2/5) = −3/5, f(−2, 0) = 1,

f(−1,−1) = 3/4, f(0,
√

2) = 4 + 2
√

2,

f(0,−
√

2) = 4− 2
√

2, f(1, 1) = 27/4,

f(2/3, 2/
√

3) =
16 + 11

√
3

3
√

3
, f(2/3,−2/

√
3) =

11
√

3− 16

3
√

3
.

Hence we easily find out, that the function f attains a maximum value at the
point [0,

√
2] with the function value max

M
f = 4 + 2

√
2, a minimum at the point

[−2/5,−2/5] with the function value min
M

f = −3/5. ♣

1.4. Implicit function theorem

Consider an equation

x2 + y2 − 1 = 0. (12)

Our task is to solve the equation (12) for y in terms of the parameter x. The equation
has a solution only for x ∈ [−1, 1], and then y =

√
1− x2 and y = −

√
1− x2.

Dependent on x x we have two (for x ∈ (−1, 1)), or one solution (for x = ±1),
or no solution (for x /∈ [−1, 1]). We can see, that for x ∈ (−1, 1) is it not pos-
sible to calculate from the equation (12) exactly one y dependent on x. But if we
use restriction to an appropriate (that is enough small) neighbourhood U of the
point x0 ∈ (−1, 1) and a neighbourhood V of the point y0, where x0, y0 satisfy
the equation (12), then it is possible to find exactly one y ∈ V for each x ∈ U
such that x and y satisfy the equation (12). The equation (12) thus define on the
neighbourhood U some function ϕ of one real variable x with the values in the
neighbourhood V , which satisfies x2 + (ϕ(x))2 − 1 = 0, for each x ∈ U . The
situation is maybe shown better on the following figure.
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FIGURE 8.

Notice, that for points x0 = 1 a x0 = −1 we can not find neighbourhoods U
and V with stated property.

The following theorem is generally dealing with the situation illustrated in
the previous example. It describes, what condition do we need to get exactly one
variable y as the function of the variable x from the equation F (x, y) = 0.

Theorem 39 (Implicit function theorem). Let G ⊂ Rn+1 be open, F : G → R,
~̃x = [x̃1, . . . , x̃n] ∈ Rn, ỹ ∈ R, [~̃x, ỹ] ∈ G and let:

(i) F ∈ C1(G),
(ii) F (~̃x, ỹ) = 0,

(iii)
∂F

∂y
(~̃x, ỹ) 6= 0.

Then there exist neighbourhood U ⊂ Rn of the point ~̃x and neighbourhood
V ⊂ R of the point ỹ such that for each ~x ∈ U there exists exactly one y ∈ V
satisfying F (~x, y) = 0. If we denote this y by the symbot ϕ(~x), then ϕ ∈ C1(U)
and

∂ϕ

∂xj
(~x) = −

∂F
∂xj

(
~x, ϕ(~x)

)
∂F
∂y

(
~x, ϕ(~x)

) , provided j ∈ {1, . . . , n}, ~x ∈ U . (13)

Proof. We prove only the first part of the theorem for n = 1. We can assume
without loss of generality, that ∂F∂y (x̃, ỹ) > 0. Since G is an opne set, F ∈ C1(G)

and ∂F
∂y (x̃, ỹ) > 0, then there exist δ1 > 0 and η > 0 such that

∀[x, y] ∈ [x̃− δ1, x̃+ δ1]× [ỹ − η, ỹ + η] :
∂F

∂y
(x, y) > 0. (14)
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The function t 7→ F (x̃, t) is due to (14) is increasing in the interval [ỹ − η, ỹ + η].
From that and from the F (x̃, ỹ) = 0 we obtain F (x̃, ỹ+η) > 0 and F (x̃, ỹ−η) <
0. The continuity of the function F imply the existence of δ2 ∈ (0, δ1) such that

∀x ∈ (x̃− δ2, x̃+ δ2) : (F (x, ỹ + η) > 0 & F (x, ỹ − η) < 0).

Set U = (x̃− δ2, x̃+ δ2) and V = (ỹ− η, ỹ+ η). Choose x ∈ U . The function of
one variable t 7→ F (x, t) is increasing and continuous on the interval [ỹ−η, ỹ+η]
and F (x, ỹ + η) > 0, F (x, ỹ − η) < 0 holds. The function thus attains on this
interval all values between F (x, ỹ+ η) and F (x, ỹ− η) (theorem ??), and each of
them at exacly one point. Taht means that there exists exactly one y ∈ V satisfying
F (x, y) = 0.

The proof of the assertion that ϕ ∈ C1(U) is somewhat more difficult and
we do not give it here. But we will show, how to derive the formula (13) pro-
vided that, we already know that ϕ ∈ C1(U). For each x ∈ U F (x, ϕ(x)) = 0
holds. It is equality of two functions on the neighbourhood U (the function x 7→
F (x, ϕ(x)) and the function x 7→ 0), from which follows also equality of their
derivatives on the neigbourhood U . According to the Theorem 32 ∂F

∂x

(
x, ϕ(x)

)
·

1 + ∂F
∂y

(
x, ϕ(x)

)
ϕ′(x) = 0 holds. From that the formula (13) follows, because

∂F
∂y

(
x, ϕ(x)

)
6= 0 for x ∈ U . �

FIGURE 9.

Remark. It can be proved, that the function ϕ is as “smooth” as the function F is.
Let F be for example of the class C∞, then also ϕ is of the classC∞.



34 1. FUNCTIONS OF SEVERAL VARIABLES

Example 40. Let M = {[x, y] ∈ R2; (x2 + y2)2 − 2(x2 − y2) = 0}. Show that
in a neighbourhood of the point [

√
3/2, 1/2] is it possible to describe the set M as

a graph of s function ϕ of the variable x. Calculate ϕ′(
√

3/2).

Solution. Set
F (x, y) = (x2 + y2)2 − 2(x2 − y2).

Then:

(i) F ∈ C1(R2),
(ii) F (

√
3/2, 1/2) = 0,

(iii) ∂F
∂y (
√

3/2, 1/2) =
(
2(x2 + y2) · 2y + 4y

)∣∣∣
[
√
3/2,1/2]

= 4 6= 0.5

The assumption of the implicit function theorem are then satisfied. According
to this theorem follows that the set M is described by the function ϕ in a neig-
bourhood of the point [

√
3/2, 1/2]. Calculate the derivative of the function ϕ at the

point
√

3/2. We get

∂F

∂x
(
√

3/2, 1/2) =
(
2(x2 + y2) · 2x− 4x

)∣∣∣
[
√
3/2,1/2]

= 0,

and thus due to (13)

ϕ′(
√

3/2) = −
∂F
∂x (
√

3/2, 1/2)
∂F
∂y (
√

3/2, 1/2)
= −0

4
= 0.

On the first two figures we can see parts of the graph of the function F and on
the third figure, there is a set M .

FIGURE 10. FIGURE 11.

5The symbol
(
2(x2 + y2) · 2y + 4y

)∣∣
[
√

3/2,1/2]
denotes the value of the expression

(
2(x2 +

y2) · 2y+4y
)

at the point [
√
3/2, 1/2]. We will use this notation also in the following lecture notes.
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FIGURE 12.

♣

We introduce a more general theorem without the proof.

Theorem 41 (Implicit functions theorem). Let n,m ∈ N, G ⊂ Rn+m be an
open set, Fj : G → R, j = 1, . . . ,m, ~̃x ∈ Rn, ~̃y ∈ Rm satisfying[~̃x, ~̃y] =
[x̃1, . . . , x̃n, ỹ1, . . . , ỹm] ∈ G and then:

(i) Fj ∈ C1(G) for j ∈ {1, . . . ,m},
(ii) Fj(~̃x, ~̃y) = 0 pro j ∈ {1, . . . ,m}, that is

F1(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0,

...

Fm(x̃1, . . . , x̃n, ỹ1, . . . , ỹm) = 0,

(iii) and finally ∣∣∣∣∣∣∣∣
∂F1
∂y1

(~̃x, ~̃y) . . . ∂F1
∂ym

(~̃x, ~̃y)
...

. . .
...

∂Fm
∂y1

(~̃x, ~̃y) . . . ∂Fm
∂ym

(~̃x, ~̃y)

∣∣∣∣∣∣∣∣ 6= 0.

Then we can find a neigbourhood U ⊂ Rn of the point ~̃x and a neigbourhood
V ⊂ Rm of the point ~̃y such that for each ~x ∈ U there exist exactly one ~y ∈ V
with the propertyFj(~x, ~y) = 0 for each j ∈ {1, . . . ,m}. If we denote coordinates
of this ~y as ϕj(~x), j = 1, . . . ,m, then ϕj ∈ C1(U).

Remarks. 1. In the condition (iii) of the previous theorem, there appeared a sym-
bol, which is non-defined yet. It is so-called determinant. Its exact definition and
basic properties are stated in a section 2.3. For m = 2 and a, b, c, d ∈ R this holds:∣∣∣∣a b

c d

∣∣∣∣ = ad− bc.
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For m = 1 is the condition (iii) in a form ∂F1
∂y1

(~̃x, ỹ) 6= 0, and then the Theorem 39
is a special case of the Theorem 41.

2. If the functions F1, . . . , Fm from the Theorem 41 are of the class C∞(G), it can
be even proved, that also functions ϕ1, . . . , ϕm will be of the class C∞(U). We will
use this assertion in the following examples and exercises.

3. If we consider the linear system

F1(x1, . . . , xn, y1, . . . , ym) = 0,

...

Fm(x1, . . . , xn, y1, . . . , ym) = 0

of m equation with n real parameters x1, . . . , xn and m unknowns y1, . . . , ym,
then the Implicit functions theorem gives us - besides other things - conditions,
when we can “calculate” the unknowns y1, . . . , ym from this linear system depen-
dent on the parameters x1, . . . , xn.

Example 42. Show that the set{
[x, y] ∈ R2; exy − sin(x+ y) = 1

}
is (on some neighbourhood of the point [0,−π]) a graph of the function x 7→ y(x)
of the class C∞, which satisfies y(0) = −π. Calculate y′(0) a y′′(0).

Solution. Denote F (x, y) = exy − sin(x + y) − 1 and check, that the function
satisfy assumptions of the Implicit function theorem at the point [0,−π]:

(i) F ∈ C∞(R2),
(ii) F (0,−π) = e0 − sin(−π)− 1 = 1− 0− 1 = 0,

(iii)
∂F

∂y
(0,−π) = xexy − cos(x+ y)

∣∣∣
[0,−π]

= 1 6= 0.

Thus there exist numbers δ1 > 0, δ2 > 0 such that

∀x ∈ (−δ1, δ1) ∃!y(x) ∈ (−π − δ2,−π + δ2) : F
(
x, y(x)

)
= 0

and the function x 7→ y(x) is of the class C∞ on (−δ1, δ1). The function

x 7→ exy(x) − sin
(
x+ y(x)

)
− 1

is thus on the interval (−δ1, δ1) constant, and hence its derivation

x 7→ exy(x)
(
y(x) + xy′(x)

)
− cos

(
x+ y(x)

)(
1 + y′(x)

)
(15)

is on the interval (−δ1, δ1) equal to 0. Setting x = 0 y(0) = −π, we obtain easily
that y′(0) = π − 1.
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We use the function(15) to calculate the second derivative. As we determined,
is the function constant on the interval (−δ1, δ1) as well, and thus its derivative is
equal to zero on this interval. Hence,

exy(x)
(
y(x) + xy′(x)

)2
+ exy(x)

(
2y′(x) + xy′′(x)

)
+

+ sin
(
x+ y(x)

)(
1 + y′(x)

)2 − cos
(
x+ y(x)

)
y′′(x) = 0.

Setiing x = 0 and y(0) = −π and y′(0) = π − 1 we obtain y′′(0) = −π2 − 2π +
2. ♣

Example 43. Show that the set

{[x, y, z] ∈ R3; x sin z + y cos z − exp z = 0}
is (on some neighbourhood of the point [2, 1, 0]) a graph of the function [x, y] 7→
z(x, y), which satisfies z(2, 1) = 0. Write the equation of a tangent plane (if it
exists) to the graph of the function z at the point [2, 1, 0].

Solution. Denote F (x, y, z) = x sin z+ y cos z− exp z and check the assumption
of the Implicit function theorem for F at the point [2, 1, 0].

(i) F ∈ C1(R3),
(ii) F (2, 1, 0) = 2 · 0 + 1 · 1− 1 = 0,

(iii)
∂F

∂z
(2, 1, 0) = (x cos z − y sin z − exp z)

∣∣
[2,1,0]

= 1 6= 0.

The assumption of the Theorem 39 are satisfied, thus there exist numbers δ1 >
0, δ2 > 0 such that

∀[x, y] ∈ B([2, 1], δ1) ∃!z(x, y) ∈ (−δ2, δ2) : F
(
x, y, z(x, y)

)
= 0

and the function [x, y] 7→ z(x, y) is of the class C1 onB([2, 1], δ1). Thus there exist
a tangent plane to the graph of the function z at the point [2, 1, 0]. The function

[x, y] 7→ F
(
x, y, z(x, y)

)
= x sin z(x, y) + y cos z(x, y)− exp z(x, y)

is constant on the ball B([2, 1], δ1), and thus its partial derivative are equal to zero
there. We obtain

sin z(x, y) + x cos z(x, y) · ∂z
∂x

(x, y)−

− y sin z(x, y) · ∂z
∂x

(x, y)− exp z(x, y) · ∂z
∂x

(x, y) = 0,

x cos z(x, y) · ∂z
∂y

(x, y) + cos z(x, y)−

− y sin z(x, y) · ∂z
∂y

(x, y)− exp z(x, y) · ∂z
∂y

(x, y) = 0.
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After setting [x, y] = [2, 1] and z(2, 1) = 0 we get
∂z

∂x
(2, 1) = 0,

∂z

∂y
(2, 1) = −1.

The second way, how to calculate these partial derivative is using the formula (13).
The tangent plane to the graph of the function [x, y] 7→ z(x, y) at the point [2, 1, 0]
is described by the function

T (x, y) = 0 · (x− 2)− 1 · (y − 1) = 1− y.
♣

Example 44. Prove that there exist functions [x, y] 7→ u(x, y), [x, y] 7→ v(x, y) of
the class C∞ satisfying u(1, 1) = 0, v(1, 1) = π/4 and relations

exp
(u
x

)
cos

(
v

y

)
=

x√
2
, exp

(u
x

)
sin

(
v

y

)
=

y√
2

on some neighbourhood of the point [1, 1]. Find a tangent plane to the graph of the
function u
(v, respectively) at the point [1, 1, 0] ([1, 1, π/4], respectively).

Solution. Denote

F1(x, y, u, v) = exp
(u
x

)
cos

(
v

y

)
− x√

2
,

F2(x, y, u, v) = exp
(u
x

)
sin

(
v

y

)
− y√

2
.

Check that the function F1 and F2 satisfy the assumption of the Implicit functions
theorem (Theorem 41) at the point [1, 1, 0, π/4].

(i) F1, F2 ∈ C1(G), where G = (0,+∞)2 × R2,
(ii) F1(1, 1, 0, π/4) = cos(π/4)− 1/

√
2 = 0,

F2(1, 1, 0, π/4) = sin(π/4)− 1/
√

2 = 0,
(iii)∣∣∣∣∣∂F1

∂u (1, 1, 0, π/4) ∂F1
∂v (1, 1, 0, π/4)

∂F2
∂u (1, 1, 0, π/4) ∂F2

∂v (1, 1, 0, π/4)

∣∣∣∣∣ =

=

∣∣∣∣∣ 1x exp(ux) cos(vy ) − 1
y exp(ux) sin(vy )

1
x exp(ux) sin(vy ) 1

y exp(ux) cos(vy )

∣∣∣∣∣
[1,1,0,π/4]

= 1 6= 0 (see the section 2.3).

Thus there exist posive numbers δ1 > 0, δ2 > 0 such that

∀[x, y] ∈ B([1, 1], δ1) ∃! [u(x, y), v(x, y)] ∈ B([0, π/4], δ2) :

F1

(
x, y, u(x, y), v(x, y)

)
= 0 & F2

(
x, y, u(x, y), v(x, y)

)
= 0,
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the functions u, v are of the class C1 on B([1, 1], δ1) and u(1, 1) = 0, v(1, 1) =
π/4 holds. By calculating the derivatives of the contant functions

[x, y] 7→ F1

(
x, y, u(x, y), v(x, y)

)
,

[x, y] 7→ F2

(
x, y, u(x, y), v(x, y)

)
on B([1, 1], δ1) with respect to x we obtain

exp

(
u(x, y)

x

) ∂u
∂x(x, y) · x− u(x, y)

x2
cos

(
v(x, y)

y

)
−

− exp

(
u(x, y)

x

)
sin

(
v(x, y)

y

)
1

y

∂v

∂x
(x, y)− 1√

2
= 0,

exp

(
u(x, y)

x

) ∂u
∂x(x, y) · x− u(x, y)

x2
sin

(
v(x, y)

y

)
+

+ exp

(
u(x, y)

x

)
cos

(
v(x, y)

y

)
1

y

∂v

∂x
(x, y) = 0.

Similarly by calculating the derivative with respect to y we obtain

exp
(u
x

) 1

x

∂u

∂y
cos

(
v

y

)
− exp

(u
x

)
sin

(
v

y

) ∂v
∂yy − v
y2

= 0,

exp
(u
x

) 1

x

∂u

∂y
sin

(
v

y

)
+ exp

(u
x

)
cos

(
v

y

) ∂v
∂yy − v
y2

− 1√
2

= 0.

Here we used an useful notation, which makes the writing clearer – we omitted
arguments x a y of the functions u, v. Setting [x, y] = [1, 1], we obtain two systems
of linear equation

∂u

∂x
(1, 1)− ∂v

∂x
(1, 1) = 1,

∂u

∂x
(1, 1) +

∂v

∂x
(1, 1) = 0

and

∂u

∂y
(1, 1)− ∂v

∂y
(1, 1) = −π

4
,

∂u

∂y
(1, 1) +

∂v

∂y
(1, 1) = 1 +

π

4
.

Hence,
∂u

∂x
(1, 1) =

1

2
,

∂v

∂x
(1, 1) = −1

2
,

∂u

∂y
(1, 1) =

1

2
,

∂v

∂y
(1, 1) =

π

4
+

1

2
.

From the continuity of the partial derivatives of the function u (v, respectively)
at the point [1, 1] it follows the existence of a tangent plane at the point [1, 1, 0]
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([1, 1, π/4], respectively). The tangent plane is described by the function

T (x, y) =
1

2
(x−1)+

1

2
(y−1), resp. T (x, y) =

π

4
− 1

2
(x−1)+

(
1

2
+
π

4

)
(y−1).

♣

1.5. Lagrange multipliers theorem

The following theorem describes a method for a function of the class C1, how
to find points suspicious for being an extrem on a set, which is a contour line of a
function of the class C1.

Theorem 45 (Lagrange multiplier theorem). Let G ⊂ R2 be an open set, f, g ∈
C1(G), M = {[x, y] ∈ G; g(x, y) = 0} and [x̃, ỹ] ∈ M be a local extrem point
of the function f on the set M . Then at least one of the following conditions is
satisfied:

(i) ∇g(x̃, ỹ) = ~o,
(ii) there exists a real number λ ∈ R satisfyign

∂f

∂x
(x̃, ỹ) + λ

∂g

∂x
(x̃, ỹ) = 0, (16)

∂f

∂y
(x̃, ỹ) + λ

∂g

∂y
(x̃, ỹ) = 0. (17)

Proof. It is sufficient to prove that if (i) is not satisfied, then the second condi-
tion (ii) holds. Suppose then, that ∇g(x̃, ỹ) 6= ~o. We can assume without loss of
generality that ∂g

∂y (x̃, ỹ) 6= 0. If this partial derivative was equal to zero, then it

would have to be ∂g
∂x(x̃, ỹ) 6= 0 and the whole following procedure will be the

same except for changing the roles of x and y.
Let δ ∈ R, δ > 0, be such that f attains at the point [x̃, ỹ] extrem value on

B([x̃, ỹ], δ)∩M . SetG′ = B([x̃, ỹ], δ). According to the Implicit function theorem
used on the set G′, funkction g|G′ and a point [x̃, ỹ] there exist neighbourhood U
of the point x̃, neighbourhood V of the point ỹ aand function ϕ : U → V of the
class C1 satisfying
• G′ ∩M ∩ (U × V ) = graf ϕ,
• ϕ(x̃) = ỹ.

Define a function h : U → R by h(x) = f
(
x, ϕ(x)

)
. According to the Theorem 32,

the function h is of the class C1 on U , since f ∈ C1(G) and ϕ ∈ C1(U). If f has a
maximum at the point [x̃, ỹ] on G′ ∩M , then for each x ∈ U follows

h(x) = f
(
x, ϕ(x)

)
≤ f(x̃, ỹ) = f

(
x̃, ϕ(x̃)

)
= h(x̃),
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since [x, ϕ(x)] ∈ G′∩M . The function h has thus a maximum at the point x̃ on U .
If f has a minimum at the point [x̃, ỹ] on G′ ∩M , then we could derive similarly
that h has a minimum at the pointx̃ on U .

since the function h has a local extrem at the point x̃, h′(x̃) = 0 must hold.
According to the Theorem 32 then follows

h′(x̃) =
∂f

∂x

(
x̃, ϕ(x̃)

)
+
∂f

∂y

(
x̃, ϕ(x̃)

)
ϕ′(x̃) = 0. (18)

From the Implicit function theorem we know that

ϕ′(x̃) = −
∂g
∂x

(
x̃, ϕ(x̃)

)
∂g
∂y

(
x̃, ϕ(x̃)

) . (19)

Seting

λ = −
∂f
∂y

(
x̃, ϕ(x̃)

)
∂g
∂y

(
x̃, ϕ(x̃)

) ,
then the relation (17) is automatically satisfied. If we use (19) and (18), we get

∂f

∂x
(x̃, ỹ) + λ

∂g

∂x
(x̃, ỹ) =

∂f

∂x
(x̃, ỹ)−

∂f
∂y

(
x̃, ϕ(x̃)

)
∂g
∂y

(
x̃, ϕ(x̃)

) · ∂g
∂x

(x̃, ỹ) =

=
∂f

∂x
(x̃, ỹ) +

∂f

∂y

(
x̃, ϕ(x̃)

)
ϕ′(x̃) = 0.

That completed the proof. �

Example 46. Find a maximum and a minimum of the function f(x, y) = 2x+ 8y
on the set M = {[x, y] ∈ R2; x2 + 2y2 = 1}.

Solution. The set M is compact and the function f is continuous, it thus has
a maximum and a minimum on M . To find points, where could be a local ex-
trem of the function f on the set M , we use the previous theorem. Set G = R2

and g(x, y) = x2+2y2−1. The function f and g are of the class C1 and ∂f
∂x (x, y) =

2, ∂f∂x (x, y) = 8, ∂g∂x(x, y) = 2x a ∂f
∂x (x, y) = 4y holds. then ∇g(x, y) = ~o, if and

only if [x, y] = [0, 0], but the set M does not contain this point. at any point of the
set M the condition (i) from the Theorem 45 is not satisfied, at the points of the
local extremes of the function f on the set M there must be satisfied the second
condition (ii). Thus, to find a points suspicious from being an extrem, we have to
solve the following linear system:

2 + 2λx = 0,

8 + 4λy = 0,

x2 + 2y2 = 1.

(20)
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The first two equation are the condition (ii) from the Theorem 45, the last
equation express, that we are finding points which are contained in the set M . If
we multiply the first equation by the number 4 and subtract from it the second
equation od ní druhou rovnici, we get 4λ(2x − y) = 0 must hold. From the first
equation we can see that λ 6= 0, thus y = 2x. After setting to the last equation
we obtain that for the solution of the liear system x = 1

3 , y = 2
3 , nebo x = −1

3 ,
y = −2

3 . In the first case, we get λ = −3, in the second then λ = 3. Because
f(13 ,

2
3) = 1 and f(−1

3 ,−
2
3) = −1, the function f attains a maximum value on M

at the point [13 ,
2
3 ] and a minimum on M at the point [−1

3 ,−
2
3 ].

Notice, that finally there was no need to calculate the value λ. It was enough,
that for values x, y other than [13 ,

2
3 ] or [−1

3 ,−
2
3 ] the linear system (20) has no

solution. Usually, it is easier to set all found pairs [x, y] to the function f in this
moment, to reduce their number by searching the value of λ. ♣

Without the proof, we introduce a more general form of the Theorem 45, where
the set M is described by several conditions. This formulation uses a notion linear
dependance of the vectors. This notion will be defined in the section 2.2. Here we
will only notice, that one vector is linear dependent if and only if it is a zero vector,
and two vectors are linear dependent if and only if one of them is a multiple of the
other.

Theorem 47 (Lagrange multipliers theorem). Let m,n ∈ N, m < n, G ⊂ Rn be
an open set, f, g1, . . . , gm ∈ C1(G),

M = {~z ∈ G; g1(~z) = 0, g2(~z) = 0, . . . , gm(~z) = 0}

and the point ~̃z ∈ M is a point of a local extrem of the function f on the set M .
Then at least one of the following condition is satisfied:

(i) vectors∇g1(~̃z),∇g2(~̃z), . . . ,∇gm(~̃z) are linear dependent,
(ii) There exist real numbers λ1, λ2, . . . , λm ∈ R satisfying

∇f(~̃z) + λ1∇g1(~̃z) + λ2∇g2(~̃z) + · · ·+ λm∇gm(~̃z) = ~o.

Remarks. 1. Setting m = 1 a n = 2, we obtain from the Theorem 47 the Theo-
rem 45.
2. We call the numbers λ1, . . . , λm multipliers.

Example 48. Find a maximum and a minimum of the function f(x, y, z) = xyz
on the set M = {[x, y, z] ∈ R3; x2 + y2 + z2 = 1, x+ y + z = 0}.

Solution. The set M is compact and the function f is continuous, it thus has a
maximum and a minimum on M . We use the previous theorem to find points,
where could be a local extrem of the function f on the set M . Set G = R3,

g1(x, y, z) = x2 + y2 + z2 − 1, g2(x, y, z) = x+ y + z.
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Functions f , g1 and g2 are of the class C1. Calculate partial derivatives.
∂f

∂x
(x, y, z) = yz,

∂f

∂y
(x, y, z) = xz,

∂f

∂z
(x, y, z) = xy,

∂g1
∂x

(x, y, z) = 2x,
∂g1
∂y

(x, y, z) = 2y,
∂g1
∂z

(x, y, z) = 2z,

∂g2
∂x

(x, y, z) = 1,
∂g2
∂y

(x, y, z) = 1,
∂g2
∂z

(x, y, z) = 1.

The vectors [2x, 2y, 2z] and [1, 1, 1] are linear dependent if and only of
x = y = z holds. There is no point with this property contained in the setM , since
for the point [x, x, x] there must be g1(x, x, x) = 3x2 − 1 = 0 and g2(x, x, x) =
3x = 0 at the same time, which is not possible. Thus it is necessary to solve this
nonlinear system:

yz + λ12x+ λ2 = 0, (21)
xz + λ12y + λ2 = 0, (22)
xy + λ12z + λ2 = 0, (23)

x2 + y2 + z2 − 1 = 0, (24)
x+ y + z = 0. (25)

By subtracting (22) from (21) we obtain:

− z(x− y) + 2λ1(x− y) = 0. (26)

Hence it follows, that must be z = 2λ1 or x = y. Similarly by subtracting (23)
from (22) we get:

− x(y − z) + 2λ1(y − z) = 0. (27)
That gives us x = 2λ1 or y = z. From the relations (26) and (27) thus follows,
that must be either x = y, or y = z, or x = z. Look at the first case, where x = y.
From (25) we have z = −2x and from (24) we get 6x2 = 1, i.e. x = 1/

√
6 or

x = −1/
√

6. Indeed, we can calculate corresponding y, z, λ1 and λ2 to this points.
We can solve similarly the other cases y = z and z = x. We obtain these suspicious
points: [

2√
6
,− 1√

6
,− 1√

6

]
,
[
− 1√

6
, 2√

6
,− 1√

6

]
,
[
− 1√

6
,− 1√

6
, 2√

6

]
,[

− 2√
6
, 1√

6
, 1√

6

]
,
[

1√
6
,− 2√

6
, 1√

6

]
,
[

1√
6
, 1√

6
,− 2√

6

]
.

Setting the values to the function f in these points we find out that in the first row,
there are maxima points of the function f on M , and in the second row, there are
minima points of f on M . ♣

Example 49. Find a maximum and a minimum of the function f(x, y, z) = xyz
on the set M = {[x, y, z] ∈ R3; x2 + y2 + z2 ≤ 1, x+ y + z ≥ 0}.
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Solution. The set M is compact, since M is a closed half ball. The function f
is continuous on M , therefore it has a maximum and a minimum on M . We will
search the points suspicious of being an extrem separately on the interior of the
set M and on the boundary of M . Apart of these point there cannot be another
extrem point, since if ~x ∈ A ⊂ M a extrem point on M , then it is a extrem point
on A.

The interior ofM is equal to {[x, y, z] ∈ R3; x2+y2+z2 < 1, x+y+z > 0}.
The function f is of the class C1. The suspicious points on IntM are points with
all first partial derivative equal to 0. It is∇f(x, y, z) = [yz, xz, xy]. This vector is
equal to zero vector at point with at leat two zero coordinates, that is on coordinate
axis. The suspicious points on IntM are points from any of the following sets:

{[x, 0, 0]; x ∈ (0, 1)}, {[0, y, 0]; y ∈ (0, 1)} a {[0, 0, z]; z ∈ (0, 1)}.

We divide the boundary H(M) into parts

H1 = {[x, y, z] ∈ G1; x+ y + z = 0}, where

G1 = {[x, y, z] ∈ R3; x2 + y2 + z2 < 1},
H2 = {[x, y, z] ∈ G2; x

2 + y2 + z2 = 1}, where

G2 = {[x, y, z] ∈ R3; x+ y + z > 0},
H3 = {[x, y, z] ∈ R3; x2 + y2 + z2 = 1, x+ y + z = 0}.

Notice that the sets G1 and G2 are open. We can use the Lagrange multipliers
theorem to find suspicious points on the set H1, H2, H3, respectively.

The function [x, y, z] 7→ x+y+z has non-zero gradient on R3, therefore in the
case of the set H1 we get the suspicious points by solving the system of equations

yz + λ = 0,

xz + λ = 0,

xy + λ = 0,

x+ y + z = 0.

By a similar procedure as in the previous example we get the only solution of this
system [x, y, z] = [0, 0, 0]. This point is contained in H1, and thus it is a point,
which is suspicious of being an extrem.

In the case of the set H2 has the function [x, y, z] 7→ x2 + y2 + z2 − 1 zero
gradient only at the point [0, 0, 0], which is not an element of H2, therefore we get
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the suspicious points by solving the system of equation

yz + 2λx = 0,

xz + 2λy = 0,

xy + 2λz = 0,

x2 + y2 + z2 = 1.

By a similar procedure to the one in the previous example we get the solution, and
there we omit the corresponding values of λ:[
− 1√

3
,− 1√

3
,− 1√

3

]
,
[
− 1√

3
, 1√

3
, 1√

3

]
,
[

1√
3
,− 1√

3
, 1√

3

]
,
[

1√
3
, 1√

3
,− 1√

3

]
,[

− 1√
3
,− 1√

3
, 1√

3

]
,
[
− 1√

3
, 1√

3
,− 1√

3

]
,
[

1√
3
,− 1√

3
,− 1√

3

]
,
[

1√
3
, 1√

3
, 1√

3

]
,

[1, 0, 0], [−1, 0, 0], [0, 1, 0], [0,−1, 0], [0, 0, 1], [0, 0,−1].

From all these points, only these points are contained in H2:[
1√
3
, 1√

3
, 1√

3

]
,
[
− 1√

3
, 1√

3
, 1√

3

]
,
[

1√
3
,− 1√

3
, 1√

3

]
,
[

1√
3
, 1√

3
,− 1√

3

]
,

[1, 0, 0], [0, 1, 0], [0, 0, 1].

We examined the set H3 already in the previous example. Here are the suspi-
cious points[

2√
6
,− 1√

6
,− 1√

6

]
,
[
− 1√

6
, 2√

6
,− 1√

6

]
,
[
− 1√

6
,− 1√

6
, 2√

6

]
,[

− 2√
6
, 1√

6
, 1√

6

]
,
[

1√
6
,− 2√

6
, 1√

6

]
,
[

1√
6
, 1√

6
,− 2√

6

]
.

Comparing the values of the function f in the suspicious points we get that the
function f has a maximum on M at the point

[
1√
3
, 1√

3
, 1√

3

]
and a minimum on M

at the point
[
− 1√

3
, 1√

3
, 1√

3

]
,
[

1√
3
,− 1√

3
, 1√

3

]
,
[

1√
3
, 1√

3
,− 1√

3

]
. ♣

Example 50. Find extremes of the function f(x, y, z) = xy + z2 on the set M =
{[x, y, z] ∈ R3; x2 + y2 + z2 ≤ 1, x ≥ 0}.

Solution. The set M is compact, since M is closed half ball. The function f is
continuous on M , therefore it has a maximum and minimum on M . We will pro-
ceed similarly to previous example. We will search the points suspicious of being
an extrem separately on the interior of the set M and on the boundary of M . It can
be easily saw, that the only point with all partial derivative equal to zero is [0, 0, 0].
But this point is not an element of IntM .

Examine the function f on a part of the boundary

H1 = {[x, y, z] ∈ R3; x2 + y2 + z2 = 1, x > 0}.
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We want to use the Lagrange theorem. Set G = {[x, y, z] ∈ R3; x > 0},

g(x, y, z) = x2 + y2 + z2 − 1

and calculate
∂g

∂x
= 2x,

∂g

∂y
= 2y,

∂g

∂z
= 2z.

It is obvious, that at each point of the set H1 is at at least one of these partial
derivative non-zero. The functions f and g are of the classC1 on R3, thus we can
use the Lagrange multipliers theorem. The points, suspicious of being an extrem,
solve this system of equations

y + 2λx = 0,

x+ 2λy = 0,

2z + 2λz = 0,

x2 + y2 + z2 − 1 = 0.

The third equation is satisfied, if eiter z = 0, or λ = −1 holds.
a) The case z = 0. Multiply the first equation by y, the second by −x and add

them. We get the equation y2 − x2 = 0. Setting this to the fourth equation, we
obtain 2x2 = 1. It is either x = 1/

√
2, or x = −1/

√
2. But the value x = −1/

√
2

does not satisfy the condition x > 0. We get the first pair of suspicious points:
[1/
√

2, 1/
√

2, 0] a [1/
√

2,−1/
√

2, 0].
b) If λ = −1, then the first two equation has the only one solution x = y = 0.

This solution does not satisfy the condition x > 0.
The second part of the boundary is the set H2 = {[0, y, z] ∈ R3; y2 + z2 ≤ 1}

(a disc in the plane x = 0). Often it is handy to use a special shape of the function f
or of the set, where we examine the function instead of a general procedure using
Lagrange multipliers theorem. It is so also in this case. We define a supporting
function

ϕ(y, z) = f(0, y, z) = z2

and find extremes of the function ϕ of two variables on the compact set L =
{[y, z] ∈ R2; y2+z2 ≤ 1}, and thus also extremes of the function f on the setH2.
If the function f does not have an extrem on the set H2 at a point of H2, then it
also does not have an extrem on M at this point. Into the set of points suspicious
of being an extrem of f on M we thus add only extrem points of f on H2.

The function ϕ is non-negative and has zero values on L just at points of the
set K = {[y, 0] ∈ R2; y ∈ [−1, 1]}. The function ϕ thus has a minimum on L at
some point of K.

On L, there holds ϕ(y, z) = z2 ≤ y2 + z2 ≤ 1 and ϕ attains the value 1 on L
just at points [0, 1] and [0,−1] and therefore they are the maxima points of ϕ on L.
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Now it is enough to compare the function values in all suspicious points. We
obtain:

f(1/
√

2, 1/
√

2, 0) = 1/2, f(0, 0,−1) = f(0, 0, 1) = 1,

f(1/
√

2,−1/
√

2, 0) = −1/2, f(0, y, 0) = 0 for y ∈ [−1, 1].

Thus it is max
M

f = 1 and min
M

f = −1/2. ♣

Example 51. Examine the extremes of the function f(x, y) = (x+ y) exp(−x2−
y2) on the set M = {[x, y] ∈ R2; x2 + y2 ≤ 1, |x| ≤ y + 1}.

Solution. Draw the set M .

FIGURE 13.

The set M is compact and the function f is continuous on it. The function f
thus has a maximum and minimum on M . Find suspicious points in IntM . Solve
a system of equations on IntM

∂f

∂x
= exp(−x2 − y2)(1− 2x2 − 2xy) = 0,

∂f

∂y
= exp(−x2 − y2)(1− 2y2 − 2xy) = 0.

This system has the only one solution in IntM and it is [1/2, 1/2].
Next find suspicious points on the boundary H(M). Firstly consider this part

of the boundary

H1 = {[x, y] ∈ R2; 0 ≤ x ≤ 1, y = x− 1}.
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Define a supporting function

ϕ(x) = f(x, x− 1) = (2x− 1) exp(−2x2 + 2x− 1).

The function ϕ is continuous on a compact set [0, 1], and thus has there a maximum
and a minimum. Since ϕ′ has non-zero values at all points of the interval (0, 1),
then the only suspicious points are the endpoints x = 0, x = 1. There are two
suspicious points on H1, namely [0,−1] and [1, 0].

Proceed similarly on this part of the boundary

H2 = {[x, y] ∈ R2; −1 ≤ x ≤ 0, y = −x− 1}
we get the following suspicious points [−1/2,−1/2] and [−1, 0].

We use the multiplier theorem on this part of the boundary

H3 = {[x, y] ∈ R2; x2 + y2 = 1, y > 0}
Denote

g(x, y) = x2 + y2 − 1

and calculate ∂g
∂x(x, y) = 2x, ∂g∂y (x, y) = 2y. For all points from H3 is second of

the partial derivative non-zero. The functions f and g are of the class C1 on the
whole R2. The assumption of the multiplier theorem are thus satisfied. Suspicious
will be the points, which solve the system of equations on H3

exp(−x2 − y2)(1− 2x2 − 2xy) + 2λx = 0,

exp(−x2 − y2)(1− 2y2 − 2xy) + 2λy = 0,

x2 + y2 − 1 = 0.

We multiply the first equation by y, the second by −x and then we add them to-
gether. Then we obtain exp(−x2 − y2)(y − x) = 0, which is satisfied if and only
if x = y. From the third equation we can see that this situation could happen H3 at
the only point [x, y] = [1/

√
2, 1/
√

2].
Since we know, that the function f has extremes onM , it is enough to compare

the function values in suspicious points:

f(1/2, 1/2) = exp(−1/2), f(0,−1) = − exp(−1),

f(1, 0) = exp(−1), f(−1/2,−1/2) = − exp(−1/2),

f(−1, 0) = − exp(−1), f(1/
√

2, 1/
√

2) =
√

2 exp(−1).

We get then

max
M

f = f(1/2, 1/2) = exp(−1/2),

min
M

f = f(−1/2,−1/2) = − exp(−1/2).

♣
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1.6. Concave and quasiconcave functions

In this section we will study concave and quasiconcave functions of several
variables. The definition of a concave multivariate function is a straightforward
generalization of the notion concave function of one variable from the chapter ??.

Definition. Let M ⊂ Rn. We say that M is a convex set if:

∀~x, ~y ∈M ∀t ∈ [0, 1] : t~x+ (1− t)~y ∈M.

Remarks. 1. The set M is convex if and only if every line segment with endpoints
in M lies whole in M .

2. If the sets M,N ⊂ Rn are convex, then also a set M ∩ N is convex. But a set
M ∪N does not have to be convex in general.

Definition. Let M ⊂ Rn be a convex set and a function f be defined on M . We
say that f is a concave function on M if:

∀~a,~b ∈M ∀t ∈ [0, 1] : f(t~a+ (1− t)~b) ≥ tf(~a) + (1− t)f(~b).

We say that f is strictly concave function on M if:

∀~a,~b ∈M,~a 6= ~b ∀t ∈ (0, 1) : f(t~a+ (1− t)~b) > tf(~a) + (1− t)f(~b).

Remark. If we reverse an inequality sign, we get a definition of convex and strictly
convex function of several variables.

Remark. The concave function does not have to be continuous on its domain, it
can be shown by a function f defined on interval [0, 1] by

f(x) =

{
0 pro x = 0,
1 pro x ∈ (0, 1].

However, the following theorem holds; we omit its somewhat more difficult proof.

Theorem 52. Let G ⊂ Rn be an open convex set and a function f be concave
on G. Then f is continuous on G.

Theorem 53. Let a function f be concave on a convex setM . Then for each α ∈ R
is a set Qα = {~x ∈M ; f(~x) ≥ α} convex.

Proof. Let α ∈ R. If ~a,~b ∈ Qα and t ∈ [0, 1], then f(~a) ≥ α and f(~b) ≥ α. From
that and from the concavity of the function f follows

f(t~a+ (1− t)~b) ≥ tf(~a) + (1− t)f(~b) ≥ tα+ (1− t)α = α,

in other words t~a+ (1− t)~b ∈ Qα. �
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The following theorem says, that for functions of the class C1 is the concav-
ity of the function f on the set G is equal to the property that the graph of the
function f lies under every tangent hyperplane to the graph of the function.

Theorem 54. Let G ⊂ Rn be a convex open set and f ∈ C1(G). Then the func-
tion f is concave on G if and only if

∀~x, ~y ∈ G : f(~y) ≤ f(~x) +
n∑
i=1

∂f

∂xi
(~x)(yi − xi). (28)

Proof. ⇒ For each ~x, ~y ∈ G and for each t ∈ (0, 1]

f
(
(1− t)~x+ t~y

)
≥ (1− t)f(~x) + tf(~y)

holds, and thus

f
(
~x+ t(~y − ~x)

)
− f(~x)

t
≥ f(~y)− f(~x).

From the theorem about composite function derivative and from the theorem about
limit and order (Theorem ??) it follows

n∑
i=1

∂f

∂xi
(~x)(yi − xi) = lim

t→0+

f
(
~x+ t(~y − ~x)

)
− f(~x)

t
≥ f(~y)− f(~x).

⇐ Choose ~v, ~w ∈ G and next t ∈ [0, 1]. Apply (28) on pairs of points t~v +
(1− t)~w, ~v:

f(~v)− f(t~v + (1− t)~w) ≤
n∑
i=1

∂f

∂xi
(t~v + (1− t)~w)(vi − wi)(1− t);

and also on pairs of points t~v + (1− t)~w, ~w:

f(~w)− f(t~v + (1− t)~w) ≤
n∑
i=1

∂f

∂xi
(t~v + (1− t)~w)(wi − vi)t.

Multiply the first inequality by t and second by (1− t) and then add them together:

tf(~v)− tf(t~v + (1− t)~w) + (1− t)f(~w)− (1− t)f(t~v + (1− t)~w) ≤ 0.

We alter the previous inequality and get

tf(~v) + (1− t)f(~w) ≤ f(t~v + (1− t)~w).

This would complete the proof. �

From the previous theorem we could easily derive the following assertion.

Theorem 55. Let G ⊂ Rn be a convex open set and f ∈ C1(G) be concave on G.
If ~a ∈ G stationary point of the function f , then ~a is a maximum point of the
function f on the set G.
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Proof. From the Theorem 54 we get, that for each point ~y ∈ G follows

f(~y) ≤ f(~a) +
n∑
i=1

∂f

∂xi
(~a)(yi − ai) = f(~a) +

n∑
i=1

0 · (yi − ai) = f(~a),

which completes the proof. �

We state - without the proof - the following theorem, which characterize a strict
concavity of the function.

Theorem 56. Let G ⊂ Rn be a convex open set and f ∈ C1(G). Then the func-
tion f is strictly concave on G if and only if the following expression holds

∀~x, ~y ∈ G,~x 6= ~y : f(~y) < f(~x) +
n∑
i=1

∂f

∂xi
(~x)(yi − xi).

Definition. Let M ⊂ Rn be a convex set and f be a function defined on M . We
say that f is quasiconcave on M , if

∀~a,~b ∈M ∀t ∈ [0, 1] : f(t~a+ (1− t)~b) ≥ min{f(~a), f(~b)}.
We say that f is strictly quasiconcave on M , if

∀~a,~b ∈M,~a 6= ~b ∀t ∈ (0, 1) : f(t~a+ (1− t)~b) > min{f(~a), f(~b)}.

In this figure, there is a quasiconcave function, which is not concave.

FIGURE 14.

Remark. If we write in the previous definition f(t~a+(1−t)~b) ≤ max{f(~a), f(~b)}
instead of f(t~a+ (1− t)~b) ≥ min{f(~a), f(~b)}, we obtain a definition of a quasi-
convex function of several variables. Similarly we can define a strictly quasicon-
vex function of several variables.

In this section we deal only with (strictly) concave and (strictly) quasiconcave
funkctions. But we can alter the formulation of the stated results straightforwardly
also for convex and quasiconvex functions. It is enough to realize, that the func-
tion f is convex if and only if the function −f is concave, and similarly it holds
for function strictly convex, quasiconvex and strictly quasiconvex.
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Remark. It can be shown, that strictly quasiconcave functions are exactly the qua-
siconcave functions, whose graph “does not contain a horizontal line segment”,
i.e.

non
(
∃~a,~b ∈M,~a 6= ~b, ∀t ∈ [0, 1] : f(t~a+ (1− t)~b) = f(~a)

)
.

Theorem 57. Let M ⊂ Rn be a convex set and f be a function defined on M .
Then:

(i) If f is concave on M , then it is also quasiconcave M .
(ii) If f is strictly concave on M , then it is also strictly quasiconcave on M .

Proof. (i) Take ~a,~b ∈M and t ∈ [0, 1]. We can assume without loss of generality,
that f(~b) ≥ f(~a). Then

f(t~a+ (1− t)~b) ≥ tf(~a) + (1− t)f(~b) ≥ tf(~a) + (1− t)f(~a) = f(~a).

(ii) Take ~a,~b ∈ M , ~a 6= ~b, and t ∈ (0, 1). We can assume without loss of
generality, that f(~b) ≥ f(~a). Then

f(t~a+ (1− t)~b) > tf(~a) + (1− t)f(~b) ≥ tf(~a) + (1− t)f(~a) = f(~a).

�

Theorem 58. Let M ⊂ Rn be a convex set and f be a function defined on M . The
function f is quasiconcave on M if and only if for each α ∈ R the set Qα = {~x ∈
M ; f(~x) ≥ α} is convex.

Proof. ⇒ Let ~a,~b ∈ Qα, α ∈ R, t ∈ [0, 1]. Then

f(t~a+ (1− t)~b) ≥ min{f(~a), f(~b)} ≥ α,

and hence t~a+ (1− t)~b ∈ Qα.
⇐ Let ~a,~b ∈M and t ∈ [0, 1]. Denote α = min{f(~a), f(~b)}. Then ~a,~b ∈ Qα

and a set Qα is convex, hence t~a+ (1− t)~b ∈ Qα. From it follows that

f(t~a+ (1− t)~b) ≥ α = min{f(~a), f(~b)}.

�

Compare the previous theorem with the Theorem 53.
The last two theorems of this section are important, because they express the

relation of a strict quasiconcavity of the function and uniqueness of a maximum
point.

Theorem 59. Let M ⊂ Rn be a convex set and f is strictly quasiconcave function
on M . If f has a maximum on M , then it has exactly one maximum point.
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Proof. Let ~a,~b ∈M be two different points, at which f attains its maximum value
on M . If we use condition of strict quasiconcavity for ~a,~b and t = 1/2, we get
f
(
1
2~a+ 1

2
~b
)
> f(~a) = max

M
f ant that is a contradiction. �

Theorem 60. Let M ⊂ Rn be a convex, bounded, closed and non-empty set and f
be continuous and strictly quasiconcave function on M . Then f has a maximum
on M at exactly one point.

Proof. The function f has a maximum on M since M is non-empty compact set
and f is continuous onM . According to the previous theorem, the uniqueness then
follows from the strict quasiconcavity. �

1.7. Exercise

In the following five exercises examine, if the given set M is open, closed or
bounded and determine its boundary, interior and closure.
1. {[x, y] ∈ R2; 1 ≤ x < 2, 1 ≤ y < 2}

2.
{

[x, y] ∈ R2;
∣∣∣y−1x ∣∣∣ ≤ 1

}
3.

{
[1/n, 1/m] ∈ R2; n ∈ N, m ∈ N

}
4.

{
[x, y] ∈ R2; 4−4x2−y2

4y ≥ 0
}

5.
{

[3 cos t+ cos 3t, 3 sin t− sin 3t] ∈ R2; t ∈ [0, 2π]
}

6. Let for each k ∈ N je Mk = {[x, y] ∈ R2; x2 + y2 ≤ (1− 1/k)2}. Define
M =

⋃∞
k=1Mk.6 Determine, if the sets M , Mk are open or closed.

7. Prove the continuity of the function defined by

f(x, y) =

(x+ y)2 sin

(
1√
x2+y2

)
for [x, y] 6= [0, 0],

0 for [x, y] = [0, 0],

on the whole domain.

In the following exercises examine for a given function f a domain, continuity,
contour lines and determine a maximum and a minimum, if they exist.
8. f(x, y) = x2 − y2 9. f(x, y) = x/y

10. f(x, y) = arcsinxy

6The symbol
⋃∞
k=1 means the same as

⋃
k∈N.
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11. f(x, y) =

{
2x2y
x4+y2

for [x, y] 6= [0, 0]

0 for [x, y] = [0, 0]

12. Determine a domain of the function f(x, y) =
√
x2 + 4y2 + 1. Calculate

partial derivatives at all points, where they exist.

13. For the function

f(x, y) =

{
xy√
x2+y2

pro [x, y] 6= [0, 0],

0 pro [x, y] = [0, 0]

calculate partial derivatives at all points, where they exist.

14. Determine a domain of the function f(x, y, z) = (x/y)z; calculate first and
second partial derivatives at all points, where they exist. Determine an equation of
a tangent plane to the graph of the function f at the point [e, 1, 2, e2].

15. Determine a domain of a function f(x, y) = arctg x−y
x+y . calculate first and

second partial derivatives and write an equation of a tangent plane to the graph of
the function f at the point [1, 1, f(1, 1)].

16. Examine extremes of the function f(x, y) = xy exp(−xy) on the set

M = {[x, y] ∈ R2; x ≥ 0, y ≥ 0}.

17. Examine extremes of the function f(x, y) =
x− y

1 + x2 + y2
on the set

M = {[x, y] ∈ R2; y ≥ 0}.

18. Examine extremes of the function f(x, y) = xy(1− x− y) on the set

M = {[x, y] ∈ R2; x ≥ 0, y ≥ 0, x+ y ≤ 1}.

19. Examine extremes of the function f(x, y) = sinx cos y on the set

M = {[x, y] ∈ R2; 0 ≤ x ≤ 2π, 0 ≤ y ≤ −x+ 2π}.

20. Examine extremes of the function f(x, y, z) = (x−1)2+(2y−1)2+(z−2)2

on the set

M = {[x, y, z] ∈ R3; x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 4}.

21. Prove that the set

{[x, y] ∈ R2; y = x+ log y}
is a graph of the function x 7→ y(x) at a neighbourhood of the point [e − 1, e].
Write the equation of a tangent (if it exists) to the graph of the function y at the
point [e− 1, e].
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22. Prove that the set

M = {[x, y] ∈ R2; x2 + 2xy + y2 − 4x+ 2y − 2 = 0}

is a graph of the function x 7→ y(x) at a neighbourhood of the point [1, 1]. Examine,
if the function y is convex or concave on a neighbourhood of the point 1.

23. Prove that there exist functions x 7→ y(x) and x 7→ z(x) of the class C∞,
which satisfies y(1) = e, z(1) = 1, and relations

exp z − xyz = 0, log(xy)− x

z
= 0

on a neighbourhood of the point 1. Calculate y′(1) and z′(1).

In the following exercise prove that the set M is a graph of the function
[x, y] 7→ z(x, y) of the class C∞ at a neighbourhood of a given point. Determine a
tangent plane to the graph of the function at a given point.
24. M = {[x, y, z] ∈ R3; x2 + 2y2 + 3z2 + xy − z − 9 = 0}, [1,−2, 1]

25. M = {[x, y, z] ∈ R3; exp z + x2y + z + 5 = 0}, [1,−6, 0]

26. M = {[x, y, z] ∈ R3; cos2 x+ cos2 y + cos2 z = 1}, [π/3, π/2, π/6]

In the following exercises find extremes of the function f non the set M .
27. f(x, y) = 25x3−18xy+9x,M = {[x, y] ∈ R2; x ∈ [−3, 3], y2−5x2 ≤ 4}
28. f(x, y) = 6xy + y3 + 6y, M = {[x, y] ∈ R2; x2 + y2 ≤ 5}
29. f(x, y) = xy + 2x+ 3y, M = {[x, y] ∈ R2; 4x2 + 9y2 ≤ 36}
30. f(x, y) = xy + 2x+ 3y, M = {[x, y] ∈ R2; 4x2 + 9y2 ≤ 36, y ≤ −x/2}
31. f(x, y) = exp(x2 − y2 + y), M = {[x, y] ∈ R2; x2 + y2 ≤ 1, y ≥ 0}
32. f(x, y, z) = x2 + y2 + z2, M = {[x, y, z] ∈ R3; x2 + y2 = z2, x− 2z = 3}

Results of exercises

1. M is neither open, nor closed; it is bounded; H(M) = {[x, 1] ∈ R2; 1 ≤ x ≤
2} ∪ {[x, 2] ∈ R2; 1 ≤ x ≤ 2} ∪ {[1, y] ∈ R2; 1 ≤ y ≤ 2} ∪ {[2, y] ∈ R2; 1 ≤
y ≤ 2}; IntM = {[x, y] ∈ R2; 1 < x < 2, 1 < y < 2}; M = {[x, y] ∈ R2; 1 ≤
x ≤ 2, 1 ≤ y ≤ 2}

2. M is neither open, nor closed; it is not bounded; H(M) = {[x, y] ∈ R2; y =

−x + 1} ∪ {[x, y] ∈ R2; y = x + 1}; IntM = {[x, y] ∈ R2;
∣∣∣y−1x ∣∣∣ < 1};

M = M ∪ {[0, 1]}
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3.M is neither open, nor closed; it is bounded;H(M) = M∪{[1/n, 0] ∈ R2; n ∈
N} ∪ {[0, 1/m] ∈ R2; m ∈ N} ∪ {[0, 0]}; IntM = ∅, M = H(M)

4. M is neither open, nor closed; it is not bounded; H(M) = {[x, y] ∈ R2; 4 −
4x2 − y2 = 0} ∪ {[x, 0] ∈ R2; x ∈ R}; IntM = {[x, y] ∈ R2; 4−4x2−y2

4y > 0};
M = M ∪ {[x, 0] ∈ R2; x ∈ R}

5. M is closed, bounded; H(M) = M = M ; IntM = ∅

6. For each k ∈ N the set Mk is closed and not open; the set M = {[x, y] ∈
R2; x2 + y2 < 1} is open and not closed.

8. Df = R2; f is continuous on Df ; f−1({0}) = {[x, y] ∈ R2; y = x}∪{[x, y] ∈
R2; y = −x}, f−1({1}) = {[x, y] ∈ R2; x2 − y2 = 1}, f−1({−1}) = {[x, y] ∈
R2; x2 − y2 = −1}; contour lines f−1({k}) (k 6= 0) are rectangular hyperbolas;
the function f does not attain maximum or minimum value on Df

9. Df = {[x, y] ∈ R2; y 6= 0}; f is continuous on Df ; f−1({0}) = {[x, y] ∈
Df ; x = 0}; f−1({1}) = {[x, y] ∈ Df ; y = x}; f−1({−1}) = {[x, y] ∈
Df ; y = −x}; the function f does not attain maximum or minimum value on Df

10. Df = {[x, y] ∈ R2; −1 ≤ xy ≤ 1}; f is continuous on Df ; f−1({0}) =
{[x, y] ∈ R2; x = 0} ∪ {[x, y] ∈ R2; y = 0}, f−1({π/2}) = {[x, y] ∈
R2; xy = 1}, f−1({−π/2}) = {[x, y] ∈ R2; xy = −1}, f−1({π/6}) =
{[x, y] ∈ R2; xy = 1/2}; the function f attains a maximum value on Df at
points [x, y] ∈ f−1({π/2}), minimum on Df at points [x, y] ∈ f−1({−π/2})

11. Df = R2; f is continuous on R2 \ {[0, 0]} and is not continuous at the point
[0, 0]; f−1({0}) = {[x, y] ∈ R2; x = 0} ∪ {[x, y] ∈ R2; y = 0}, f−1({1}) =
{[x, y] ∈ R2; y = x2}\{[0, 0]}, f−1({−1}) = {[x, y] ∈ R2; y = −x2}\{[0, 0]},
f−1({1/2}) = ({[x, y] ∈ R2; y = (2+

√
3)x2}∪{[x, y] ∈ R2; y = (2−

√
3)x2})\

{[0, 0]}; the function f attains a maximum value on R2 at points [x, y] ∈ f−1({1}),
minimum on R2 at points [x, y] ∈ f−1({−1})

12. Df = R2;

∂f

∂x
(x, y) =

x√
x2 + 4y2

,
∂f

∂y
(x, y) =

4y√
x2 + 4y2

, [x, y] ∈ R2 \ {[0, 0]};

partial derivatives at points [0, 0] does not exist

13.
∂f

∂x
(x, y) =

y3√
(x2 + y2)3

,
∂f

∂y
(x, y) =

x3√
(x2 + y2)3

, [x, y] ∈ R2 \ {[0, 0]};

∂f
∂x (0, 0) = 0, ∂f∂y (0, 0) = 0
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14. Df = {[x, y, z] ∈ R3; x > 0, y > 0} ∪ {[x, y, z] ∈ R3; x < 0, y < 0};
∂f

∂x
(x, y, z) =

(
x

y

)z z
x
,
∂f

∂y
(x, y, z) =

(
x

y

)z (
−z
y

)
,

∂f

∂z
(x, y, z) =

(
x

y

)z
log

x

y
,

∂2f

∂x2
(x, y, z) =

(
x

y

)z z

x2
(z − 1),

∂2f

∂x∂y
(x, y, z) =

∂2f

∂y∂x
(x, y, z) = −

(
x

y

)z z2
xy
,

∂2f

∂y2
(x, y, z) =

(
x

y

)z z
y2

(z + 1),
∂2f

∂z2
(x, y, z) =

(
x

y

)z (
log

x

y

)2

,

∂2f

∂y∂z
(x, y, z) =

∂2f

∂z∂y
(x, y, z) = −

(
x

y

)z 1

y
(z log

x

y
+ 1),

∂2f

∂x∂z
(x, y, z) =

∂2f

∂z∂x
(x, y, z) =

(
x

y

)z 1

x
(z log

x

y
+ 1), [x, y, z] ∈ Df ;

T (x, y, z) = e2 + 2e(x− e)− 2e2(y − 1) + e2(z − 2)

15. Df = {[x, y] ∈ R2; y 6= −x};
∂f

∂x
(x, y) =

y

x2 + y2
,

∂f

∂y
(x, y) =

−x
x2 + y2

,

∂2f

∂x2
(x, y) =

−2xy

(x2 + y2)2
,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) =

x2 − y2

(x2 + y2)2
,

∂2f

∂y2
(x, y) =

2xy

(x2 + y2)2
, [x, y] ∈ Df ;

the tangent plane to the graph of the function f exists at all points [x, y, f(x, y)],
where [x, y] ∈ Df and at the point [1, 1, f(1, 1)] is defined by equation 2z−x+y =
0

16. The set M is not bounded; the continuous function f thus could, but does not
have to attain,its maximum and minimum values on M . But it is not difficult to
realize, that the function f is continuous on M and equal to zero on both axis x, y.
Next we can easily see, that on rectangular hyperbola xy = k, k > 0, is f(x, y) =
ke−k and lim

k→∞
ke−k = 0. Hence we can derive, that f attains its maximum and

minimum values onM . Suspicious points: [x, 0], where x ∈ [0,+∞); [0, y], where
y ∈ [0,+∞); [x, 1/x], where x > 0; the function f attains its maximum value
on M at the points [x, 1/x], x > 0 and attains its minimum value on M at the
points [x, 0], x ≥ 0, and [0, y], y ≥ 0.
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17. suspicious points: [−1/
√

2, 1/
√

2], [−1, 0], [1, 0]; at the point [1, 0] the func-
tion f attains its maximum value onM ; at the point [−1/

√
2, 1/
√

2] the function f
attains its minimum value on M ; at the point [−1, 0] there is no extrem.

18. the function f is continuous on the setM , which is compact. Thus the func-
tion f attains its maximum and minimum values on M . Points suspicious of being
an extrem of the function are: [1/3, 1/3] and all points from H(M); max

M
f =

f(1/3, 1/3) = (1/3)3, min
M

f = 0, it is attained at all points of the boundary

H(M).

19. The function f is continuous on the set M , which is compact. thus the func-
tion f has a maximum and a minimum on M . suspicious points: [π/2, π], [π, π/2],
[π/2, 0], [3π/2, 0], [0, y] (where y ∈ [0, 2π]), [π/4, 7π/4], [3π/4, 5π/4], [5π/4, 3π/4],
[7π/4, π/4] and [2π, 0]; maxima and minima: max

M
f = f(π/2, 0) = 1, min

M
f =

f(3π/2, 0) = f(π/2, π) = −1.

20. the function f is continuous on the set M , which is compact. Thus the func-
tion f has a maximum and a minimum on M . Suspicious points are: [1, 1/2, 2],
[0, 1/2, 2], [1, 0, 2], [1, 1/2, 0], [11/9, 5/9, 20/9], [0, 0, 2], [1, 0, 0], [0, 1/2, 0],
[0, 4/5, 16/5], [3/2, 0, 5/2], [3, 1, 0], [0, 0, 0], [4, 0, 0], [0, 4, 0], [0, 0, 4]; max

M
f =

f(0, 4, 0) = 54, min
M

f = f(1, 1/2, 2) = 0.

21. The tangent at the point [e − 1, e] is described by the function T (x) = e
e−1x.

22. y′(1) = 0, y′′(1) = −1/3; the function y is concave on a neighbourhood of the
point 1 konkávní 23. y′(1) = −e, z′(1) = 1 24. T (x, y) = 1 + 7

5(y + 2)

25. T (x, y) = 6(x− 1)− 1
2(y + 6) 26. T (x, y) = π/2− x

27. suspicious points: [0, 1/2], [1, 3], [−1, 3], [3, 7], [3,−7], [−3, 7], [−3,−7]. The
set M is compact and f is continuous on it, thus f has a maximum and a minimum
on M ; max

M
f = f(3,−7) = 1080, min

M
f = f(−3,−7) = −1080.

28. Suspicious points: [−1, 0], [1, 2], [1,−2], [−2, 1], [−2,−1]. The set M is com-
pact and f is continuous on it, thus f has a maximum and a minimum on M ;
max
M

f = f(1, 2) = 32, min
M

f = f(1,−2) = −32.

29. Suspicious points: [3/
√

2,
√

2], [−3/
√

2,−
√

2], [0,−2], [−3, 0]. The set M is
compact and f is continuous on it, thus f has a maximum and a minimum on M ;
max
M

f = f(3/
√

2,
√

2) = 3 + 6
√

2, min
M

f = f(0,−2) = f(−3, 0) = −6.

30. Suspicious points: [−3/
√

2,−
√

2], [0,−2], [−3, 0], [1/2,−1/4], [12/5,−6/5];
[−12/5, 6/5]. The set M is compact and f is continuous on it, thus f has a maxi-
mum and a minimum on M ; max

M
f = f(1/2,−1/4) = 1/8, min

M
f = f(0,−2) =

f(−3, 0) = −6.
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31. Suspicious points: [0, 1/2], [0, 1], [
√

15/4, 1/4], [−
√

15/4, 1/4], [0, 0], [1, 0],
[−1, 0]. The set M is compact and f is continuous on it, thus f has a maximum
and a minimum onM ; max

M
f = f(

√
15/4, 1/4) = f(−

√
15/4, 1/4) = exp(9/8),

min
M

f = f(0, 0) = f(0, 1) = 1.

32. The set M is an intersection of a conical surface and a plane, it can be shown,
that in this case it is an ellipse. The setM is compact and f is continuous on it, thus
f has a maximum and a minimum onM ; suspicious points: [−3, 0,−3], [1, 0,−1];
max
M

f = f(−3, 0,−3) = 18, min
M

f = f(1, 0,−1) = 2.





CHAPTER 2

Matrix algebra

In this chapter we will be concerned with topics which belong to linear algebra.
We will primarily deal with basic matrix operations, theory of determinants and
solving systems of linear equations. All of this is very useful not only in other parts
of mathematics (see for example the general formulation of the Implicit functions
theorem (Theorem 1.41)), but also in varied applications in economics.

2.1. Basic operations with matrices

Definition. We call a table
a11 a12 . . . a1n
a21 a22 . . . a2n
a31 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
am1 am2 . . . amn

 , (1)

where aij ∈ R, i = 1, . . . ,m, j = 1, . . . , n, the m × n matrix. If m = n, then
we call it the square matrix of order n. The set of all m× n matrices is denoted
by M(m× n).

We call an n-tuple of numbers

(ai1, ai2, . . . , ain),

where i ∈ {1, . . . ,m}, the i-th row of a matrix (1) and an m-tuple of numbers
a1j
a2j
...

amj

 ,

where j ∈ {1, . . . , n}, the j-th column of the matrix (1). The matrix (1) is also
denoted by the symbol (aij)i=1..m

j=1..n
.

61



62 2. MATRIX ALGEBRA

Remarks. 1. As we mentioned in the Chapter 1, we call elements of the space Rn
also vectors. If we have a vector ~x = [x1, . . . , xn] ∈ Rn, we can look at it as at a
row vector , i.e. a 1× n matrix of the form(

x1 . . . xn
)

or as at a column vector, i.e. an n× 1 matrix of the formx1...
xn

 .

2. If ~u1, . . . , ~um ∈ Rn are row vectors, then an m × n matrix, for which the i-th
row is equal to ~ui, i = 1, . . . ,m, is denoted by the symbol~u

1

...
~um

 .

Similarly, if ~v1, . . . , ~vn ∈ Rm are column vectors, then anm×nmatrix, for which
j-th column is equal to ~vj , j = 1, . . . , n, is denoted by the symbol(

~v1, . . . , ~vn
)
.

Definition. We say that matrices A = (aij)i=1..m
j=1..n

, B = (buv)u=1..p
v=1..s

are equal

provided thatm = p, n = s and aij = bij for each i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
(i.e. matrices are of the same size and elements with the same indices are equal).

We now define two basic operations with matrices.

Definition. Let A,B ∈ M(m × n), A = (aij)i=1..m
j=1..n

, B = (bij)i=1..m
j=1..n

, λ ∈ R.

Then we call the following matrix the sum of matrices A and B

A+B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n
a31 + b31 . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 + bm1 am2 + bm2 . . . amn + bmn

 ,

and the following matrix the real number multiplication λ of the matrix A

λA =


λa11 λa12 . . . λa1n
λa21 λa22 . . . λa2n
λa31 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
λam1 λam2 . . . λamn

 .
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In the following theorem there are summarized basic properties of these oper-
ations. Proofs of the assertions are very simple and we omit them.

Theorem 1. The following assertions hold:
• ∀A,B ∈M(m× n) : A+B = B +A (commutativity),
• ∀A,B,C ∈M(m× n) : A+ (B + C) = (A+B) + C (associativity),
• there exists exactly one matrix O ∈ M(m × n) satisfying O + A = A for

each A ∈M(m× n) (existence of a zero element),
• ∀A ∈ M(m× n) ∃CA ∈ M(m× n) : A+ CA = O (existence of an inverse

element),
• ∀A ∈M(m× n) ∀λ, µ ∈ R : (λ+ µ)A = λA+ µA,
• ∀A,B ∈M(m× n) ∀λ ∈ R : λ(A+B) = λA+ λB,
• ∀A ∈M(m× n) ∀λ, µ ∈ R : (λµ)A = λ(µA),
• ∀A ∈M(m× n) : 1 ·A = A.

Remark. It is obvious that each entry of the matrix O from the third assertion is
equal to 0. We call such a matrix the zero matrix. It is also easy to realize that the
matrixCA from the fourth assertion is uniquely determined and is equal to (−1)·A.
Usually, we denote it by −A.

Let an important notion of matrix multiplication be defined.

Definition. LetA = (ais)i=1..m
s=1..n

be am×nmatrix andB = (bsj)s=1..n
j=1..k

be a n×k

matrix. We say that a m× k matrix A ·B = (cij)i=1..m
j=1..k

where

cij =
n∑
s=1

aisbsj , i = 1, . . . ,m, j = 1, . . . , k,

is a matrix product of A with B. Usually, we will write only AB instead of A ·B.

Remark. LetA be anm×nmatrix andB be an n×k matrix. We calculate the entry
with indices ij of the matrix AB such that we “put” the i-th row of the matrix A
on j-th column of the matrix B, multiplicate the corresponding entries and add the
resulting numbers together:

Let the row vectors of the matrix A be denoted by ~u1, . . . , ~um and the column
vectors of the matrix B by ~v1, . . . , ~vk. The vector ~ui is in fact a 1 × n matrix and
the vector ~vj is an n× 1 matrix. A matrix product of these matrices in this order is
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a 1× 1 matrix, whose the only entry is just a number cij . Then it is not difficult to
realize that for a matrix AB the following conditions hold:

A ·B = A · (~v1, . . . , ~vk)︸ ︷︷ ︸
B

= (A · ~v1, . . . , A · ~vk),

A ·B =

~u
1

...
~um


︸ ︷︷ ︸

A

·B =

~u
1 ·B
...

~um ·B

 .

The foregoing definition of a matrix multiplication may seem to be somewhat
complicated. But we will see later (for example in section 2.5), that it is very natural
and useful.

Example 2. Calculate the matrix product AB, where

A =

(
1 0 3
2 1 −1

)
and B =

2 1 1 0
0 −1 3 1
1 0 4 5

 .

Solution. The matrix A is a 2 × 3 matrix and the matrix B is a 3 × 4 matrix, thus
multiplication is possible and the matrix product AB is a 2× 4 matrix. According
to the definition we have

AB =
(

1·2+0·0+3·1, 1·1+0·(−1)+3·0, 1·1+0·3+3·4, 1·0+0·1+3·5
2·2+1·0+(−1)·1, 2·1+1·(−1)+(−1)·0, 2·1+1·3+(−1)·4, 2·0+1·1+(−1)·5

)
=

=

(
5 1 13 15
3 1 1 −4

)
.

♣

Theorem 3 (properties of matrix multiplication). The following assertions hold:
(i) ∀A ∈ M(m × n) ∀B ∈ M(n × k) ∀C ∈ M(k × p) : (AB)C = A(BC)

(associativity of multiplication),
(ii) ∀A ∈ M(m × n) ∀B,C ∈ M(n × k) : A(B + C) = AB + AC (left

distributivity),
(iii) ∀A,B ∈ M(m × n) ∀C ∈ M(n × k) : (A + B)C = AC + BC (right

distributivity).
(iv) There exists exactly one matrix I ∈ M(n × n) such that for each matrix

A ∈ M(n × n), IA = AI = A holds (existence and uniqueness of the
identity matrix I). Above that, for the matrix I it holds:
• ∀B ∈M(m× n) : BI = B,
• ∀C ∈M(n× k) : IC = C.
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Proof. (i) From the matrix multiplication definition it follows that AB is an m× k
matrix and then the matrix product (AB)C is defined and a result is an m × p
matrix. Similarly it can be seen that BC is an n × p matrix and hence the matrix
product A(BC) is an m× p matrix. Both sides of the equality are thus matrices of
the same size. We shall now prove that they have the same entries.

Let A = (aij)i=1..m
j=1..n

, B = (bij)i=1..n
j=1..k

, C = (cij)i=1..k
j=1..p

. An entry with indices

ij of the matrix (AB)C is equal to

k∑
r=1

(
n∑
s=1

aisbsr

)
crj =

k∑
r=1

(
n∑
s=1

aisbsrcrj

)

and an entry with indices ij of the matrix A(BC) is equal to

n∑
s=1

ais

(
k∑
r=1

bsrcrj

)
=

n∑
s=1

(
k∑
r=1

aisbsrcrj

)
.

Adding and multiplying of real numbers are commutative and associative and
hence it follows

k∑
r=1

(
n∑
s=1

aisbsrcrj

)
=

n∑
s=1

(
k∑
r=1

aisbsrcrj

)
.

(ii) Obviously, on both sides of the equality are m × k matrices. If A =
(aij)i=1..m

j=1..n
, B = (bij)i=1..n

j=1..k
, C = (cij)i=1..n

j=1..k
, then an entry with indices ij of

the matrix A(B + C) is equal to

n∑
s=1

ais(bsj + csj) =
n∑
s=1

aisbsj +
n∑
s=1

aiscsj .

Let us note that the expression
∑n

s=1 aisbsj is equal to the entry with indices ij of
the matrix AB and the expression

∑n
s=1 aiscsj is equal to the entry with indices ij

of the matrix AC. This is what had to be proved.
(iii) It can be proved similarly to the proof of (ii).
(iv) Let I = (aij)i=1..n

j=1..n
, where

aij =

{
0 for i 6= j,
1 for i = j.
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The matrix I is thus of the form

I =


1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0
0 . . . 0 0 1

 .

It can be easily checked, that the matrix I satisfies all required equalities.
We shall now prove the uniqueness. Let us suppose that the matrix J ∈M(n×

n) satisfies AJ = JA = A for each matrix A ∈M(n× n). However, then we get
I = IJ = J . �

Remarks. 1. Let us point out that the matrix multiplication is not commutative.
For example, if A ∈M(2× 3) and B ∈M(3× 4), then the matrix product AB is
defined, but the matrix product BA is not. But the matrix multiplication is neither
commutative in square matrix multiplication case:(

0 1
0 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
,

(
0 0
0 1

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

2. In this text we will often appeal to the notion of an identity matrix. From the
context it will be clear what size it has.

The latter matrix operation is described in the following definition.

Definition. The transpose of a matrix

A =


a11 a12 a13 a14 . . . a1n
a21 a22 a23 a24 . . . a2n
a31 . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 am2 . . . . . . . . . . . . . amn


is the matrix

AT =



a11 a21 . . . am1

a12 a22 . . . am2

a13 a23 . . . am3

a14 a24 . . . am4

a15 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
a1n a2n . . . amn


,

that is, if A = (aij)i=1..m
j=1..n

, then AT = (buv)u=1..n
v=1..m

, where buv = avu for each

u ∈ {1, . . . , n}, v ∈ {1, . . . ,m}.
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Let us look how the transposition of the matrices relates to the foregoing oper-
ations.

Theorem 4 (properties of transposes). The following assertions hold:
(i) ∀A ∈M(m× n) : (AT )T = A,

(ii) ∀A,B ∈M(m× n) : (A+B)T = AT +BT ,
(iii) ∀A ∈M(m× k) ∀B ∈M(k × n) : (AB)T = BTAT .

Proof. The assertions (i) and (ii) are obvious.
(iii) The matrix AB is an m×n matrix, the transpose (AB)T is thus an n×m

matrix. The matrix AT is a k ×m matrix, the matrix BT is an n× k matrix, their
product BTAT is thus an n ×m matrix. We obtain that on both sides of equality
are matrices of the same size. We shall now prove that they have the same entries.

Let
A = (ajs)j=1..m

s=1..k
, B = (bsi)s=1..k

i=1..n
,

AT = (cpq)p=1..k
q=1..m

, BT = (drp)r=1..n
p=1..k

.

Then the entry with indices ij of the matrix (AB)T is equal to the entry with
indices ji of the matrix AB, i.e. it is equal to

∑k
s=1 ajsbsi. The entry with indices

ij of the matrix BTAT is equal to
k∑
p=1

dipcpj =
k∑
p=1

bpiajp =
k∑
p=1

ajpbpi,

which completes the proof. �

2.2. Invertibility and rank of a matrix

If we have a non-zero real number a, then exactly one real number b can be
found such that ab = ba = 1 holds. We use this property of real numbers for
example in solving this type of equation: ax = c. If we multiply both sides of
equation by the number b, then we get x = bc. It is thus natural to ask if we can
find for a given non-zero matrixA ∈M(n×n) a matrixB ∈M(n×n) satisfying
AB = BA = I . Generally, the answer is negative. It is not difficult to make sure
that for the matrix

A =

(
1 0
0 0

)
we can not find a matrix B ∈ M(2 × 2) satisfying AB = BA = I . It is there-
fore useful to separate the matrices for which the answer to the given question is
positive.
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Definition. Let A ∈M(n×n). We say that a matrix A is invertible if there exists
B ∈M(n× n) such that

AB = BA = I. (2)

Remarks. 1. But are there any invertible matrices? It can be directly seen that for
example an identity matrix of any size is invertible. In this section we will prove
relatively simple criterion, which determine if a matrix is invertible or not.
2. Let us note that if AB = I holds for A,B ∈ M(n × n), then also BA = I
holds. We prove this assertion in the last section of this chapter.

Let us note that if a matrix A is invertible, then there exists exactly one ma-
trix B satisfying AB = BA = I . Since if we have an invertible matrix A ∈
M(n × n) and matrices B, B̃ ∈ M(n × n), which satisfy AB = BA = I ,
AB̃ = B̃A = I , then B = IB = (B̃A)B = B̃(AB) = B̃I = B̃. This observa-
tion shows that the following definition and notation are correct.

Definition. Let A be an invertible matrix. We call the matrix B satisfying (2) the
inverse of a matrix A. We denote it by A−1.

Theorem 5. Let A,B ∈M(n× n) be invertible matrices. Then:
(i) A−1 is an invertible matrix and (A−1)−1 = A,

(ii) AT is an invertible matrix and (AT )−1 = (A−1)T ,
(iii) AB is an invertible matrix and (AB)−1 = B−1A−1.

Proof. The assertion (i) is obvious.
(ii) AA−1 = A−1A = I holds and hence (AA−1)T = (A−1A)T = IT and

from Theorem 4 it follows (A−1)TAT = AT (A−1)T = I . Hence, our assertion
follows.

(iii) AA−1 = A−1A = I and BB−1 = B−1B = I hold. We thus have

(B−1A−1)(AB) = B−1(A−1A)B = B−1B = I,

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I.

Let us realize that we use the associativity of a matrix multiplication. From the
previous relations we obtain the assertion. �

Definition. Let k, n ∈ N and ~v1, . . . , ~vk ∈ Rn. We say that a vector ~u ∈ Rn is the
linear combination of vectors ~v1, . . . , ~vk with coefficients λ1, . . . , λk ∈ R
provided that

~u = λ1~v
1 + · · ·+ λk~v

k.

In this case we also say that the linear combination of vectors ~v1, . . . , ~vk with
coefficients λ1, . . . , λk is equal to ~u.

If λ1 = · · · = λk = 0, then we call it the trivial linear combination of the
vectors ~v1, . . . , ~vk; if any of the coefficient is non-zero then it is the non-trivial
linear combination.
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Definition. We say that the vectors ~v1, . . . , ~vk ∈ Rn are linearly dependent if
there exists any netrivial linear combination which is equal to a zero vector. We
say that the vectors ~v1, . . . , ~vk ∈ Rn are linearly independent, if they are not
linearly dependent, i.e. if

∀λ1, . . . , λk ∈ R : λ1~v
1 + · · ·+ λk~v

k = ~o ⇒ λ1 = λ2 = · · · = λk = 0.

In other words among all linear combinations of vectors ~v1, . . . , ~vk only the trivial
linear combinations is equal to a zero vector.

Remark. Vectors ~v1, . . . , ~vk are linearly dependent if and only if one of them is a
linear combination of the others.

Since if λ1~v1 + · · ·+ λk~v
k is a netrivial linear combination which equals to a

zero vector, then for a certain i we have λi 6= 0 and we could write

~vi = −λ1
λi
~v1 − · · · − λi−1

λi
~vi−1 − λi+1

λi
~vi+1 − · · · − λk

λi
~vk.

We shall now prove the converse implication. If a certain vector ~vi is a linear com-
bination of the other vectors, i.e.

~vi = α1~v
1 + · · ·+ αi−1~v

i−1 + αi+1~v
i+1 + · · ·+ αk~v

k,

then by adding a vector (−1) · ~vi to both sides of equality we get a netrivial linear
combination which is equal to a zero vector.

Definition. LetA ∈M(m×n). The rank of the matrixA is the maximal number
of linearly independent rows, i.e. the rank is equal to k ∈ N if

(i) there exist k linearly independent row vectors of the matrix A and
(ii) every l-tuple of row vectors of the matrix A, where l > k, is linearly depen-

dent.

The rank of a zero matrix is equal to zero. The rank of a matrix A is denoted by
h(A).

Remark. It is obvious that a non-zero vector is linearly independent and if in an
l-tuple of vectors there are at least two of them the same, then this l-tuple is linearly
dependent. Hence, the rank is correctly defined for each matrix and is at most equal
to its number of rows.

Most matrices has not obvious rank at the first sight. But for some matrices, it
is very easy to determine it.

Definition. We say that A ∈ M(m × n) is in the row echelon form, if for each
i ∈ {2, . . . ,m} it holds that the i-th row of the matrix A is a zero vector or starts
with more zeros than (i− 1)-th row.
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It is not difficult to realize that the rank of a matrix in a row echelon form is
equal to the number of non-zero rows. We show a method how to use this observa-
tion to determine the rank of a general matrix.

Definition. The elementary row operations of a matrix A are:

(i) switching any two rows,
(ii) multiplying a row by a non-zero number,

(iii) adding multiple of one row to another one.

Definition. We call the transformation a finite sequence of elementary row op-
erations. If a matrix B ∈ M(m × n) originated from a matrix A ∈ M(m × n)

applying a transformation T on a matrix A, then we use this notation A T
 B.

The assertions (i) and (iii) in the following theorem show how to determine the
rank of a general matrix. We could transform a given matrix to a matrix in a row
echelon form (assertion (i)) whose rank is then equal to the rank of the original
matrix (assertion (iii)).

Theorem 6 (properties of transformation).
(i) Let A ∈ M(m × n). Then there exists a transformation T which alter the

matrix A to a matrix in a row echelon form.
(ii) Let T1 be a transformation applicable on m × n matrices. Then there exists

a transformation T2 applicable on m × n matrices such that for each two
matrices A,B ∈M(m× n) A

T1 B holds if and only if B T2 A.
(iii) Let A,B ∈ M(m× n) and matrix A became matrix B by a transformation.

Then h(A) = h(B).

Proof. (i) We prove the result by applying mathematical induction onm. Ifm = 1,
then we does not have to prove anything, since the matrix has only one row and
thus it is in a row echelon form. Let us suppose that the assertion holds for all
matrices with m rows. Let A ∈ M((m + 1) × n). If A is a zero matrix, then it
is also in a row echelon form. Let thus A be a non-zero matrix. Let us find the
smallest j ∈ {1, . . . , n} such that the j-th column of the matrix A contains non-
zero entry. Let this entry be in an i-th row. Then we swap the i-th row with the first.
Let the newly originated matrix be denoted by B and its entries by bij . Let us take
s ∈ {2, . . . ,m+ 1} and add a (−bsj/b1j)-multiple of the first row to the s-th row
of the matrix B. The originated matrix has zero in the position sj. Let us repeat
this process for each s ∈ {2, . . . ,m + 1}. This way we get a matrix C which has
zero entries in the first j − 1 columns and in j-th column there is a only one entry,
just on the first position. From the induction assumption it follows that there exists
a transformation of only the second to the (m+1)-st row, which alter the matrix C
to be in a row echelon form.
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(ii) For the purpose of this proof we use the following notation. If T is a row
elementary operation of swapping an i-th and a j-th row, then take T−1 equal
to T . If T is a row elementary operation of multiplying an i-th row by a non-zero
number λ, then T−1 stands for an elementary operation of multiplying the i-th
row by a (non-zero) number 1/λ. Finally, if T is a row elementary operation of
adding a λ-multiple of a j-th row to an i-th row and i 6= j, then T−1 stands for an
elementary operation of adding (−λ)-multiple of the j-th row to the i-th row.

Let us suppose first that the transformation T1 consists of one row elementary
operation; then it is obvious that the transformation T2 = T−11 has the required
property. Now if T1 is a transformation consisting of a sequence of row elemen-
tary operations P1, P2, . . . , Pk, then let us denote a transformation consisting of
a sequence of P−1k , . . . , P−12 , P−11 by T2. Then for matrices A,B ∈ M(m × n)
follows

A
P1 A1

P2 . . .
Pk−1
 Ak−1

Pk B, if and only if

B
P−1
k Ak−1

P−1
k−1
 . . .

P−1
2 A1

P−1
1 A,

and this is what had to be proved.

(iii) It could be seen that the row elementary operations of the first and the
second type does not change the rank of a matrix.

We shall now prove that the row elementary operation of the third type does
not reduce the rank of a matrix. Let us suppose that h(A) = l. Let the row vectors
of the matrix A be denoted by order ~v1, . . . , ~vm. We can assume without loss of
generality that exactly the vectors ~v1, . . . , ~vl are linearly independent. Let A be
transformed by a row elementary operation of the third type. If this operation does
not change any of the vectors ~v1, . . . , ~vl, then the rank of newly originated matrix
cannot be smaller than l.

Let us suppose now that we added λ-multiple of some vector to some an-
other vector of ~v1, . . . , ~vl. We can assume without loss of generality that we added
vector λ~vi, i ∈ {1, . . . ,m} to the l-th vector provided i 6= l. If the vectors
~v1, . . . , ~vl−1, ~vi are linearly independent, then the proof is completed, since the
newly originated matrix has the rank at least l. Let us assume now that the given
vectors are linearly dependent. From that we derive the linear independence of the
vectors ~v1, . . . , ~vl−1, ~vl + λ~vi. Let us take any linear combination of the vectors
~v1, . . . , ~vl−1, ~vl + λ~vi which equals to a zero vector:

µ1~v
1 + · · ·+ µl−1~v

l−1 + µl(~v
l + λ~vi) = ~o. (3)

From the linear independence of the vectors ~v1, . . . , ~vl−1 and from the linear de-
pendence of the vectors ~v1, . . . , ~vl−1, ~vi follows that ~vi is a linear combination
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~v1, . . . , ~vl−1, i.e.

~vi =
l−1∑
j=1

τj~v
j .

By plugging this into the (3) and manipulating the equation, we obtain

(µ1 + µlλτ1)~v
1 + · · ·+ (µl−1 + µlλτl−1)~v

l−1 + µl~v
l = ~o.

The vectors ~v1, . . . , ~vl are linearly independent and therefore it must be

µ1 + µlλτ1 = 0, . . . , µl−1 + µlλτl−1 = 0 and µl = 0.

Hence, µ1 = · · · = µl = 0 and this proves the linear independence of the vectors
~v1, . . . , ~vl−1, ~vl + λ~vi.

Thus, if the matrix A becomes a matrix B by a certain transformation, then
h(A) ≤ h(B). Acoording to the assertion (ii) we can transform B to A and there-
fore h(B) ≤ h(A). Thus, we get h(A) = h(B). �

Remarks. 1. Let us realize that the proof of the point (i) gives us at the same time
instruction how to transform a given matrix to be in a row echelon form.

2. We can define column elementary operations similarly to row elementary op-
erations. It can be shown that after column elementary operation the linearly de-
pendent rows of an original matrix are linearly dependent also in a new matrix
and linearly independent rows stays independent. Hence, the column elementary
operations does not change the rank of a matrix.

If we want to determine the rank of a matrix, we can thus use both rows and
column elementary operations. But in certain situations (e.g. solving linear systems
of equations, see the section 2.4) we can use only rows elementary operations.

3. Moreover, it can be shown that h(A) = h(AT ) holds provided A ∈M(m× n).
Since (AT )T = A, it is sufficient to show that h(AT ) ≥ h(A). If a matrix A is
in a row echelon form, then the proof of this inequality is simple. According to
Theorem 6 we can transform A to a matrix B in a row echelon form and h(A) =
h(B). If we perform corresponding column elementary operation on AT , we get
BT . According to the previous point h(AT ) = h(BT ) holds. Due to h(BT ) ≥
h(B), we obtain h(AT ) ≥ h(A).

Example 7. Determine the rank of the matrix h(A)

A =


1 3 −2 2 4
2 7 3 0 −1
−1 1 3 1 5
−2 1 −1 6 19

 .
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Solution. The rank of the matrix A cannot be bigger than 4. We transform A to a
matrix in a row echelon form.

1. Let us copy the first row, add a (−2)-multiple of the first row to the second
one, add 1-multiple of the first row to the third one and add 2-multiple of the first
row to the fourth one. This way we get the matrix

1 3 −2 2 4
0 1 7 −4 −9
0 4 1 3 9
0 7 −5 10 27

 .

2. Let us copy the first and the second row, add a (−4)-multiple of the second
row to the third one and add a (−7)-multiple of the second row to the fourth one.
Now we get the matrix 

1 3 −2 2 4
0 1 7 −4 −9
0 0 −27 19 45
0 0 −54 38 90

 .

3. Let us copy the first three rows and add a (−2)-multiple of the third row to
the fourth one. We get the matrix

1 3 −2 2 4
0 1 7 −4 −9
0 0 −27 19 45
0 0 0 0 0

 .

A transformation does not change the rank of a matrix and thus h(A) = 3. ♣

Example 8. Determine the rank h(A) of the matrix

A =


1 0 5 −1
0 3 −2 5
2 9 4 a
1 15 b 24


in dependance on real parameters a, b.

Solution. We use a suitable transformation and get these matrices consecutively
1 0 5 −1
0 3 −2 5
0 9 −6 a+ 2
0 15 b− 5 25

 ,


1 0 5 −1
0 3 −2 5
0 0 0 a− 13
0 0 b+ 5 0

 ,


1 0 5 −1
0 3 −2 5
0 0 b+ 5 0
0 0 0 a− 13

 .

Now it is obvious that h(A) = 2 in case that a = 13 and b = −5. Next,
if a = 13 and b 6= −5 or a 6= 13 and b = −5, then the rank of the matrix is
h(A) = 3. If a 6= 13, b 6= −5, then h(A) = 4. ♣
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Theorem 9 (about transformation and matrix product). Let A ∈M(m× k), B ∈
M(k×n), C ∈M(m×n) andAB = C hold. Let T be a transformation andA T

 

A′, C T
 C ′. Then A′B = C ′.

Proof. Let us assume without loss of generality that T is only one row elementary
operation. Let the rows of the matrix A be denoted by ~a1,~a2, . . . ,~am and the rows
of the matrix C by ~c1,~c2, . . . ,~cm. According to the remark following the definition
of matrix product on page 63 we have

~cj = ~ajB, j = 1, . . . ,m.

For row elementary operations of the first and the second type the situation is thus
clear.

Let us prove the assertion in case that we add λ-multiple of the p-th row to
the q-th row, p 6= q. Then the q-th row of the matrix A′ is equal to ~aq + λ~ap and
the q-th row of the matrix C ′ is equal to ~cq + λ~cp. Then we have

(~aq + λ~ap)B = ~aqB + λ~apB = ~cq + λ~cp.

Since the other rows did not change, we get A′B = C ′ and this is what had to be
proved. �

Lemma 10. Let A ∈ M(n × n) and h(A) = n. Then there exists a transforma-
tion T which alter A to I .

Proof. According to Theorem 6(i) we can transform A to a matrix A′ (with entries
a′ij) in a row echelon form. From Theorem 6(iii) and the assumption h(A) = n

we obtain h(A′) = n. Hence, a′ii 6= 0, i = 1, . . . , n. If we multiply the i-th row
by a non-zero number 1/a′ii, i = 1, . . . , n, then we get the entries on the diagonal
equal to 1. Thus, we can directly suppose that a′ii = 1, i = 1, . . . , n.

Now let us take consecutively a (−a′i,n)-multiple of the n-th row and add it
to the i-th row for i = 1, . . . , n − 1. The newly originated matrix B1 has the
columns equal to the columns of the matrix A′ except for the n-th column which
is equal to the n-th column of an identity matrix. In the next step let us take con-
secutively a (−a′i,n−1)-multiple of the (n− 1)-st row and add it to the i-th row for
i = 1, . . . , n − 2. The newly originated matrix B2 has the columns equal to the
columns of the matrixA′ except for the two last columns which are equal to the cor-
responding columns of an identity matrix. We repeat this procedure and finally we
get (using row elementary operations of the third type) the matricesB3, . . . , Bn−1.
Then Bn−1 = I holds and this would complete the proof. �

Remark. Let us realize that this proof gives us also instruction how to find such a
transformation.

The latter theorem gives us an important characterization of regular matrices.
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Theorem 11 (invertibility and rank). Let A ∈M(n× n). The matrix A is regular
if and only if h(A) = n.

Proof. Let us assume first that the matrix A is invertible, but h(A) < n. Thus,
we can find an inverse A−1 of a matrix A. Let us find a transformation T which
alter the matrix A to a matrix in a row echelon form S. Let a matrix, transformed
by T from I , be denoted by B. According to Theorem 9, SA−1 = B holds, since
AA−1 = I . Since h(A) < n and a transformation does not change the rank of
a matrix, it follows that h(S) < n, and thus the last row of the matrix S is a
zero vector. Therefore also the last row of a matrix B is a zero vector and hence
h(B) < n. Simultanously, we have h(B) = h(I) = n and that is a contradiction.
This would complete the proof, that the rank of an invertible matrix is n.

Let now h(A) = n. Then according to Lemma 10 there exists a transforma-
tion T1 which alter A to I . Let us apply T1 on I and let the resulting matrix be
denoted by B. According to Theorem 6(ii) we can find a transformation T2 to the
transformation T1. Then A T1 I

T2 A and I T1 B
T2 I holds. By using Theorem 9

and the transformation T2 on the equality IB = B we get the equality AB = I .
Similarly, from the equality IA = A and by using the transformation T1 we obtain
an equality BA = I . The matrix A is thus invertible. �

Method of matrix inversion. The second part of the just finished proof gives
us instruction for matrix inverse calculation. Let a matrixA ∈M(n×n) be invert-
ible. Let us transform the matrix A to an identity matrix I (see Lemma 10). Using
the same row elementary operations simultanously on I we get a matrix B satisfy-
ing AB = BA = I . Thus B = A−1 holds. In other words – if we tranform A to
a I , then the same transformation alter I to A−1.

Example 12. Find an inverse of the matrix1 0 1
1 1 2
0 −1 0

 .

Solution. Usually, we proceed as described below: from matrices A, I ∈ M(n ×
n) we form a matrix (A|I) ∈ M(n × 2n), which we transform by suitable row
elementary operations to (I|A−1). Let us calculate:

(A|I) =

1 0 1 1 0 0
1 1 2 0 1 0
0 −1 0 0 0 1

 ,

let us subtract the 1st row from the 2nd row:1 0 1 1 0 0
0 1 1 −1 1 0
0 −1 0 0 0 1

 ,
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let us add the 2nd row to the 3rd row:1 0 1 1 0 0
0 1 1 −1 1 0
0 0 1 −1 1 1

 ,

let us subtract the 3rd row from the 2nd row:1 0 1 1 0 0
0 1 0 0 0 −1
0 0 1 −1 1 1

 ,

let us subtract the 3rd row from the 1st row:1 0 0 2 −1 −1
0 1 0 0 0 −1
0 0 1 −1 1 1

 .

The matrix  2 −1 −1
0 0 −1
−1 1 1


is thus the searched inverse of the original matrix1 0 1

1 1 2
0 −1 0

 .

♣

Example 13. Find an inverse of the matrix

A =


−18 −16 −11 12
−6 −6 −4 5
−11 −10 −7 8
−1 −1 −1 1

 .

Solution. Let us use row elementary operations on the 4× 8 matrix:

(A|I) =


−18 −16 −11 12 1 0 0 0
−6 −6 −4 5 0 1 0 0
−11 −10 −7 8 0 0 1 0
−1 −1 −1 1 0 0 0 1

 .

In the matrix (A|I), let us swap the 1st and the 4th row:
−1 −1 −1 1 0 0 0 1
−6 −6 −4 5 0 1 0 0
−11 −10 −7 8 0 0 1 0
−18 −16 −11 12 1 0 0 0

 ,
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let us multiply the 1st row by −1:
1 1 1 −1 0 0 0 −1
−6 −6 −4 5 0 1 0 0
−11 −10 −7 8 0 0 1 0
−18 −16 −11 12 1 0 0 0

 ,

let us add suitable multiples consecutively to the 2nd, 3rd and 4th row:
1 1 1 −1 0 0 0 −1
0 0 2 −1 0 1 0 −6
0 1 4 −3 0 0 1 −11
0 2 7 −6 1 0 0 −18

 ,

let us swap the 2nd and the 3rd row:
1 1 1 −1 0 0 0 −1
0 1 4 −3 0 0 1 −11
0 0 2 −1 0 1 0 −6
0 2 7 −6 1 0 0 −18

 ,

let us subtract a double of the 2nd row from the 4th row:
1 1 1 −1 0 0 0 −1
0 1 4 −3 0 0 1 −11
0 0 2 −1 0 1 0 −6
0 0 −1 0 1 0 −2 4

 ,

let us swap the 3rd and the 4th row:
1 1 1 −1 0 0 0 −1
0 1 4 −3 0 0 1 −11
0 0 −1 0 1 0 −2 4
0 0 2 −1 0 1 0 −6

 ,

let us add a double of the 3rd row to the 4th row:
1 1 1 −1 0 0 0 −1
0 1 4 −3 0 0 1 −11
0 0 −1 0 1 0 −2 4
0 0 0 −1 2 1 −4 2

 ,

let us multiply the 3rd and the 4th row by −1:
1 1 1 −1 0 0 0 −1
0 1 4 −3 0 0 1 −11
0 0 1 0 −1 0 2 −4
0 0 0 1 −2 −1 4 −2

 ,
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let us add a triple of the 4th row to the 2nd row:
1 1 1 −1 0 0 0 −1
0 1 4 0 −6 −3 13 −17
0 0 1 0 −1 0 2 −4
0 0 0 1 −2 −1 4 −2

 ,

let us add 4th row to the 1st row:
1 1 1 0 −2 −1 4 −3
0 1 4 0 −6 −3 13 −17
0 0 1 0 −1 0 2 −4
0 0 0 1 −2 −1 4 −2

 ,

let us subtract a quadruple of the 3rd row from the 2nd row:
1 1 1 0 −2 −1 4 −3
0 1 0 0 −2 −3 5 −1
0 0 1 0 −1 0 2 −4
0 0 0 1 −2 −1 4 −2

 ,

let us subtract the 3rd row from the 1st row:
1 1 0 0 −1 −1 2 1
0 1 0 0 −2 −3 5 −1
0 0 1 0 −1 0 2 −4
0 0 0 1 −2 −1 4 −2

 ,

and finally let us subtract 2nd row from the 1st row:
1 0 0 0 1 2 −3 2
0 1 0 0 −2 −3 5 −1
0 0 1 0 −1 0 2 −4
0 0 0 1 −2 −1 4 −2

 .

Thus we have

A−1 =


1 2 −3 2
−2 −3 5 −1
−1 0 2 −4
−2 −1 4 −2

 .

Let us note that we can check our calculation by multiplying AA−1. If we pro-
ceeded correctly, the result must be I . ♣
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2.3. Determinants

Now we will study the notion of determinant, which plays an important role in
mathematics.

Definition. Let A ∈M(n×n). We denote by the symbol Aij a (n− 1)× (n− 1)
matrix which becomes from A by omitting the i-th row and the j-th column.

Definition. Let A = (aij)i=1..n
j=1..n

. We define the determinant of the matrix A by:

detA =


a11 if n = 1,
n∑
i=1

(−1)i+1ai1 detAi1 if n > 1.

For detA, we also use the symbol∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n
a31 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
.

Remarks. 1. According to the mathematical induction princip the determinant no-
tion is defined by the previous definition for each square matrix of order n ∈ N.

2. Let us calculate a determinant of the 2× 2 matrix A:

det

(
a b
c d

)
= a det(d)− c det(b) = ad− bc.

It can be seen that for n = 2 our definition is consistent with the high school
formula.

The next part of the section will be dedicated to derivation of some basic prop-
erties of a determinant.

Theorem 14. Let j, n ∈ N, j ≤ n, and matrices A,B,C ∈M(n×n) be the same
at all rows except the j-th. Let us suppose that j-th row of the matrix A is equal
to sum of the j-th row of the matrix B and the j-th row of the matrix C. Then
detA = detB + detC. We can reformulate this assertion in the following way:∣∣∣∣∣∣∣

a11 a12 ... a1n
... ... ... ...

aj−1,1 aj−1,2 ... aj−1,n

u1+v1 u2+v2 ... un+vn
aj+1,1 aj+1,2 ... aj+1,n
... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 a12 ... a1n
... ... ... ...

aj−1,1 aj−1,2 ... aj−1,n
u1 u2 ... un

aj+1,1 aj+1,2 ... aj+1,n
... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣+

∣∣∣∣∣∣
a11 a12 ... a1n
... ... ... ...

aj−1,1 aj−1,2 ... aj−1,n
v1 v2 ... vn

aj+1,1 aj+1,2 ... aj+1,n
... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣ .
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Proof. We prove the result by applying mathematical induction on n. For n = 1
the assertion is obvious. Now let us assume that for n − 1 the assertion holds and
we derive its validity for n. From the definition we have1

detA =
∑

1≤i≤n
i 6=j

(−1)i+1ai1 detAi1 + (−1)j+1(u1 + v1) detAj1.

According to the induction assumption for each i ∈ {1, . . . , n}, i 6= j the equality
detAi1 = detBi1+detCi1 holds. Above that,Aj1 = Bj1 = Cj1 obviously holds.
Thus,

detA =
∑

1≤i≤n
i 6=j

(−1)i+1ai1(detBi1 + detCi1) + (−1)j+1(u1 + v1) detAj1 =

=
∑

1≤i≤n
i 6=j

(−1)i+1ai1 detBi1 + (−1)j+1u1 detBj1+

+
∑

1≤i≤n
i 6=j

(−1)i+1ai1 detCi1 + (−1)j+1v1 detCj1 = detB + detC.

�

Theorem 15 (determinant and transformation). Let A,A′ ∈M(n× n).

(i) If the matrixA′ becomes from theA by multiplying one row by a real number,
then detA′ = µdetA.

(ii) If the matrixA′ becomes from theA by swapping of two rows (in other words,
we use a row elementary operation of the first type), then detA′ = −detA.

(iii) If the matrix A′ becomes from the A by adding µ-multiple of one row to
another row (in other words, we use a row elementary operation of the third
type), then detA′ = detA.

(iv) If the matrix A′ becomes from the A by a transformation, then detA 6= 0
holds if and only if detA′ 6= 0.

Proof. Let us use the following notation: A = (aij)i=1..n
j=1..n

and A′ =
(
a′ij
)
i=1..n
j=1..n

.

(i) We use the mathematical induction. For n = 1 the assertion is obvious. Let
us assume that for each (n−1)× (n−1) matrix, where n > 1, the assertion holds.
Let the matrix A′ becomes from A by multiplying the j-th row of the matrix A by

1We denote by the symbol
∑

1≤i≤n
i6=j

the sum over all indices i ∈ {1, . . . , n} \ {j}.
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µ. Then:

detA′ =
n∑
i=1

(−1)i+1a′i1 detA′i1 =

=
∑

1≤i≤n
i 6=j

(−1)i+1ai1 detA′i1 + (−1)j+1µaj1 detA′j1 =

=
∑

1≤i≤n
i 6=j

(−1)i+1ai1µdetAi1 + (−1)j+1µaj1 detAj1 = µdetA.

In the third equality we used the induction assumption and an obvious fact that
A′j1 = Aj1.

(ii) We prove this part of the theorem by applying mathematical induction as
well. For n = 1 there is nothing to prove and for n = 2 we can verify the assertion
by a direct calculation. Let us assume that the assertion was already proved for
n − 1. Let the matrix A′ ∈ M(n × n) becomes from A by swapping of the k-th
and the l-th row, k < l. Let us calculate

detA′ =
∑

1≤i≤n
i 6=k,l

(−1)i+1ai1 detA′i1+

+ (−1)k+1al1 detA′k1 + (−1)l+1ak1 detA′l1.

(4)

If we apply the induction assumption to the matrices A′i1, i 6= k, l, we obtain
detA′i1 = −detAi1. If we swap in the matrix A′l1 the row k with the row (k +
1), in the newly originated matrix the row (k + 1) with the row (k + 2) etc.,
then after l − k − 1 step we get the matrix Ak1. From that and from the in-
duction assumption it follows that detAk1 = (−1)l−k−1 detA′l1, in other words
detA′l1 = (−1)−l+k+1 detAk1 holds. Similarly we can derive that detA′k1 =

(−1)−l+k+1 detAl1 holds. Let us apply this in (4):

detA′ = −
∑

1≤i≤n
i 6=k,l

(−1)i+1ai1 detAi1 + (−1)k+1(−1)−l+k+1al1 detAl1+

+ (−1)l+1(−1)−l+k+1ak1 detAk1 = −detA.

(iii) Let us suppose that the matrix A′ becomes from A by adding a µ-multiple
of the k-th row to the l-th row. Then we have detA′ = detA + µdetB, where
the matrix B becomes from the matrix A by replacing the l-th row by the k-th row
(according to Theorem 14 and the point (i)). The matrix B has the l-th row equal
to the k-th row. Thus, if we swap the k-th and the l-th rows, the matrix B does
not change. However, according to the assertion (ii) detB = −detB holds, i.e.
detB = 0. This would complete the proof of (iii).
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(iv) Proof of this assertion follows easily from (i)–(iii). �

Remark. Let us note that from Theorem 15(i) it follows that a determinant of a
matrix with a zero row is equal to zero. From Theorem 15(ii) follows that a deter-
minant of a matrix with two identical rows is also equal to zero (see also the proof
of the part (iii) of Theorem 15).

Next, we will show a simple theorem, which gives us (together with Theo-
rem 15 ) another way, how to calculate determinants. We will start with the follow-
ing definition.

Definition. Let A = (aij)i=1..n
j=1..n

∈ M(n × n). We say that A is the upper trian-

gular matrix provided that aij = 0 for i > j, i, j ∈ {1, . . . , n}. We say that A is
the lower triangular matrix provided that aij = 0 for i < j, i, j ∈ {1, . . . , n}.

Theorem 16. Let A = (aij)i=1..n
j=1..n

∈ M(n × n) be an upper (a lower) triangular

matrix. Then
detA = a11 · a22 · · · · · ann.

Proof. Let us use the mathematical induction. For n = 1 the assertion is obvious.
For n ≥ 2, let us assume that for every upper (lower, respectively) (n − 1) ×
(n− 1) triangular matrix the assertion holds. Let A ∈M(n× n) be upper (lower,
respectively) triangular matrix. According to the definition of a determinant we
have

detA =
n∑
i=1

(−1)i+1ai1 detAi1.

If A is an upper triangular matrix, then ai1 = 0 for i = 2, . . . , n, and thus the
right-hand side is equal to a11 detA11. If A is a lower triangular matrix, then for
each i = 2, . . . , n, in the first row of the matrix Ai1 there are only zero entries,
hence detAi1 = 0 according to the remark following Theorem 15. In this case the
right-hand side is equal to a11 detA11 as well. Due to the induction assumption,
we obtain

detA = a11 detA11 = a11 · a22 · · · · · ann.
�

Theorem 17 (determinant and invertibility). Let A ∈M(n×n). Then A is invert-
ible if and only if detA 6= 0.

Proof. If A is invertible, then we can transform it to the identity matrix. We know
det I = 1 6= 0 and thus according to Theorem 15(iv) detA 6= 0.

If A is not invertible, then h(A) < n (Theorem 11), and thus we can trans-
form A to an upper triangular matrix A′, which has at least one zero entry on the
diagonal. Then detA′ = 0 and hence detA = 0. �
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Theorem 18 (determinant of matrix product). For matrices A,B ∈M(n×n), the
following formula detAB = detA · detB holds.

Proof. Let us put C = AB. We divide the proof into two cases.
1. Let us assume first that the matrix A is not invertible. Let us choose a trans-

formation T which alter the matrix A to A′ of a row echelon form. Since a trans-
formation does not change a rank and h(A) < n, then the last row of the matrix
A′ is a zero vector. Let C ′ denote a matrix which becomes from C by the transfor-
mation T . According to Theorem 9 C ′ = A′B holds, therefore the last row of the
matrix C ′ is also a zero vector. From that follows h(C ′) < n. The matrix C has
the same rank and hence it is not invertible. We obtain detA = detC = 0 and the
equality is proved.

2. Now let us suppose that the matrix A is invertible. Then we can tranform
it to the identity matrix. Let us take the transformation T which alter the identity
matrix I to A. Since IB = B and AB = C, from Theorem 9 it follows that the
matrix C becomes from B by the transformation T . From Theorem 15 it follows
that there exists such a number α ∈ R that if D is n × n matrix and a matrix
D′ becomes from the matrix D by the transformation T , then detD′ = α detD.
Thus, in a special case detA = α det I = α. Next, we have

detC = α detB = detA · detB,

and thus the proof is completed. �

Remark. An assertion similar to Theorem 15 holds also for column elementary
operations. We can use this in proving the two following theorems - but we will
omit their proofs.

Theorem 19 (determinant and transposition). Let A ∈ M(n × n). Then detA =
detAT .

Theorem 20. Let A = (ais)i=1..n
s=1..n

∈M(n× n) and j ∈ {1, . . . , n}. Then

detA =
n∑
i=1

(−1)i+jaij detAij ,

detA =
n∑
s=1

(−1)s+jajs detAjs.

The first (the second) formula is called an expansion of the determinant along
the j-th column (row, respectively).

Example 21. Calculate the determinant of the matrix

A =

3 2 1
2 3 3
2 1 3

 .
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Solution. We can calculate the determinant of 3 × 3 matrix by so-called Sarrus’
rule, which can be easily proved from definition. We first add two more rows to the
matrix A such that the fourth row of the new matrix is the first row of the matrix A
and the fifth row of the new matrix is the second row of the matrix A. This way we
get a 5× 3 matrix

Now we calculate the determinant of the matrix A by adding the products of
the entries on diagonals denoted by the sign + together and from that number we
subtract the products of the entries on diagonals denoted by the sign −, i.e.

detA = 3 · 3 · 3 + 2 · 1 · 1 + 2 · 2 · 3− 1 · 3 · 2− 3 · 1 · 3− 3 · 2 · 2 = 14.

♣

Example 22. Calculate the determinant of the matrix

A =


1 −1 2 4
0 1 −1 2
3 −1 2 0
−1 0 3 2

 .

Solution. We calculate the determinants of n × n matrix, where n ≥ 4, by using
the expansion along an arbitrary row (column). It is suitable to choose a row or
column with the most zero entries.

Let us expanse the determinant along the first column:

detA = 1 · (−1)1+1 ·

∣∣∣∣∣∣
1 −1 2
−1 2 0
0 3 2

∣∣∣∣∣∣+ 0 · (−1)2+1 ·

∣∣∣∣∣∣
−1 2 4
−1 2 0
0 3 2

∣∣∣∣∣∣+
+ 3 · (−1)3+1

∣∣∣∣∣∣
−1 2 4
1 −1 2
0 3 2

∣∣∣∣∣∣+ (−1) · (−1)4+1 ·

∣∣∣∣∣∣
−1 2 4
1 −1 2
−1 2 0

∣∣∣∣∣∣ .
We can use the Sarrus’ rule to calculate each of the 3 × 3 determinants – we

get detA = 48.
In order not to calculate as much determinants of 3× 3 matrices, it is suitable

to transform the matrix before the calculation by the row elementary operations of
the third type (which does not change the determinant value) to a matrix which has
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in one column only one non-zero entry. In case of our matrix A, we can proceed
this way: We copy the first and the second row, then we subtract three times the
first row and add the first row to the fourth row. That gives us the matrix

1 −1 2 4
0 1 −1 2
0 2 −4 −12
0 −1 5 6

 .

From the expansion along the first column and the Sarus’ rule, we get

detA = 1 · (−1)1+1 ·

∣∣∣∣∣∣
1 −1 2
2 −4 −12
−1 5 6

∣∣∣∣∣∣ = 48.

Another way of calculation is to transform the matrix A ∈ M(n × n) by the
row elementary operations of the first and the third type to the upper triangular
matrix A′. The determinant of the matrix A′ is equal to the product of the entries
on the main diagonal (see Theorem 16). The determinant of the matrix A is then
equal to (−1)p detA′, where p denotes the number of row elementary operations
of the first type which we used in transformation of the matrix A to the matrix A′.
Since, while using row elementary operations of the first type, we need to consider
the change of a sign of a determinant. This way is suitable for big n and we can
take an advantage of using it in numerical calculations. ♣

2.4. Solving systems of linear equations

Let us consider a system of m linear equations in n variables x1, x2, . . . , xn:

a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

...

am1x1 + am2x2 + . . .+ amnxn = bm,

(S)

where aij ∈ R, bi ∈ R, i = 1, . . . ,m, j = 1, . . . , n.
If we put

A =

a11 . . . a1n
...

...
am1 . . . amn

 , ~b =

 b1
...
bm

 , ~x =

x1...
xn

 ,
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then we can write the given system (S) in a vector form A~x = ~b. We call the
matrix A the matrix of the system (S) and the vector ~b the vector of the right-
hand sides. We call the matrix

(A|~b) =

a11 . . . a1n b1
...

. . .
...

...
am1 . . . amn bm


the augmented matrix of the system (S).

Gaussian elimination. We show a method how to solve the systems of linear
equations effectively. Let A ∈ M(m × n) and ~b ∈ M(m × 1). Here and subse-
quently we assume that the matrix A is non-zero. In the opposite case the problem
is trivial. We can transform the matrix A by a transformation T to a matrix A′ in
a row echelon form (Theorem 6(i)). Let us apply T also to the ~b and let the result
by denoted by ~b′. Then for ~y ∈ M(n× 1) follows A~y = ~b if and only if A′~y = ~b′

(Theorem 9 and Theorem 6(ii)), in other words, the systems A~x = ~b and A′~x = ~b′

have the same solution set.
Now we distinguish two cases according to the last non-zero row of the matrix

(A′|~b′). Let the k-th row be the last non-zero row, k ∈ {1, . . . ,m}.
1. If the k-th row of the matrix A′ is a zero vector, then the k-th equation of the

system A′~x = ~b′ is of the form

0 · x1 + · · ·+ 0 · xn = b′k (6= 0)

and thus the system has evidently no solution.
2. Now we suppose that the k-th row of the matrix A′ is a non-zero vector. Let

jp, p = 1, . . . , k, be the smallest natural number such that a′pjp 6= 0. The entry a′pjp
is thus the first non-zero entry in the p-th row. There exists such an entry, since the
matrix A′ is in a row echelon form and p ≤ k. Let us put I1 = {j1, . . . , jk} and
then I2 = {1, . . . , n} \ I1. Let us write the system A′~x = ~b′ as

∑
s∈I1

a′isxs +
∑
s∈I2

a′isxs = b′i, i = 1, . . . , k,
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which can be rewritten in the form

a′1j1xj1 = b′1 −
∑
s∈I2

a′1sxs − a′1j2xj2 − a
′
1j3xj3 − · · · − a

′
1jk
xjk ,

a′2j2xj2 = b′2 −
∑
s∈I2

a′2sxs − a′2j3xj3 − · · · − a
′
2jk
xjk ,

...

a′k−1,jk−1
xjk−1

= b′k−1 −
∑
s∈I2

a′k−1,sxs − a′k−1,jkxjk ,

a′kjkxjk = b′k −
∑
s∈I2

a′ksxs.

(5)

If we choose the numbers xs, s ∈ I2 arbitrarily, then we can calculate uniquely xt,
t ∈ I1, from the system (5): We calculate from the last (i.e. the k-th) equation the
variable xjk . We plug this number together with the numbers xs, s ∈ I2, into the
(k− 1)-st equation and solve the equation for xjk−1

. Now we repeat the procedure
in an obvious way, until we finally solve the first equation for xj1 . The solution
set of the system (5) (and thus also of the system (S)) consist of the vectors ~y =
(y1, . . . , yn)T , where the values ys, s ∈ I2, are chosen arbitrarily and the values
ys, s ∈ I1, are determined by the system (5).

Let us show this procedure in the following example.

Example 23. Find all solutions of the system A~x = ~b, where

A =


1 4 3 5 4
2 5 3 7 5
1 3 2 4 3
0 1 1 2 2

 , ~b =


2
1
1
0

 .

Solution. We transform the augmented matrix of the system (A|~b) by row elemen-
tary operations to the matrix in a row echelon form

1 2 1 2 1 1
0 1 1 1 1 1
0 0 0 1 1 −1
0 0 0 0 0 0

 . (6)

It can be seen from the matrix form that the given system has a solution. The
matrix (6) corresponds with the system

x1 + 2x2 + x3 + 2x4 + x5 = 1,

x2 + x3 + x4 + x5 = 1,

x4 + x5 = −1.

(7)
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If we use the notation from the previous part, then it follows I1 = {1, 2, 4}
and I2 = {3, 5}. We could thus rewrite the system in the form

x1 = 1− 2x2 − x3 − 2x4 − x5,
x2 = 1− x3 − x4 − x5,
x4 = −1− x5.

(8)

Now we determine the set of all solutions of the system this way: We can choose
the values x3 and x5 arbitrarily. Thus, let us put x3 = s ∈ R and x5 = t ∈ R. Then
we can calculate consecutively from the system (8):

x4 = −1− t,
x2 = 1− s− (−1− t)− t = 2− s,
x1 = 1− 2(2− s)− s− 2(−1− t)− t = −1 + s+ t.

The set of all solutions of the system is then{
(−1 + s+ t, 2− s, s,−1− t, t)T ; s, t ∈ R

}
.

♣

From the method of solution of the system described above and the fact that
h(A) = h(A′) and h(A|~b) = h(A′|~b′), we get the following theorem.

Theorem 24 (Rouché-Fontené). The system (S) has a solution if and only if the
matrix of the system has the same rank as the augmented matrix of this system.

Let us now consider a special case, where the matrix of the system (S) is square
and invertible above that. Let us examine what we get from the above method in
this case. Applying the Gaussian elimination, we obtain k = n, I1 = {1, . . . , n}
and I2 = ∅. The system (5) is thus of the form

a′11x1 = b′1 − a′12x2 − · · · − a′1nxn,
...

a′n−1,n−1xn−1 = b′n−1 − a′n−1,nxn,
a′nnxn = b′n.

It can be seen that we can calculate the values x1, . . . , xn uniquely and the sys-
tem (S) thus has exactly one solution. The relation between the solubility of the
system of linear equations and invertibility of its matrix is specified in the follow-
ing theorem.

Theorem 25. Let A ∈M(n× n). Then the conditions (i)–(iii) are equivalent:
(i) the matrix A is invertible,

(ii) the system (S) has exactly one solution for each~b ∈M(n× 1),
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(iii) the system (S) has at least one solution for each~b ∈M(n× 1).

Proof. (i)⇒ (ii) If A is an invertible matrix, then the equation A~x = ~b has only
one solution ~x = A−1~b.

(ii)⇒ (iii) Obvious.
(iii)⇒ (i) We prove that non (i)⇒ non (iii) holds. IfA is not invertible, then

h(A) < n and thus there exists a transformation T1, which alter A to a matrix S in
a row echelon form with a zero vector in the last row. If we put ~c = (1, . . . , 1)T ∈
M(n× 1), we get h(S|~c) > h(S). Let T2 be a transformation from Theorem 6(ii)

and let ~b ∈ M(n× 1) be such that ~c T2 ~b. Since S T2 A and (S|~c) T2 (A|~b), then
according to Theorem 6(iii) h(A|~b) = h(S|~c) > h(S) = h(A) holds. According
to Theorem 24, the system (S) has no solution. �

We show one more possibility how to describe the solution of a system, whose
matrix is invertible. But this result has a rather theoretical (see the chapters ?? and ??)
than practical meaning , since its usage is usually more demanding for calculation
then Gaussian elimination.

Theorem 26 (Cramer’s rule). Let A ∈ M(n × n) be an invertible matrix, ~b ∈
M(n× 1), ~x ∈M(n× 1) and A~x = ~b. Then

xj =

∣∣∣∣∣∣∣
a11 . . . a1,j−1 b1 a1,j+1 . . . a1n
...

...
...

...
...

an1 . . . an,j−1 bn an,j+1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 . . . a1,j−1 a1j a1,j+1 . . . a1n
...

...
...

...
...

an1 . . . an,j−1 anj an,j+1 . . . ann

∣∣∣∣∣∣∣
for j = 1, . . . , n.

Proof. Let ~x be a solution of the matrix A~x = ~b. Then:

x1

a11...
an1

+ x2

a12...
an2

+ · · ·+ xj

a1j...
anj

+ · · ·+ xn

a1n...
ann

 =

b1...
bn

 .

We can rewrite the previous equality to

x1

a11...
an1

+ x2

a12...
an2

+ · · ·+ 1 ·

xja1j − b1...
xjanj − bn

+ · · ·+ xn

a1n...
ann

 =

0
...
0

 .
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From that we obtain that the matrix

B =


a11 . . . an1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
xja1j − b1 . . . xjanj − bn
. . . . . . . . . . . . . . . . . . . . . . . . . . .

a1n . . . ann


has a rank smaller than n, so detB = 0. From Theorems 14 and 15(i) we obtain

detB =

∣∣∣∣∣∣∣∣∣∣
a11 . . . an1
. . . . . . . . . . . . . . . . .
xja1j . . . xjanj
. . . . . . . . . . . . . . . . .
a1n . . . ann

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
a11 . . . an1
. . . . . . . . . . . . . .
−b1 . . . −bn
. . . . . . . . . . . . . .
a1n . . . ann

∣∣∣∣∣∣∣∣∣∣
=

= xj

∣∣∣∣∣∣∣∣∣∣
a11 . . . an1
. . . . . . . . . . . . .
a1j . . . anj
. . . . . . . . . . . . .
a1n . . . ann

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
a11 . . . an1
. . . . . . . . . . . . .
b1 . . . bn
. . . . . . . . . . . . .
a1n . . . ann

∣∣∣∣∣∣∣∣∣∣
= 0.

According to Theorem 19 it follows that

0 = detB = xj

∣∣∣∣∣∣∣∣
a11 . . . a1j . . . a1n
a21 . . . a2j . . . a2n
. . . . . . . . . . . . . . . . . . . . . . .
an1 . . . anj . . . ann

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
a11 . . . b1 . . . a1n
a21 . . . b2 . . . a2n
. . . . . . . . . . . . . . . . . . . . . .
an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣ .
From the last equation, we can easily deduce the required equation. �

Example 27. Solve the system of the equations

x1 + x2 − x3 − x4 = 0,

x1 + 2x2 − x3 + x4 = 5,

2x1 − x2 + x3 + 2x4 = 1,

−x1 + x2 + x3 − x4 = 4.

Solution. We use the method of Gaussian elimination on the augmented matrix of
the system. 

1 1 −1 −1 0
1 2 −1 1 5
2 −1 1 2 1
−1 1 1 −1 4

 .

1. Let us copy the first row, subtract the first row from the second row, subtract
double of the first row from the third row and add the first row to the fourth row.
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We obtain 
1 1 −1 −1 0
0 1 0 2 5
0 −3 3 4 1
0 2 0 −2 4

 .

2. Let us copy the first and the second row, add three times the second row to
the third row, subtract double of the second row from the fourth row. The originated
matrix is of the form 

1 1 −1 −1 0
0 1 0 2 5
0 0 3 10 16
0 0 0 −6 −6

 .

By this transformation we obtain the system

x1 + x2 − x3 − x4 = 0,

x2 + 2x4 = 5,

3x3 + 10x4 = 16,

−6x4 = −6,

which has the same solution as the original system.
From the last equation we obtain x4 = 1, by plugging it into the third equation

we get x3 = 2; similarly, from the second equation we get x2 = 3 and from the
first x1 = 0. The vector (0, 3, 2, 1)T is thus the only solution of the system. ♣

Remark. If we have an objective to solve the systems with the same invertible
matrix of the system A, but for several right-hand sides ~b, it could be more ad-
vantageous to find a matrix A−1 and get the solution by multiplying the system
A~x = ~b by the inversion matrix on the left: ~x = A−1 ·A~x = A−1~b.

In our example it is

A−1 =


1/2 −1/9 1/3 1/18
0 1/3 0 1/3
0 −1/9 1/3 5/9
−1/2 1/3 0 −1/6

 .

The solution for general right-hand side~b is then of the form
x1
x2
x3
x4

 = A−1 ·


b1
b2
b3
b4

 =


b1/2− b2/9 + b3/3 + b4/18

b2/3 + b4/3
−b2/9 + b3/3 + 5b4/9
−b1/2 + b2/3− b4/6

 .

And especially for (b1, b2, b3, b4)
T = (0, 5, 1, 4)T we have the same solution

(x1, x2, x3, x4)
T = (0, 3, 2, 1)T .
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Example 28. Solve the system of the linear equations

−x1 + 2x2 + x3 = −2,

3x1 − 8x2 − 2x3 = 4,

x1 + 4x3 = −2.

Solution. Let us use the Gaussian elimination:−1 2 1 −2
3 −8 −2 4
1 0 4 −2

 ,

−1 2 1 −2
0 −2 1 −2
0 2 5 −4

 ,

−1 2 1 −2
0 −2 1 −2
0 0 6 −6

 .

From that we easily get the result: x3 = 1
6(−6) = −1, x2 = −1

2(−2 + 1) = 1
2 ,

x1 = −(−2 + 1− 2 · 12) = 2. ♣

Example 29. Solve the system of the equations

2(a− 1)x+ (3a+ 1)y + az = 2a,

(1− a)x− 2y − z = 2,

ax+ 2ay + az = a+ 1

in dependence on a real parameter a.

Solution. As we know, the solubility of the system is related to the invertibility of
its matrix A. If the matrix is invertible (detA 6= 0), then the system has exactly
one solution. Let us then calculate

detA =

∣∣∣∣∣∣
2(a− 1) 3a+ 1 a

1− a −2 −1
a 2a a

∣∣∣∣∣∣ = a(a+ 1)(a− 2).

1. If a 6= 0, a 6= −1 and a 6= 2, then the system has exactly one solution and it
is

x =
1 + 3a

a(2− a)
, y =

a+ 1

a
, z =

a2 − 4a− 3

a(2− a)
.

We could easily get the result by using the Cramer’s rule (Theorem 26).
2. If a = 0, then the third equation of the system is 0 = 1 and thus the system

has no solution in this case.
3. For a = −1 the augmented matrix of the system is of the form−4 −2 −1 −2

2 −2 −1 2
−1 −2 −1 0


and we transform it to the matrix1 2 1 0

0 −6 −3 2
0 0 0 0

 .
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For a = −1 are thus the rank of the matrix and also of the augmented matrix equal
to 2 and the original system is equivalent to the system

x+ 2y + z = 0,

−6y − 3z = 2,

which has infinitely many solutions: x = 2/3, y = t, z = −2/3 − 2t, where t is
an arbitrary real number.

4. For a = 2 the augmented matrix of the system is 2 7 2 4
−1 −2 −1 2
2 4 2 3

 .

We transform it by row elementary operations to the matrix of the form1 2 1 −2
0 3 0 8
0 0 0 7

 ,

from this it can be seen that the rank of the matrix of the system, which is equal
to 2, differs from the rank of the augmented matrix of the system, which equals 3.
The system thus has no solution for a = 2. ♣

2.5. Matrices and linear mapping

Now, we will deal with linear mappings. Let us start with definition describing
the notion of a linear mapping.

Definition. We say, that the mapping f : Rn → Rm is linear, if:
(i) ∀~u,~v ∈ Rn : f(~u+ ~v) = f(~u) + f(~v),

(ii) ∀λ ∈ R ∀~u ∈ Rn : f(λ~u) = λf(~u).

Remark. In this section we will consider the elements of the space Rn as column
vectors, i.e. as n× 1 matrices.

Let i ∈ {1, . . . , n}. We call the following vector with n entries

~ei =


0
...
0
1
0
...
0

 i-th coordinate

the i-th canonical basis vector of the space Rn. We call the set of all canonical
basis vectors in Rn canonical basis of the space Rn. The canonical basis has two
very important properties, which follow easily from the definitions:
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(i) ∀~x ∈ Rn : ~x = x1 · ~e1 + · · ·+ xn · ~en,
(ii) the vectors ~e1, . . . , ~en are linearly independent.

Theorem 30 (representation of linear mappings). The mapping f : Rn → Rm is
linear if and only if there exists a matrix A ∈M(m× n) such that

∀~u ∈ Rn : f(~u) = A~u.

Proof. ⇒ Let the i-th coordinate of the vector ~v ∈ Rm be denoted by (~v)i. Let
f : Rn → Rm be a linear mapping. Let us put aij =

(
f(~ej)

)
i
, i = 1, . . . ,m,

j = 1, . . . , n, then it is sufficient to show that
(
f(~u)

)
i

= (A~u)i, i = 1, . . . ,m, for
each ~u ∈ Rn. Let us calculate

(
f(~u)

)
i

=

(
f

(
n∑
j=1

uj~e
j

))
i

=
n∑
j=1

uj
(
f(~ej)

)
i

=
n∑
j=1

ujaij = (A~u)i.

⇐ This implication follows from the definition of a matrix multiplication and
from the theorem about matrix multiplication properties (Theorem 3). �

Remark. The matrixA from the previous theorem is determined uniquely. If f(~u) =
A~u should hold for each vector ~u ∈ Rn, then it must follow in a special case
f(~ej) = A~ej for each j ∈ {1, . . . , n}. At the same time A~ej is the j-th column of
the matrix A. It shows that the matrix A is determined uniquely (it must have the
vector f(~ej) in the j-th column) and explains why the matrix A was defined in a
certain way.

We call the matrix A from the previous theorem the representing matrix of a
mapping f or that the matrix represents a mapping f .

Example 31. From the previous theorem it follows that all linear mappings from R
to R are of the form x 7→ ax, where a ∈ R. Thus, these are the well known linear
functions.

Similarly, linear mappings from R2 to R are of the form L : ~x 7→ a1x1 +a2x2,
where a1, a2 ∈ R. Let us note, that a graph of the function L is a plane in R3

passing through the origin and ∇L(~x) = (a1, a2) holds for each ~x ∈ R2. See the
following figure.
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FIGURE 1.

Example 32. Examples of the linear mapping from R2 to R2 are an anisotropic
dilatation or a rotation through an angle ϕ. The representing matrix A is given by(

a 0
0 b

)
,

(
cosϕ − sinϕ
sinϕ cosϕ

)
, respectively.

FIGURE 2. An anisotropic dilatation in R2

FIGURE 3. A rotation through an angle ϕ

Similarly, an example of a linear mapping from R3 to R3 is a dilatation repre-
senting by the matrix a 0 0

0 b 0
0 0 c
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or a rotation through an angle ϕ around the axis given by a vector ~v1 ∈ R3.

FIGURE 4. Anisotropic dialatation in R3

FIGURE 5. Rotation in R3

Theorem 33. Let a mapping f : Rn → Rn be linear. Then the following conditions
are equivalent:

(i) f is a bijection (that is f is an one-to-one and an onto mapping from Rn to
Rn),

(ii) f is an ono-to-one mapping,
(iii) f is a surjective mapping from Rn to Rn.

Proof. (i)⇒ (ii) This implication is obvious.
(ii) ⇒ (iii) We prove it by a contradiction. Let thus f be injective, but not

surjective. Let A be a matrix representing the mapping f . The matrix A is not
invertible (Theorem 25) and thus AT is not invertible (Theorem 5). The rows of
the matrix AT are thus linearly dependent. Since the rows of the matrix AT are
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the columns of the matrix A (let them be denoted by ~s1, . . . , ~sn), there exists their
non-trivial linear combination which is equal to a zero vector:

x1~s
1 + · · ·+ xn~s

n = ~o.

We could rewrite the last equality: A~x = ~o, where ~x =

( x1
...
xn

)
. Then we have

A~x = ~o, ~x 6= ~o and also A~o = ~o. This contradicts the assumption that f is an
injective mapping.

(iii) ⇒ (i) This implication follows from Theorem 25 about solving linear
equations systems. �

Theorem 34 (composition of linear mappings). Let f : Rn → Rm be a linear
mapping representing by a matrix A ∈ M(m × n) and g : Rm → Rk be a linear
mapping representing by a matrix B ∈ M(k ×m). Then the composite mapping
g ◦ f : Rn → Rk is linear and represented by the matrix BA.

Proof. For ~v ∈ Rn it follows that

(g ◦ f)(~v) = g
(
f(~v)

)
= g(A~v) = B(A~v) = (BA)~v.

We used the asociativity of a matrix multiplication here. �

Remarks. 1. The previous theorem shows us the relation between a composition
of linear mappings and a matrix multiplication. The representing matrix of linear
mappings composition is equal to the product of their representing matrices in
corresponding order.
2. Let a linear mapping f : Rn → Rn be a bijection. It can be easily justified that
an inversion mapping f−1 is also linear. Let an identity mapping on Rn be denoted
by Id. If f is represented by a matrix A and f−1 is represented by a matrix B, then
due to the relation f ◦ f−1 = f−1 ◦ f = Id AB = BA = I holds (according to
Theorem 34). Thus B = A−1, in other words the mapping f−1 is represented by
the matrix A−1.
3. Let AB = I holds for matrices A,B ∈ M(n× n). If we take a linear mapping
f : Rn → Rn represented by a matrix A and a linear mapping g : Rn → Rn
represented by a matrix B, then f ◦ g = Id holds. Hence, g is an injection and f is
a surjection. According to Theorem 33 f and g are bijections. From that it follows
that g is an inversion mapping to f . According to the previous points B = A−1

holds, especially we have BA = I . We proved that from relation AB = I follows
necessarily BA = I provided A,B ∈M(n× n).

Example 35. Let a mapping f : R3 → R3 be defined by

f(u1, u2, u3) = (u1 − u2, u1 − 2u2, u1 − 3u2)
T .

Show that f is a linear mapping and determine its representing matrix.
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Solution. Let ~u = (u1, u2, u3)
T ∈ R3 and ~v = (v1, v2, v3)

T ∈ R3. Then

f(~u+ ~v) =

= (u1 + v1 − u2 − v2, u1 + v1 − 2u2 − 2v2, u1 + v1 − 3u2 − 3v2)
T =

= (u1 − u2, u1 − 2u2, u1 − 3u2)
T + (v1 − v2, v1 − 2v2, v1 − 3v2)

T =

= f(~u) + f(~v).

Let λ be an arbitrary real number. Then

f(λ~u) = (λu1 − λu2, λu1 − 2λu2, λu1 − 3λu2)
T =

= λ(u1 − u2, u1 − 2u2, u1 − 3u2)
T = λf(~u).

We checked that the mapping f has both properties from the definition of a linear
mapping and thus it is linear. From the function formula for f it can be easily seen
that

f(~u) = f(u1, u2, u3) =

1 −1 0
1 −2 0
1 −3 0

u1u2
u3

 .

But we can also realize that the columns of the representing matrix are the vectors
f(~e1), f(~e2) and f(~e3), see the proof of Theorem 30. ♣

By the end of this chapter let us show one more usage of determinants.

Example 36. Calculate the area of a triangle ABC, whose vertices has the coor-
dinates A = [1, 1, 0], B = [3, 0, 2], C = [0,−1, 1] in R3.

Solution. It is known from geometry that the area of a triangle ABC can be cal-
culated according to the formula p = 1

2bc sinα, where b is the lenght of a line
segment AC, c is the lenght of a line segment AB and an angle α is an interior
angle of the triagle at a vertex A. For the calculation of the values b, c, sinα we
use the vectors ~u = B − A and ~v = C − A. It is in fact b = ‖~v‖, c = ‖~u‖
and it can be proved that cosα = ~u~v

‖~u‖‖~v‖ . (Let the symbol ~u~v denote the scalar
product of vectors ~u = (u1, u2, u3)

T and ~v = (v1, v2, v3)
T , which is defined by:

~u~v = u1v1 + u2v2 + u3v3. We use the symbol ‖~u‖ =
√
u21 + u22 + u23 to de-

note the length of the vector ~u.) The angle α from the interval (0, π) is uniquely
determined by the expression for cosinus of this angle. We can calculate easily
sinα =

√
1− cos2 α.

In our case we have ~u = (2,−1, 2)T , ~v = (−1,−2, 1)T , ‖~u‖ = 3, ‖~v‖ =
√

6,
cosα =

√
6/9 and sinα = 5

√
3/9. The area p of the triangle ABC is thus equal

to p = 5
√

2/2.
We can use another interesting formula to calculate the area of a triangle in R3.

Let us define the vector product ~u × ~v of two vectors ~u = (u1, u2, u3)
T and ~v =
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(v1, v2, v3)
T by

~u× ~v =

(∣∣∣∣u2 u3
v2 v3

∣∣∣∣ ,− ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ , ∣∣∣∣u1 u2
v1 v2

∣∣∣∣)T .
By a direct computation we can immediatelly find out that ~u~u× ~v = ~v~u× ~v = 0,
in other words the vector product of two vectors is perpendicular to each of them.

We can easily calculate from the definition of the vector product

‖~u× ~v‖ =

√
‖~u‖2 ‖~v‖2 − ~u~v2 = ‖~u‖ ‖~v‖

√
1− cos2 α = ‖~u‖ ‖~v‖ sinα,

from that we obtain another way how to express the area of the triangle ABC,
namely p = 1

2 ‖~u× ~v‖. ♣

Remark. Let us derive a formula for volume of a parallelepipedABCDA′B′C ′D′.
We know that the volume is given by the formula V = P · h, where P is the area
of the base ABCD and h is the length of the two basis ABCD and A′B′C ′D′.
Let us put ~u = B − A, ~v = D − A, ~w = A′ − A. According to what we derived
previously, we can write P = ‖~u× ~v‖.

Now we need to calculate h. We know that the vector ~u × ~v is perpendicular
to a plane of the lower base ABCD. Let θ denote the angle between vectors ~w
and ~u× ~v, then we get |cos θ| = h/ ‖~w‖ and thus h = |cos θ| ‖~w‖.

Thus we obtain V = ‖~u× ~v‖ ‖~w‖ |cos θ|. But we have at the same time:

|cos θ| = |~w~u× ~v|
‖~w‖ ‖~u× ~v‖

.

By plugging the expression into the formula for V , we finally get

V = |~w~u× ~v| =

∣∣∣∣∣∣det

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Thus we can summarize this: the volume of a parallelepiped which is deter-

mined by three linearly independent vectors ~u, ~v, ~w in R3 is equal to the absolute
value of the determinant of the matrixu1 u2 u3

v1 v2 v3
w1 w2 w3

 .
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2.6. Cvičení

1. Calculate the product AB, where

A =

 1 2 3
0 1 −1
−2 3 0

 , B =

xy
z

 .

2. Calculate the products AB and BA, where

A =

(
1 2
3 0

)
, B =

(
1 −1
1 1

)
.

3. Calculate the product AB, where

A =

(
2 1 3
1 4 1

)
, B =

1 2 1
3 1 7
5 2 1

 .

4. Determine a matrix X so that the equality AX = B holds, provided

A =

(
1 2
3 4

)
, B =

(
3 5
5 9

)
.

5. Calculate An = AA · · ·A︸ ︷︷ ︸
n-times

for each n ∈ N, if

A =

(
1 1
0 1

)
.

6. Solve the matrix equations system

3X + 2Y = 12A, 4X + 3Y = 17A

with unknown matrices X and Y , where

A =

(
1 1 1 0
2 0 −1 1

)
.

7. Determine the rank h(A) of the matrix

A =


−1 2 −3 5 1
1 −1 5 −2 −1
−2 5 −2 10 1
0 1 4 0 −1
−1 3 1 5 0

 .
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8. Determine the rank h(A) of the matrix

A =


4 0 1 1
9 1 2 2
2 −2 a 1
a 0 a+ 1 3


in dependance on a parameter a ∈ R.

9. Find the inverse of the matrix

A =

1 1 3
1 0 −2
2 1 1

 .

10. Find the inverse of the matrix

A =


1 0 −1 2
1 1 −1 1
−2 0 3 −6
−4 −1 6 −10

 .

11. Find the inverse of a product AB of the matrices

A =

 1 −1 2 0 3
−2 1 0 −1 1
3 0 −1 2 −1

 , B =


0 2 −4
0 6 −2
2 −1 2
1 −4 9
−1 1 0

 .

In the following four exercises find the determinant of a given matrix.

12.
(

3 −8
2 5

)
13.

2 −1 2
3 1 1
1 1 2



14.


1 0 2 3
2 1 3 2
4 0 3 −1
3 2 1 −2

 15.


2 2 1 0 −1
2 1 0 −1 0
1 0 −1 0 1
0 −1 0 1 2
−1 0 1 2 2


Solve the following equations in R.

16.

∣∣∣∣∣∣
x 1 0
2 −1 1
1 −2x −2

∣∣∣∣∣∣ = 9 17.

∣∣∣∣∣∣
5− x 6 −3

6 9− x 0
−3 0 9− x

∣∣∣∣∣∣ = 0
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Solve the systems of equations / the systems of equations with parameter a ∈
R.

18.
4x+ 3y + 2z = 1

x+ 3y + 5z = 1

3x+ 6y + 9z = 2

19.
5x− y + 2z = 1

3x+ 5y − z = 2

2x− 6y + 3z = 4

20.
x1 − x2 − 3x4 = −1

7x1 − 2x2 + 2x3 − 10x4 = −2

7x1 − x2 + x3 − 9x4 = −4

2x1 − 2x3 − 4x4 = −6

6x1 − x2 + 2x3 − 7x4 = −1

21.
ax+ y + z = 1

x+ ay + z = a

x+ y + az = a2

22.
x− 5y − 7z = 0,

−2x+ y + az = −3,

−x+ ay + 3z = −1

23.
x+ 2y + 3z + 4t = 1,

2x− 2y + 3z − 3t = −5,

x+ y + z + t = 5,

4x+ 3y − 5z + 2t = 3

24. Solve the system of equations

x1 + x2 − x3 = 5,

x1 − 4x2 + 2x3 = −1,

x1 − x2 + x3 = 1

by using an inversion matrix (if it exists).

25. Find all solutions of the system A~x = ~b, where

A =

 1 3 2 4
1 1 0 3
−1 −3 −2 −2

 , ~b =

−1
−4
−1

 .

26. Find all solutions of the system A~x = ~b, where

A =


1 2 1 3 2
2 3 1 5 3
1 1 0 2 1
0 1 1 0 0

 , ~b =


0
−2
−2
3

 .
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27. Find all solutions of the system A~x = ~b, where

A =


1 3 2 4 3 −2
1 1 0 3 2 −2
−1 −3 −2 −2 −1 −3
0 1 1 0 0 −1

 , ~b =


−4
−7
−3
1

 .

28. Let mappings f, g and h from R3 to R4 be given by:

(i) f(u1, u2, u3) = (u1 +u2 +u3, u1 +u2−u3, u1−u2 +u3,−u1 +u2 +u3)
T ,

(ii) g(u1, u2, u3) = (u1, 2u2,−u3 + 5u1, 0)T ,
(iii) h(u1, u2, u3) = (1, u1, u2, u3)

T .

Examine in each case if the mapping is linear. If so, determine its representing
matrix.

29. Let f : R4 → R3 be a linear mapping determined by a matrix A and g : R3 →
R4 be a linear mapping determined by a matrix B, where

A =

1 0 2 1
1 −3 −1 −1
0 0 3 1

 , B =


1 −1 1
1 2 −1
0 1 1
1 0 0

 .

Determine a matrix of a mapping g ◦ f : R4 → R4 and a matrix of a mapping
f ◦ g : R3 → R3. Write formulas of these mappings.

Results of exercises

1.AB =

x+ 2y + 3z
y − z
−2x+ 3y

 2.AB =

(
3 1
3 −3

)
, BA =

(
−2 2
4 2

)
3.AB =(

20 11 12
18 8 30

)
4. X =

(
−1 −1
2 3

)
5. It can be proved by mathematical

induction that An =

(
1 n
0 1

)
holds. 6. X = 2A =

(
2 2 2 0
4 0 −2 2

)
,

Y = 3A =

(
3 3 3 0
6 0 −3 3

)
7. h(A) = 3 8. h(A) = 4, if a 6= 1

and a 6= 12; h(A) = 3 for a = 1, a = 12 9. Inverse of the matrix does not
exist, since h(A) = 2.
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10.

A−1 =


3 0 1 0
−2 2 −2 1
0 2 −3 2
−1 1 −2 1


11.

(AB)−1 =

22 8 −5
5 2 −1
−3 −1 1


12. 31 13. 11 14. −24 15. 8 16. The equation has two solutions:
x1 = 1, x2 = −2. 17. The equation has three solutions: x1 = 9, x2 = 0,
x3 = 14. 18. The system has infinitely many solutions: x = t, y = 1/3 − 2t,
z = t, t ∈ R. 19. The solution does not exists.
20. Given system has infinitely many solutions of the form x1 = −6/7 + 8t/7,
x2 = 1/7− 13t/7, x3 = 15/7− 6t/7, x4 = t, where t ∈ R.

21. For a 6= 1, a 6= −2 the system has one solution:

x = −a+ 1

a+ 2
, y =

1

a+ 2
, z =

(a+ 1)2

a+ 2
;

for a = 1 the system has infinitely many solutions of the form:

x = 1− s− t, y = s, z = t,

where s, t ∈ R; for a = −2 the system has no solution.

22. For a 6= 2 and a 6= 17 the system has one solution:

x =
−26

a− 17
, y =

−1

a− 17
, z =

−3

a− 17
;

for a = 2 the system has infinitely many solutions:

x = 5/3 + t/3, y = 1/3− 4t/3, z = t,

where t ∈ R; for a = 17 the system has no solution.
23. x = −3, y = 13, z = 2, t = −7

24. The system has one solution: 1/2 0 1/2
−1/4 −1/2 3/4
−3/4 −1/2 5/4

 ·
 5
−1
1

 =

 3
0
−2

 .

25. x1 = −3 + t, x2 = 2− t, x3 = t, x4 = −1; t ∈ R 26. x1 = −3 + t1 + t2,
x2 = 3− t1, x3 = t1, x4 = −1− t2, x5 = t2; t1, t2 ∈ R 27. x1 = −2+ t1− t2,
x2 = t2, x3 = 2− t2, x4 = −1− t1, x5 = t1, x6 = 1; t1, t2 ∈ R
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28. (i) The mapping f is linear and

A =


1 1 1
1 1 −1
1 −1 1
−1 1 1

 .

(ii) The mapping g is linear,

A =


1 0 0
0 2 0
5 0 −1
0 0 0

 .

(iii) The mapping h is not linear.

29. The matrix of the mapping g ◦ f is

BA =


0 3 6 3
3 −6 −3 −2
1 −3 2 0
1 0 2 1

 ,

(g ◦ f)(u1, u2, u3, u4) =

= (3u2 + 6u3 + 3u4, 3u1− 6u2− 3u3− 2u4, u1− 3u2 + 2u3, u1 + 2u3 + u4).

The matrix of the mapping f ◦ g is

AB =

 2 1 3
−3 −8 3
1 3 3

 ,

(f ◦ g)(u1, u2, u3) = (2u1 + u2 + 3u3,−3u1 − 8u2 + 3u3, u1 + 3u2 + 3u3).





CHAPTER 3

Integral

3.1. Primitive function

In this chapter we will be concerned with somewhat opposite operation to dif-
ferentiation. In other words, let a function f be given. Then we will look for a
function F whose derivative is equal to the original function f . As we will see, this
problem is usually more complicated than finding a derivative of a given function.

Definition. Let a function f : I → R be given, where I is an non-empty open
interval. We say that the function F : I → R is a primitive function of f over I
provided that for each x ∈ I there exists F ′(x) for which F ′(x) = f(x) holds.

Remarks. 1. The process of finding a primitive function is sometimes called in-
tegration, the function f an integrand and the primitive function an indefinite
integral. We are always looking for a primitive function of a given function on a
non-empty open interval.

2. If F is a primitive function of the function f over I , then according to Theo-
rem ?? the function F is continuous on I .

3. A primitive function of a given function f is not determined uniquely. If a
function F is a primitive function of f over an interval I , then also a function
x 7→ F (x) + c, x ∈ I , where c ∈ R is a constant, is a primitive function of f
over I . However, the following theorem ensures that a primitive function is deter-
mined uniquely “up to a constant”.

Theorem 1. Let F and G be primitive functions of a function f over an open
interval I . Then there exists c ∈ R such that F (x) = G(x) + c for each x ∈ I .

Proof. Let us put H(x) = F (x) − G(x), x ∈ I . Then for a derivative of H
follows H ′(x) = f(x) − f(x) = 0 for each x ∈ I . According to the Theorem
about monotonicity and the sign of the derivative, the function H is constant on
interval I , which would complete the proof. �

Remark. Let the function f has a primitive function F on an open interval I . Ac-
cording to a previous remark and the theorem it could be seen that we obtain a

107
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primitive function of the function f over I by adding a suitable constant function
to one primitive function F .

Let the set of all primitive functions of a function f be denoted by a symbol∫
f(x) dx.

However, a problem arises now how to describe this set precisely and simply. We
will use a notation ∫

f(x) dx
c
= F (x), x ∈ I,

which means that for an arbitrary primitive functionG of the function f there exists
a constant c ∈ R such that G = F + c on the interval I .

Theorem 2. Let f have a primitive function F over an open interval I , a function g
have a primitive function G over I and α, β ∈ R. Then the function αF + βG is a
primitive function of αf + βg over I .

Proof. The assertion follows from the equation (αF + βG)′ = αf + βg which
holds on the interval I . �

The following theorem is very important, however, it will be proved in the
latter section.

Theorem 3 (the existence of a primitive function). Let f be a continuous function
on an open interval I . Then f has a primitive function over I .

Remark. It is not difficult to realize, that there is no primitive function of the func-
tion signum on the whole R. Conversely, we can also find discontinuous functions
which have primitive functions.

Primitive functions of some important functions. We can check the validity
of the following formulas by differentiating:

•
∫
xn dx

c
=
xn+1

n+ 1
, x ∈ R for n ∈ Z, n ≥ 0; x ∈ (−∞, 0) or x ∈ (0,+∞)

for n ∈ Z, n < −1,

•
∫
xα dx

c
=
xα+1

α+ 1
, x ∈ (0,+∞) for α ∈ R \ {−1},

•
∫

1

x
dx

c
= log |x|, x ∈ (−∞, 0) or x ∈ (0,+∞),

•
∫
ex dx

c
= ex, x ∈ R,

•
∫

sinx dx
c
= − cosx, x ∈ R,
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•
∫

cosx dx
c
= sinx, x ∈ R,

•
∫

1

cos2 x
dx

c
= tg x, x ∈ (−π/2 + kπ, π/2 + kπ), k ∈ Z,

•
∫
−1

sin2 x
dx

c
= cotg x, x ∈ (kπ, π + kπ), k ∈ Z,

•
∫

1

1 + x2
dx

c
= arctg x, x ∈ R,

•
∫

1√
1− x2

dx
c
= arcsinx, x ∈ (−1, 1),

•
∫
− 1√

1− x2
dx

c
= arccosx, x ∈ (−1, 1).

Basic methods of calculation of primitive functions are described in Theorem 4
and in Theorem 8.

Theorem 4 (integration by substitution).
(i) Let F be a primitive function of f over (a, b). Let ϕ be a function defined

on (α, β) with values in the interval (a, b) which is differentiable at each point of
the interval (α, β). Then∫

f
(
ϕ(x)

)
ϕ′(x) dx

c
= F

(
ϕ(x)

)
over (α, β).

(ii) Let the function ϕ be differentiable at each point of the interval (α, β) and
the derivative is either positive at all points or negative at all points andϕ

(
(α, β)

)
=

(a, b). Let the function f be defined on interval (a, b) and∫
f
(
ϕ(t)

)
ϕ′(t) dt

c
= G(t) over (α, β).

Then ∫
f(x) dx

c
= G

(
ϕ−1(x)

)
over (a, b).

Proof. (i) The assertion follows from the theorem about the derivative of the com-
posite function (Theorem ??) which says in this case that for each x ∈ (α, β) the
derivative is

(
F (ϕ(x))

)′
= f

(
ϕ(x)

)
ϕ′(x).

(ii) According to the assumption, ϕ is either increasing on (α, β) or decreasing
on (α, β). Thus, there exists ϕ−1. For each x ∈ (a, b) then follows:(

G(ϕ−1(x))
)′

= f
(
ϕ(ϕ−1(x))

)
ϕ′(ϕ−1(x))

1

ϕ′(ϕ−1(x))
= f(x).

We used the theorem about the derivative of a composite function and the theorem
about the derivative of an inverse function. �
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Example 5. Determine a primitive function of the function g(x) =
x√

2 + 5x2
.

Solution. The given function is continuous on the whole R, thus it has a primitive
function on the whole R. For calculation of

∫
g(x) dx we use the substitution “t =

2 + 5x2”, i.e. the function ϕ : R→ (0,+∞), ϕ(x) = 2 + 5x2, since we notice that
ϕ′(x) = 10x and thus∫

x√
2 + 5x2

dx =
1

10

∫
ϕ′(x)√
ϕ(x)

dx.

According to Theorem 4(i) we need to calculate
1

10

∫
1√
t

dt
c
=

1

5

√
t, t ∈ (0,+∞).

Thus, each function

x 7→ 1

5

√
2 + 5x2 + c,

where c ∈ R is an arbitrary constant, is thus a primitive function of the function g
over R. ♣

Example 6. Determine a primitive function of the function g(x) =
1√

8 + 6x− 9x2
.

Solution. The functione g is continuous on its domain (−2/3, 4/3), and thus has
a primitive function over the interval. We first manipulate the function g in the
following way:

g(x) =
1√

9− (3x− 1)2
=

1

3

1√
1−

(
3x−1
3

)2 .
Let us then calculate

1

3

∫
1√

1− (x− 1/3)2
dx.

This integral is similar to the integral∫
1√

1− t2
dt

c
= arcsin t.

We use Theorem 4(i). If we put ϕ=x 7→ x − 1/3 (its derivative equals to 1), then
we get

1

3

∫
1√

1− (x− 1/3)2
dx =

1

3

∫
ϕ′(x)√

1− ϕ2(x)
dx.

According to Theorem 4(i) it is sufficient to calculate
1

3

∫
1√

1− t2
dt

c
=

1

3
arcsin t, t ∈ (−1, 1),
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hence
1

3

∫
1√

1− (x− 1/3)2
dt

c
=

1

3
arcsin(x− 1/3), x ∈ (−2/3, 4/3).

♣

Example 7. Determine a primitive function of the function f(x) =
√

1− x2.

Solution. Let us search the primitive function over the interval (−1, 1), which is the
maximal open interval contained in the domain of the function f . Here we choose
ϕ(t) = sin t, where t ∈ (−π/2, π/2). The function ϕ has a positive derivative on
the interval (−π/2, π/2) and it maps the interval (−π/2, π/2) to (−1, 1). Next,∫

f
(
ϕ(t)

)
ϕ′(t) dt =

∫
| cos t| cos tdt =

∫
cos2 t dt =

=

∫ (
1

2
+

1

2
cos 2t

)
dt

c
=

1

2
t+

1

4
sin 2t

holds on the interval (−π/2, π/2). We can easily check the last equation by differ-
entiating, eventually by using the theorem about integration by substitution once
more. Then according to Theorem 4(ii) we obtain∫

f(x) dx
c
=

1

2
ϕ−1(x) +

1

4
sin
(
2ϕ−1(x)

)
=

1

2
arcsinx+

1

4
sin(2 arcsinx)

on the interval (−1, 1). ♣

Remark. If we want to use Theorem 4(i) to calculate a primitive function to the
function g, it is necessary to find functions f and ϕ such that g = (f ◦ ϕ) · ϕ′
holds. Often, the procedure is to choose the function ϕ at first and then assign the
function f to it. In Examples 5 and 6 we replaced the expression ϕ′(x) dx with the
expression dt and the rest of the integrand was then of the form f ◦ ϕ. Formally,
we substitute ϕ(x) = t and ϕ′(x) dx = dt. The last relation, although has no
mathematical meaning, is helpful in calculation.

In case, that we did not success in finding the function f in a previously men-
tioned way, but the derivative of the function ϕ is positive everywhere ( or negative
everywhere), we can proceed the following way. We replace the expression x with
the expression ϕ−1(t) and the expression dx with the expression (ϕ−1)′(t) dt, so
we get the expression

∫
g
(
ϕ−1(t)

)
(ϕ−1)′(t) dt. The integrand is then the searched

function f . In fact

f
(
ϕ(x)

)
· ϕ′(x) = g

(
ϕ−1(ϕ(x))

)
(ϕ−1)′(ϕ(x)) · ϕ′(x) = g(x)

holds, while the last equality follows from the theorem about the derivative of an
inverse function (Theorem ??).
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Theorem 8 (integration by parts). Let I be an open interval and functions f and g
be continuous on I . Let F be a primitive function of f over I and G be a primitive
function of g over I . Then∫

f(x)G(x) dx = F (x)G(x)−
∫
F (x)g(x) dx over I . (1)

Remark. The expression (1) is an equality of two sets of functions. The set on the
right-hand side contains functions of the form FG − Z, where Z is an arbitrary
primitive function of the function Fg over I .

Proof. It is sufficient to realize that the functions fG and Fg are continuous and
thus have primitive functions (Theorem 3) and that (FG)′ = fG + Fg holds on
the interval I . �

Example 9. Determine a primitive function of the function ϕ(x) =
√
x log2 x.

Solution. The function ϕ is continuous on its domain (0,+∞), thus it has a prim-
itive function over this interval. We use integration by parts for calculation of∫
ϕ(x) dx (Theorem 8).

Let us put f(x) =
√
x, G(x) = log2 x and calculate∫

f(x) dx
c
=

2

3

√
x3 and g(x) = G′(x) = 2 log x · 1

x
.

We have ∫ √
x log2 x dx =

2

3

√
x3 log2 x− 4

3

∫ √
x log x.

We use again integration by parts for calculation of the last integral. Let now
f(x) =

√
x and G(x) = log x, then∫

f(x) dx
c
=

2

3

√
x3 and g(x) = G′(x) =

1

x
.

Finally we have on the interval (0,+∞)∫ √
x log2 x dx =

2

3

√
x3 log2 x− 4

3

(
2

3

√
x3 log x− 2

3

∫ √
x dx

)
c
=

c
=

2

3

√
x3 log2 x− 8

9

√
x3 log x+

8

9
· 2

3

√
x3 =

=
2

3

√
x3
(

log2 x− 4

3
log x+

8

9

)
.

♣
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Example 10. Let n ∈ N. Determine a primitive function of
1

(1 + x2)n
over R.

Solution. Let us put In =

∫
1

(1 + x2)n
dx and calculate according to Theorem 8:

In =

∫
1︸︷︷︸
f

· 1

(1 + x2)n︸ ︷︷ ︸
G

dx =

= x︸︷︷︸
F

· 1

(1 + x2)n︸ ︷︷ ︸
G

−
∫

x︸︷︷︸
F

· (−n)
2x

(1 + x2)n+1︸ ︷︷ ︸
g

dx =

=
x

(1 + x2)n
+ 2n

∫
x2

(1 + x2)n+1
dx =

=
x

(1 + x2)n
+ 2n

∫
1 + x2 − 1

(1 + x2)n+1
dx =

=
x

(1 + x2)n
+ 2nIn − 2nIn+1.

From that we calculate

In+1 =
x

2n(1 + x2)n
+

2n− 1

2n
In, x ∈ R, n ∈ N.

Since I1
c
= arctg x, this recurrence formula enables us to determine In for each

n ∈ N. For example

I2
c
=

x

2(1 + x2)
+

1

2
arctg x,

I3
c
=

x

4(1 + x2)2
+

3x

8(1 + x2)
+

3

8
arctg x.

♣

Theorem 3 says that a continuous function on an open interval has always a
primitive function. However, we cannot always express this primitive function by
elementary functions – more precisly by a finite number of addition, subtraction,
multiplication, division and composition eof elementary functions. This property
has for example the function e−x

2
, however, the proof is not easy. Now we show

some types of functions, which have not this difficulty. Basic class of these func-
tions are the rational functions. We show also some other types of functions, whose
integration is possible to transform to integration of rational functions by a suitable
substitution.
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We first introduce some facts from the algebra. Let us note that if we have a
polynomial

P (x) = anx
n + · · ·+ a1x+ a0,

that we can plug into a variable x complex numbers as well and that the values then
will be also complex numbers. Thus, we could take each polynomial as a mapping
from C to C as well. In the rest of this section, we will consider also a polynomi-
als with complex coefficients, i.e. a0, . . . , an ∈ C. Degree of this polynomial is
defined by an obvious way. In what follows, let the degree of a polynomial P be
denoted by the symbol stP .

Lemma 11 (about polynomials division). Let P and Q be two polynomials (gen-
erally with complex coefficients) and the polynomial Q is not equal to zero. Then
there exist uniquely determined polynomials R and Z satisfying:
• stZ < stQ,
• P (x) = R(x)Q(x) + Z(x) for all x ∈ C.

If P and Q have real coefficients, then also R and Z have real coefficients.

Proof. We prove the existence of the polynomials R and Z by applying mathemat-
ical induction on a degree of P . If stP = −1, i.e. P is equal to zero, then put
R = Z = 0. Now let us assume that the assertion holds for all polynomials P of
degree less then k. Let us have a polynomial P of degree k ≥ 0. If stP < stQ,
then put R = 0 and Z = P . Otherwise, we write m = stQ and denote by ak and
bm the coefficient of the term xk of the polynomial P and the coefficient of the
term xm of the polynomial Q, respectively. If we set

P̃ (x) = P (x)− ak
bm
xk−mQ(x),

then we obtain st P̃ < k and hence from the induction assumption there exist
polynomials R̃ and Z such that P̃ = R̃Q + Z and stZ < stQ holds. Now it
suffices to put R(x) = ak

bm
xk−m + R̃(x).

If the polynomials P and Q have real coefficients, then from the previous pro-
cedure it can be seen that also polynomials R and Z have real coefficients.

It remains to prove the uniqueness. Let us suppose that

P = R1Q+ Z1 = R2Q+ Z2

for any polynomialsR1, R2, Z1, Z2 and at the same time stZ1 < stQ and stZ2 <
stQ. Then 0 = (R1−R2)Q+Z1−Z2 holds. The polynomialR1−R2 is necessarily
equal to zero. Otherwise, st

(
(R1−R2)Q

)
≥ stQ > st(Z1−Z2) must hold, which

contradicts with the equality (R1−R2)Q+Z1−Z2 = 0. From that it follows that
R1 = R2 and Z1 = Z2. �

Corollary 12. If P is a polynomial and λ ∈ C its root (i.e. P (λ) = 0), then there
exists a polynomial R satisfying P (x) = (x− λ)R(x) for all x ∈ C.
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Proof. Let us put Q(x) = x− λ. Then according to Lemma 11 there exist polyno-
mials R and Z such that P = RQ+Z, where stZ < stQ = 1. The polynomial Z
is thus constant. We have 0 = P (λ) = R(λ)(λ − λ) + Z(λ) and then Z(λ) = 0.
From that follows that Z is equal to zero. �

Theorem 13 (factoring to root terms). Let P (x) = anx
n + · · · + a1x + a0 be a

polynomial of degree n ∈ N. Then there exist numbers x1, . . . , xn ∈ C such that

P (x) = an(x− x1) · · · (x− xn), x ∈ C. (2)

Proof. We use mathematical induction. For n = 1 the assertion is obvious, since
P (x) = a1

(
x − (−a0

a1
)
)

and it suffices to put x1 = −a0
a1

. Let then n ∈ N, n > 1,
and the assertion holds for all polynomials of degree less than or equal to n −
1. According to the fundamental theorem of algebra (Theorem ??) there exists a
root xn ∈ C of the polynomial P . Due to Corollary 12 P (x) = (x − xn)R(x)
holds for some polynomial R. Let us note that stR = n − 1 and above that the
coefficient of xn−1 of the polynomial R is equal to an. Thus, according to the
induction assumption there exists a factorizationR(x) = an(x−x1) · · · (x−xn−1).
From that we obtain a required factorization of the polynomial P . �

Remarks. 1. For each polynomial, the factorization (2) is unique up to the order of
the terms. There are all roots of the polynomial P among the numbers x1, . . . , xn.
From that it follows that a polynomial of degree n ∈ N has at most n different
roots.
2. The assertion of Corollary 12 can be strengthen even more in the following way.
If P is a non-zero polynomial and λ ∈ C, then there exists exactly one k ∈ N∪{0}
and a uniquely determined polynomial R satisfying P (x) = (x− λ)kR(x) for all
x ∈ C and R(λ) 6= 0.

Since if we have P (x) = (x− λ)kR(x) for a polynomial R and k ∈ N ∪ {0},
then the polynomial R is necessarily non-zero and k ≤ stP . We could thus find
the biggest k ∈ N ∪ {0}, for which there exists a polynomial R satisfying P (x) =
(x − λ)kR(x). From Corollary 12 it follows that R(λ) 6= 0, otherwise we get a
contradiction with maximality of k.

Let us prove the uniqueness. Let us assume, that P (x) = (x − λ)lR̃(x) holds
for any l ∈ N∪{0} and a polynomial R̃ satisfying R̃(λ) 6= 0. Let us note that from
the choice of k follows l ≤ k. Then we get (x − λ)k−lR(x) = R̃(x) for x 6= λ
and from the continuity it follows that this relation is satisfied also for x = λ. It
must be k = l, otherwise by substituting x = λ we obtain R̃(λ) = 0 and that is
contradiction. Then also R = R̃ holds and this would complete the proof.

Definition. Let P be a non-zero polynomial, λ ∈ C and k ∈ N. We say that a
number λ is the root of the multiplicity k of a polynomial P if there exists a
polynomial R satisfying R(λ) 6= 0 and P (x) = (x− λ)kR(x) for all x ∈ C.
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Remark. From the remark antecendent the definition it follows that the multiplicity
of a root is uniquely determined and is equal to the number of occurences of the
number λ in the n-tuple x1, x2, . . . , xn from Theorem 13.

Polynomials with real coefficients have the following important property.

Theorem 14. Let P be a polynomial with real coefficients and λ ∈ C is a root of
the polynomial P of multiplicity k. Then also a complex conjugate λ is a root of
the polynom P of multiplicity k.

Proof. We first show that P (λ) = 0 if and only if P (λ) = 0. Let us assume that
the polynomial P is of the form P (x) = anx

n + · · · + a1x + a0, where aj ∈ R,
j = 0, . . . , n. Then

P (λ) = an(λ)n + · · ·+ a1λ+ a0 = anλn + · · ·+ a1λ+ a0 =

= anλn + · · ·+ a1λ+ a0 = anλn + · · ·+ a1λ+ a0 = P (λ),

From that the foregoing assertion follows.
We prove the theorem by applying mathematical induction on the degree of P .

If stP = 1, then λ is real and thus the proposition holds. Let us assume that the
proposition holds for all polynomials of degree less than or equal to n ∈ N. Let P
be a polynomial with real coefficients of degree n + 1 and λ ∈ C a root of P . If
λ = λ, then the proposition is obvious. Let us suppose that λ 6= λ. According to
the first part of the proof, λ is also a root of P . According to Corollary 12 there
exists a polynomial Q satisfying

P (x) = (x− λ)(x− λ)Q(x),

where stQ < stP holds. If we put

R(x) = (x− λ)(x− λ) = x2 − (λ+ λ)x+ λλ = x2 − (2 Reλ)x+ |λ|2 ,
then we obtain that the polynomial R has (similarly to the polynomial P ) real
coefficients. According to Lemma 11 the polynomial Q thus has real coefficients.
If λ is not a root of Q, then according to the first part of the proof neither λ is a
root of Q and both numbers λ and λ are thus roots of P of multiplicity 1. If λ is a
root Q of multiplicity l, then according to the induction assumption λ is also a root
of Q of multiplicity l. Hence λ and λ are roots of P of multiplicity l + 1. �

Theorem 15. Let P (x) = anx
n+ · · ·+a1x+a0 be a polynomial of degree n with

real coefficients. Then there exist real numbers x1, . . . , xk, α1, . . . , αl, β1, . . . , βl
and natural numbers p1, . . . , pk, q1, . . . , ql such that
• P (x) = an(x− x1)p1 · · · (x− xk)pk(x2 +α1x+ β1)

q1 · · · (x2 +αlx+ βl)
ql ,

• none of the two polynomials x − x1, . . . , x − xk, x2 + α1x + β1, . . . , x
2 +

αlx+ βl has a root in common,
• the polynomials x2 + α1x+ β1, . . . , x

2 + αlx+ βl have no real root.
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Proof. Let x1, . . . , xk be all real roots (each of them different to each other) of the
polynomial P with multiplicities p1, . . . , pk and z1, . . . , zl be roots of the poly-
nomial P with positive imaginary part with multiplicities q1, . . . , ql. Then accord-
ing to Theorem 14 the numbers z1, . . . , zl are also roots of P with multiplicities
q1, . . . , ql. Thus we can write

P (x) = an(x− x1)p1 · · · (x− xk)pk(x− z1)q1(x− z1)q1 · · · (x− zl)ql(x− zl)ql .
Next (x− zi)(x− zi) = x2 + (−zi − zi)x+ zizi holds. Both numbers −zi − zi,
zizi are real, and therefore we can put αi = −zi−zi and βi = zizi. It can be easily
justified that the required properties are satisfied. �

Theorem 16 (partial fraction decomposition). Let P , Q be polynomials with real
coefficients such that stP < stQ and let

Q(x) = an(x− x1)p1 · · · (x− xk)pk(x2 + α1x+ β1)
q1 · · · (x2 + αlx+ βl)

ql

be a polynomial decomposition Q from Theorem 15. Then there exist uniquely
determined real numbers A1

1,. . . , A1
p1 ,. . . , Ak1 ,. . . ,Akpk , B1

1 , C1
1 ,. . . , B1

q1 , C1
q1 ,. . . ,

Bl
1, C l1,. . . , Bl

ql
, C lql such that

P (x)

Q(x)
=

A1
1

(x− x1)
+ · · ·+

A1
p1

(x− x1)p1
+ · · ·+ Ak1

(x− xk)
+ · · ·+

Akpk
(x− xk)pk

+

+
B1

1x+ C1
1

(x2 + α1x+ β1)
+ · · ·+

B1
q1x+ C1

q1

(x2 + α1x+ β1)q1
+ · · ·+

+
Bl

1x+ C l1
(x2 + αlx+ βl)

+ · · ·+
Bl
ql
x+ C lql

(x2 + αlx+ βl)ql
, x ∈ R \ {x1, . . . , xk}.

The proof of this theorem is difficult more formally then by an idea and we
will omit it.

Now we have prepared everything to search for a primitive function of a ratio-
nal function.

Algorithm for calculating the primitive function of a rational function.
Let P and Q be polynomials. If we have to integrate a rational function P/Q, then
we proceed this way:

In case that the degree of P is greater than or equal to the degree of Q, we
divide the polynomial P by the polynomial Q (Lemma 11) and obtain a decompo-
sition

P (x)

Q(x)
= R(x) +

Z(x)

Q(x)
,

where R, Z are polynomials and the degree of Z is less than or equal to Q. It
is easy to find a primitive function of R. If the polynomial Z is non-zero and
stP < stQ, it remains to find a primitive function to the rational function Z/Q



118 3. INTEGRAL

and P/Q, respetively, where the degree of a numerator is less then the degree of
a denominator. We decompose this function to partial fractions according to the
previous theorem. Then we integrate each of the partial fractions.

Let us show now how to do it: We integrate a partial fraction corresponding to
a real root a in the following way:∫

1

(x− a)n
dx

c
=

{
1

1−n
1

(x−a)n−1 over (−∞, a) and over (a,+∞) for n > 1,

log |x− a| over (−∞, a) and over (a,+∞) for n = 1.

A partial fraction of the form

Bx+ C

(x2 + αx+ β)q
,

where B,C, α, β ∈ R, q ∈ N and the polynomial x2 + αx + β has no real root is
integrated in this way:∫

Bx+ C

(x2 + αx+ β)q
dx =

B

2

∫
2x+ α

(x2 + αx+ β)q
dx︸ ︷︷ ︸

I1

+

+

(
C − Bα

2

)∫
1

(x2 + αx+ β)q
dx︸ ︷︷ ︸

I2

.

We could solve the integrals I1 and I2 as follows:

I1
c
=

{
1

(1−q)(x2+αx+β)q−1 over R for q > 1,

log(x2 + αx+ β) over R for q = 1;

I2 =

∫
1(

(x+ α/2)2 + β − α2/4
)q dx =

=
1

(β − α2/4)q

∫
1((

x+α/2√
β−α2/4

)2
+ 1

)q dx.

In the last manipulation we used the inequality β −α2/4 > 0, which follows from
the assumption that the polynomial x2 +αx+β has no real root. The discriminant
of the equation x2 + αx + β = 0 is therefore negative. By using the substitution
t = x+α/2√

β−α2/4
we get an integrand of the form

1

(1 + t2)q
.

Integration of this function was shown in Example 10.
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Example 17. Determine a primitive function of the function

f(x) =
x

(x2 + 2x+ 2)2(x2 + 2x− 3)
.

Solution. First we determine the domain of the function f . The expression x2 +
2x + 2 is always positive, x2 + 2x − 3 can be decomposed and x2 + 2x − 3 =
(x−1)(x+3) holds. Hence it could be seen thatDf = R\{−3, 1}. The function f
is continuous on the whole Df . It thus has a primitive function over each of the
intervals (−∞,−3), (−3, 1) and (1,+∞).

Since the polynomial in the numerator is of smaller degree than the polynomial
in the denominator, we can decompose the function f to partial fractions on Df .
The decomposition is of the form

x

(x2 + 2x+ 2)2(x− 1)(x+ 3)
=

=
Ax+B

x2 + 2x+ 2
+

Cx+D

(x2 + 2x+ 2)2
+

E

x− 1
+

F

x+ 3
.

(3)

By multiplying this equation by the denominator of the left-hand side, we obtain
the equation

x = (Ax+B)(x2 + 2x+ 2)(x− 1)(x+ 3)+

+ (Cx+D)(x− 1)(x+ 3)+

+ E(x2 + 2x+ 2)2(x+ 3) + F (x2 + 2x+ 2)2(x− 1),

(4)

which holds for each x ∈ R \ {−3, 1}. However, polynomials are continuous on
R, and therefore the equation (4) holds for each x ∈ R. Now we have two ways to
proceed:

a) We compare the coefficients of the corresponding powers of x on the left-
hand and right-hand side of the equation (4).

x5 : 0 = A+ E + F,

x4 : 0 = 4A+B + 7E + 3F,

x3 : 0 = 3A+ 4B + C + 20E + 4F,

x2 : 0 = −2A+ 3B + 2C +D + 32E,

x1 : 1 = −6A− 2B − 3C + 2D + 28E − 4F,

x0 : 0 = −6B − 3D + 12E − 4F.

Thus we get a linear system of six equations in six variables.
b) We substitute six different numbers for x in (4) and we obtain again a linear

system of six equations in six variables. The most advantageous is to sustitute the
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numbers, for which some summand equals to 0 (i.e. real roots of the denominator
of the original fraction – in our case the number −3 and 1).

We usually combine those two method in a suitable way. By substituting 1 and−3
in (4) consecutively we obtain E = 1/100 and F = 3/100. We plug these values
into the linear system obtained in a). From the first equation we get A = −1/25,
from the secondB = 0, from the lastD = 0 and finally from the fourthC = −1/5.
Hence we have determined the coefficients of the decomposition (3), which thus is
of the form

f(x) = − 1

25
· x

x2 + 2x+ 2
− 1

5
· x

(x2 + 2x+ 2)2
+

1

100
· 1

x− 1
+

3

100
· 1

x+ 3
.

Now it remains to calculate primitive functions to individual partial fractions.

∫
x

x2 + 2x+ 2
dx =

1

2

∫
2x+ 2

x2 + 2x+ 2
dx−

∫
1

x2 + 2x+ 2
dx =

=
1

2
log(x2 + 2x+ 2)−

∫
1

(x+ 1)2 + 1
dx

c
=

c
=

1

2
log(x2 + 2x+ 2)− arctg(x+ 1), x ∈ R,∫

x

(x2 + 2x+ 2)2
dx =

1

2

∫
2x+ 2

(x2 + 2x+ 2)2
dx−

∫
1

(x2 + 2x+ 2)2
dx =

= −1

2

1

x2 + 2x+ 2
−
∫

1(
(x+ 1)2 + 1

)2 dx
c
=

c
= −1

2

1

x2 + 2x+ 2
− 1

2

x+ 1

x2 + 2x+ 2
− 1

2
arctg(x+ 1), x ∈ R,∫

1

x− 1
dx

c
= log |x− 1| , x ∈ (−∞, 1) and x ∈ (1,+∞),∫

1

x+ 3
dx

c
= log |x+ 3| , x ∈ (−∞,−3) and x ∈ (−3,+∞).

On each of the intervals (−∞,−3), (−3, 1) and (1,+∞) the primitive function of
the function f is thus an arbitrary function of the form

− 1

50
log(x2 + 2x+ 2) +

7

50
arctg(x+ 1) +

1

10

x+ 2

x2 + 2x+ 2
+

+
1

100
log |x− 1|+ 3

100
log |x+ 3|+ c, where c ∈ R.

♣
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Some useful substitutions. A polynomial in two variables is a function [u, v] 7→∑n
i,j=0 aiju

ivj , where aij ∈ R, n ∈ N ∪ {0}. A rational function in two variables
is a ratio of two polynomials in two variables.

Let R be a rational function in two variables.

1. For integration of the function R(sinx, cosx) we can use the following
substitution to change the integration of the function to the integration of a rational
function.

(i) If R(sinx,− cosx) = −R(sinx, cosx), the substitution sinx = t can be
used.

(ii) If R(− sinx, cosx) = −R(sinx, cosx), the substitution cosx = t can be
used.

(iii) If R(− sinx,− cosx) = R(sinx, cosx), the substitution tg x = t can be
used.

(iv) The substitution tg(x/2) = t can be used always.

2. For integration of the functionR
(
x, q
√

ax+b
cx+d

)
, where q ∈ N and the numbers

a, b, c, d ∈ R satisfy ad − bc 6= 0, the substitution t = q

√
ax+b
cx+d can be used to

change the integration of the function to the integration of a rational function.

3. Integration of the function R
(
x,
√
ax2 + bx+ c

)
can be also changed to

the integration of a rational function. Here we need to distinguish 3 cases.
(i) The polynomial ax2 + bx + c has a real root x1 of multiplicity two. Then,

if the task have to make a sense, it must be a > 0, then it can be written√
ax2 + bx+ c =

√
a |x− x1|. The integrated function is thus rational on

each of the intervals (−∞, x1), (x1,+∞).
(ii) The polynomial ax2 + bx + c has two real roots x1 < x2. Then it could be

written ax2 + bx+ c = a(x− x1)(x− x2). If a > 0, then we have√
a(x− x1)(x− x2) =

√
a |x− x1|

√
x− x2
x− x1

.

This equation shows that the function R
(
x,
√
ax2 + bx+ c

)
could be on the

intervals (−∞, x1), (x2,+∞) written of the form from the case 2. We can
proceed similarly if a < 0.

(iii) The polynomial ax2 + bx + c has no real roots. If the task have to make a
sense, it must be a > 0 or c > 0. Then we could use Euler substitutions√

ax2 + bx+ c = t+
√
ax or

√
ax2 + bx+ c = xt+

√
c.

These substitutions can be used also in the case (ii) provided that a > 0 and
c > 0, respectively.
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Example 18. Determine a primitive function of f(x) =
1

1 + 3 cos2 x
.

Solution. The function f is continuous on the whole R and it thus has a primitive
function over R. If we put

R(u, v) =
1

1 + 3v2
,

then f(x) = R(sinx, cosx). The equality R(− sinx,− cosx) = R(sinx, cosx)
holds and thus the substitution t = tg x can be used for x ∈

(
−π

2 + kπ, π2 + kπ
)
,

k ∈ Z. To use this substitution, let us calculate

cos2 x =
1

1 + tg2 x
=

1

1 + t2
.

Next, from the equality x = arctg t we obtain dx = 1
1+t2

dt according to the
remark on page 111. We integrate the given integral by substitution∫

1

1 + 3 1
1+t2

· 1

1 + t2
dt =

∫
1

4 + t2
dt

c
=

1

2
arctg

t

2
, t ∈ R.

According to the theorem about integration by substitution thus follows∫
1

1 + 3 cos2 x
dx

c
=

1

2
arctg

(
tg x

2

)
, x ∈

(
−π

2
+ kπ,

π

2
+ kπ

)
, k ∈ Z.

If we put F (x) = 1
2 arctg

( tg x
2

)
, then the function F is a primitive function of f

over each of the intervals
(
−π

2 + kπ, π2 + kπ
)
, k ∈ Z. However, we are searching

for a primitive function over whole R. Each primitive function G of f over R is
equal to F + ck over the interval

(
−π

2 + kπ, π2 + kπ
)
, where k ∈ Z and ck ∈ R is

a suitable constant. Since G is continuous and the equalitites

lim
x→π

2
+kπ−

G(x) =
π

4
+ ck and lim

x→π
2
+kπ+

G(x) = −π
4

+ ck+1

hold, it must be ck+1 = ck + π
2 pro k ∈ Z. Hence ck = c0 + k π2 , k ∈ Z and each

primitive function of f is thus of the form

G(x) =

{
1
2 arctg

( tg x
2

)
+ c0 + k π2 for x ∈ (−π

2 + kπ, π2 + kπ),
π
4 + c0 + k π2 for x = π

2 + kπ.

The functionGwas made in a following way. On each interval
(
−π

2 + kπ, π2 + kπ
)

we added a suitable constant to the function F such that the resulting function
would be continuous, see the figures. This procedure is called “sticking”.
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FIGURE 1. FIGURE 2.

♣

Example 19. Determine a primitive function of the function f(x) =
sinx cosx

sin4 x+ cos4 x
.

Solution. The function f is continuous on R, it thus has a primitive function over
R. Let us put

R(u, v) =
uv

u4 + v4
.

Then f(x) = R(sinx, cosx) and it could be seen that:

(i) R(sinx,− cosx) = −R(sinx, cosx). The substitution t = sinx can be
used.

(ii) R(− sinx, cosx) = −R(sinx, cosx). The substitution t = cosx can be
used.

(iii) R(− sinx,− cosx) = R(sinx, cosx). The substitution t = tg x can be used.

Certainly, we could also use the substitution t = tg(x/2), which is an universal
substitution for transformation the integration of a rational function of sines and
cosines to the integration of a rational function.

Let us try first the substitution t = tg(x/2) for x ∈ (−π, π). To use this
substitution, we calculate first

cosx = cos2
x

2
− sin2 x

2
=

cos2 x2 − sin2 x
2

cos2 x2 + sin2 x
2

=
1− tg2 x2
1 + tg2 x2

=
1− t2

1 + t2
,

sinx = 2 sin
x

2
cos

x

2
=

2 sin x
2 cos x2

cos2 x2 + sin2 x
2

=
2t

1 + t2
,

dx =
2

1 + t2
dt.

For determining dx we used the equality x = 2 arctg t and a remark on page 111.
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By substitution, we manipulate the given integral to the integral∫ 2t
1+t2
· 1−t2
1+t2(

2t
1+t2

)4
+
(
1−t2
1+t2

)4 · 2

1 + t2
dt = 4

∫
t(1− t2)(1 + t2)

16t4 + (1− t2)4
dt.

It can be seen, that we achieved our goal. However, the resulting function is com-
plicated and above that we would have to overcome difficulties thatour substitution
is valid only for x ∈ (−π, π), eventually on an interval which is shifted by 2kπ,
k ∈ Z. Thus, let us try another substitutions.

1. The substitution t = sinx. In our case we could manipulate the function f
to the form

f(x) =
sinx

sin4 x+ (1− sin2 x)2
· cosx.

If we realize that dt = cosx dx holds for the given substitution, we obtain∫
t

2t4 − 2t2 + 1
dt.

By using a substitution u = t2 we then simplify the integrand and get∫
1

4u2 − 4u+ 2
du =

∫
1

(2u− 1)2 + 1
du

c
=

1

2
arctg(2u− 1), u ∈ R.

The result is formed by the functions
1

2
arctg(2 sin2 x− 1) + c, x ∈ R, c ∈ R.

2. The substitution t = cosx. We could manipulate the function f to the form

f(x) =
cosx

(1− cos2 x)2 + cos4 x
· sinx.

If we realize that dt = − sinx dx, we obtain

−
∫

t

(1− t2)2 + t4
dt

c
= −1

2
arctg(2t2 − 1), t ∈ R.

(The calculation is analogous to the previous calculation.) The primitive function
of f over R is every function of the form

−1

2
arctg(2 cos2 x− 1) + c,

where c ∈ R is an arbitrary constant.
3. Let us try one more substitution which can be used in our case – t = tg x. We

divide the numerator and the denominator in the formula of f(x) by the expression
cos2 x and we get

f(x) =
tg x

sin2 x tg2 x+ cos2 x
=

tg x

tg4 x+ 1
· 1

cos2 x
.
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Now we use the equality dt = 1
cos2 x

dx. Then we need to evaluate∫
t

t4 + 1
dt

c
=

1

2
arctg t2, t ∈ R.

Thus we get the primitive function 1
2 arctg(tg2 x), but only over the intervals

(−π
2 + kπ, π2 + kπ), k ∈ Z. However, we know that the function f has a prim-

itive function over the whole R (since it is continuous on R). We could find this
primitive function by the way described in the previous example.

Let us summarize: The substitution t = tg x was the easiest for computation.
However, we did not get a primitive function over the whole Df . We could solve
this be “sticking” at the points which have to be omitted. By substituting t =
tg(x/2) there is a similar situation – however, mostly leading to more complicated
rational functions than in case of others substitutions. It is thus better – if the form
of an integrand enables that – to avoid using it and to use some of the other three
substitutions.

It could be seen from the foregoing that a form of the result could substantially
depends on the substitution used, however, they are always functions which differ
by a constant. ♣

Example 20. Determine a primitive function of the function f(x) =
x− 1

x
(√

x+
3
√
x2
) .

Solution. The function is continuous on Df = (0,+∞) and thus has a primitive
function there.

If there are expressions

(
ax+ b

cx+ d

) p1
q1

, . . . ,

(
ax+ b

cx+ d

) pn
qn

,

where a, b, c, d ∈ R, ad − bc 6= 0, p1, . . . , pn ∈ Z, q1, . . . , qn ∈ N in the func-
tion formula of f , then we use the substitution t =

(
ax+b
cx+d

) 1
s , where s is the least

common multiple of the numbers q1, . . . , qn.
In our case we have the powers x1/2 and x2/3 in the function formula of f . The

least common multiple of numbers 2 and 3 is 6. We thus use the substitution t =
x1/6, x ∈ (0,+∞). Hence we could derive dx = 6t5 dt. Then we are searching
for a primitive function over the interval (0,+∞)∫

t6 − 1

t6(t3 + t4)
· 6t5 dt = 6

∫
t6 − 1

t5 + t4
dt.
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Since in the last integrand (it is a rational function of the variable t) is the degree of
the numerator greater then the degree of the denominator, we have to divide first:

(t6 − 1) : (t5 + t4) = t− 1 +
t4 − 1

t4(t+ 1)
=

= t− 1 +
(t− 1)(t+ 1)(t2 + 1)

t4(t+ 1)
=

= t− 1 +
1

t
− 1

t2
+

1

t3
− 1

t4
.

Now we could integrate

6

∫
t6 − 1

t5 + t4
dt

c
= 3t2 − 6t+ 6 log t+ 6

1

t
− 3

1

t2
+ 2

1

t3
, t ∈ (0,+∞).

From the theorem about integration by substitution, a primitive function of f over
(0,+∞) is every function of the form

3 3
√
x− 6 6

√
x+ log x+ 6

1
6
√
x
− 3

1
3
√
x

+ 2
1√
x

+ c,

where c ∈ R is an arbitrary constant. ♣

Example 21. Determine a primitive function of the function f(x) =
1

x+
√
x2 + x+ 1

.

Solution. The function f is continuous on the domainDf = (−∞,−1)∪(−1,+∞).
The expression under a radical sign is positive on the whole R, we thus use the Eu-
ler substitution

√
x2 + x+ 1 = x+ t. By exponentiating we obtain x2 + x+ 1 =

x2 +2xt+ t2, i.e. x = t2−1
1−2t , and calculate dx = −2 t

2−t+1
(1−2t)2 dt. We need to express

the formula
√
x2 + x+ 1 in terms of a new variable t, which is simple:√

x2 + x+ 1 = x+ t =
t2 − 1

1− 2t
+ t.

Now we substitute and after manipulation we obtain∫
2t2 − 2t+ 2

(t− 2)(2t− 1)
dt.

Let us realize that we use the Theorem 4(ii) for ϕ(t) = t2−1
1−2t . Next it follows

that ϕ′(t) = −2 t
2−t+1
(1−2t)2 < 0 for t ∈

(
−∞, 12

)
∪
(
1
2 ,+∞

)
, ϕ
(
(12 , 2)

)
= (−1,+∞)

and ϕ
(
(2,+∞)

)
= (−∞,−1).

The achieved rational function has the degree of the polynomial in the numer-
ator the same as the degree of the polynomial in the denominator, thus we have to
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divide first:

(2t2 − 2t+ 2) : (2t2 − 5t+ 2) = 1 +
3t

(t− 2)(2t− 1)
.

We decompose the second summand to partial fractions and obtain∫
2t2 − 2t+ 2

(t− 2)(2t− 1)
dt =

∫
1 dt+ 2

∫
1

t− 2
−
∫

1

2t− 1
dt

c
=

c
= t+ 2 log |t− 2| − 1

2
log |2t− 1|

on the intervals
(
1
2 , 2
)

and (2,+∞).
According to the Theorem 4(ii) the primitive function of the function f over

each of the intervals (−∞,−1) and (−1,+∞) is of the form√
x2 + x+ 1− x+ 2 log

∣∣∣√x2 + x+ 1− x− 2
∣∣∣−

− 1

2
log
∣∣∣2√x2 + x+ 1− 2x− 1

∣∣∣+ c, c ∈ R. ♣

3.2. Riemann integral

The introduction of the Riemann integral is motivated, among other things, by
a problem how to define an area of more complicated sets in a plane than are basic
geometric shapes like a rectangle, a triangle etc.

Let f be a bounded non-negative function defined on a bounded closed interval
[a, b]. We want to define an area under the graph of the function f to be consistent
with measuring an area of basic geometric shapes.

One of the possibilities is to aproximate the shape by finite unions of rectan-
gles with known areas and then “in the limit” get the area of the shape. The whole
idea is illustrated on the following figures. At the first two figures there are up-
per approximations of the area of the shape, on the second two there are lower
approximations on the contrary.

FIGURE 3. FIGURE 4.
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FIGURE 5. FIGURE 6.
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Let us express this intuitive reasoning by exact mathematical notions.

Definition. Let a, b ∈ R, a < b. A finite sequence {xj}nj=0 is the partition of the
interval [a, b] provided that

a = x0 < x1 < · · · < xn = b.

We call the points x0, . . . , xn the parting points. We say that partition D′ of the
interval [a, b] is the refinement of the partition D of the interval [a, b], if each
parting point of D is also a parting point of D′.

Definition. Let a, b ∈ R, a < b, the function f be bounded on the interval [a, b]
and D = {xj}nj=0 be a partition of [a, b]. Let us put

S(f,D) =
n∑
j=1

Mj(xj − xj−1), where Mj = sup[xj−1,xj ] f ,

S(f,D) =
n∑
j=1

mj(xj − xj−1), where mj = inf [xj−1,xj ] f ,

∫ b

a
f = inf

{
S(f,D); D is a partition of the interval [a, b]

}
,∫ b

a
f = sup

{
S(f,D); D is a partition of the interval [a, b]

}
.

We say that the function f has the Riemann integral over the interval [a, b] if∫ b
a f =

∫ b
a f . The value of the integral of the function f over the interval [a, b] is

then equal to the identical value of
∫ b
a f and

∫ b
a f and we denote it by

∫ b
a f . If a > b,

we define
∫ b
a f = −

∫ a
b f , and in the case that a = b, we define

∫ b
a f = 0.

Remarks. 1. We call the number S(f,D) (S(f,D)) the upper (lower, respec-

tively) sum with partitionD and we call
∫ b
a f (

∫ b
a f ) the upper (lower, respectively)

integral.
2. From the boundedness of f on the interval [a, b] it follows that S(f,D) ∈ R
and S(f,D) ∈ R for each partition D of the interval [a, b] and also both

∫ b
a f ∈ R

and
∫ b
a f ∈ R. This follows i.e. from the following inequalities:

(b− a) inf
[a,b]

f ≤ S(f,D) ≤ (b− a) sup
[a,b]

f.

3. Traditionally the symbols
∫ b
a f(x) dx,

∫ b
a f(t) dt, etc. could be used for the Rie-

mann integral instead of
∫ b
a f , especially in cases where the variable of the func-

tion f need to be emphasized.
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Remark. Let f be a bounded non-negative function on an interval [a, b]. If the
function f has the Riemann integral over [a, b], then the number

∫ b
a f can be taken

as the area of the set under the graph of the function f , i.e. the set {[x, y] ∈ R2; a ≤
x ≤ b, 0 ≤ y ≤ f(x)}.

Example 22. It can be shown easily from definition that for the function f(x) = 1,
x ∈ [0, 1] follows

∫ 1
0 f = 1, since in this case S(f,D) = S(f,D) = 1 holds for

each partition D of the interval [0, 1]. Similarly
∫ b
a cdx = c(b− a) holds for each

constant function x 7→ c ∈ R a a, b ∈ R.

Example 23. Let a function f : R→ R be defined by

f(x) =

{
1 for x ∈ Q,
0 for x ∈ R \Q.

We call it the Dirichlet function. From the Theorem ?? it follows that S(f,D) =

1 and S(f,D) = 0 for each partition D of the interval [0, 1]. Thus,
∫ 1
0 f = 1

and
∫ 1
0 f = 0 hold and therefore the Dirichlet function has not the Riemann integral

over the interval [0, 1].

From the foregoing example it could be seen that not every bounded function
has the Riemann integral. In this section we will derive some properties of the
Riemann integral and we will show that at least the continuous functions on a
bounded interval have the Riemann integral. In the following remark we will look
first at some properties of the upper and lower sums.

Remark. Let a, b ∈ R, a < b, and f : [a, b] → R be a bounded function. From
the definition it can be seen at once that for an arbitrary partition D of the interval
[a, b] we have

S(f,D) ≤ S(f,D). (5)
Let now D,D′ be partititons of the interval [a, b] and D′ be the refinement of D.
Then it is not difficult to show that

S(f,D) ≤ S(f,D′) ≤ S(f,D′) ≤ S(f,D). (6)

Let D1, D2 be two arbitrary partitions of the interval [a, b]. Let D′ be a refinement
of both D1 and D2. (It suffices to take for D′ a partition which consist of all points
from both D1 and D2.) According to (6) it then follows

S(f,D1) ≤ S(f,D′) ≤ S(f,D′) ≤ S(f,D2). (7)

Hence, it could be easily derived that the following inequality always holds∫ b

a
f ≤

∫ b

a
f. (8)
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In fact, according to the (7)
∫ b
a f ≤ S(f,D2) holds for a fixed partition D2. The

inequality (8) now follows from the definition of an infimum.
If we summarize the foregoing thoughts, we obtain that for arbitrary two par-

titions D1 and D2 of the interval [a, b] follows

S(f,D1) ≤
∫ b

a
f ≤

∫ b

a
f ≤ S(f,D2). (9)

Now we will prove a key lemma which enables us to avoid the notions of upper
and lower integral by using the Riemann integral.

Lemma 24 (criterion of existence of Riemann integral). Let a, b ∈ R, a < b, and f
be a bounded function on the interval [a, b].

(i)
∫ b
a f = I ∈ R if and only if for each ε ∈ R, ε > 0 there exists a partition D

of the interval [a, b] such that

I − ε < S(f,D) ≤ S(f,D) < I + ε. (10)

(ii) The function f has the Riemann integral over [a, b] if and only if for each
ε ∈ R, ε > 0 there exists a partition D of the interval [a, b] such that

S(f,D)− S(f,D) < ε. (11)

Proof. Let us first prove the assertion (i).
⇒ Let us choose an arbitrary ε > 0. Since

∫ b
a f = I there exists a partition D1

of the interval [a, b] such that S(f,D1) > I − ε. Similarly
∫ b
a f = I holds and thus

there exists a partition D2 of the interval [a, b] such that S(f,D2) < I + ε. Let D
is a refinement of both D1 and D2 on the interval [a, b]. Then according to the (7)
follows

I − ε < S(f,D1) ≤ S(f,D) ≤ S(f,D) ≤ S(f,D2) < I + ε.

⇐ Let us choose an arbitrary ε > 0. Let us find a partition D of the interval
[a, b] which satisfies the inequalities (10) for the given ε. From the inequalities (9)
and (10) follows

I − ε < S(f,D) ≤
∫ b

a
f ≤

∫ b

a
f ≤ S(f,D) < I + ε.

We thus have for each ε > 0

I − ε <
∫ b

a
f ≤

∫ b

a
f < I + ε,

which means that
∫ b
a f =

∫ b
a f = I .

Now we prove the assertion (ii).
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⇒ This implication follows from assertion (i), which was proved above.
⇐ Let us choose an arbitrary ε > 0. Let us find a partition D of the interval

[a, b] which satisfies the inequality (11) for the given ε. From (9) and (11) we thus
obtain

0 ≤
∫ b

a
f −

∫ b

a
f ≤ S(f,D)− S(f,D) < ε.

Since ε is an arbitrary positive number, it must be
∫ b
a f =

∫ b
a f . �

In the following assertions we will show some basic properties of the Riemann
integral.

Theorem 25.
(i) Let a function f have the Riemann integral over the interval [a, b] and let

[c, d] ⊂ [a, b]. Then f has the Riemann integral also over the interval [c, d].
(ii) Let c ∈ (a, b) and a function f have the Riemann integral over the intervals

[a, c] and [c, b]. Then f has the Riemann integral over [a, b] and the following
equality holds ∫ b

a
f =

∫ c

a
f +

∫ b

c
f. (12)

Proof. (i) Let us prove the assertion for the case a < b < c < d, the other
cases can be proved similarly. Let us choose an arbitrary ε > 0. According to
the Lemma 24(ii) there exists a partition D of the interval [a, b] satisfying the in-
equality (11). According to (6) we could assume without loss of generality that the
partition D contains both the points c and d. Let a partition of the interval [a, c],
which contains all parting points of D from the interval [a, c], be denoted by D1,
a partition of the interval [c, d], which contains all parting points of D from the in-
terval [c, d], be denoted by D2 and a partition of the interval [d, b], which contains
all parting points of D from the interval [d, b], be denoted by D3.

It follows obviously that

S(f,D) = S(f,D1) + S(f,D2) + S(f,D3),

S(f,D) = S(f,D1) + S(f,D2) + S(f,D3).

Applying (5) we thus get

0 ≤ S(f,D2)− S(f,D2) ≤
≤ S(f,D2)− S(f,D2) + S(f,D1)− S(f,D1) + S(f,D3)− S(f,D3) =

= S(f,D)− S(f,D) < ε.

According to Lemma 24(ii), we thus obtain that the Riemann integral
∫ d
c f exists.
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(ii) Let us put I1 =
∫ c
a f and I2 =

∫ b
c f . Let us choose an arbitrary ε > 0.

According to Lemma 24(i) there exists a partition D1 of the interval [a, c] and a
partition D2 of the interval [c, b] satisfying

I1 −
ε

2
< S(f,D1) ≤ S(f,D1) < I1 +

ε

2
, (13)

I2 −
ε

2
< S(f,D2) ≤ S(f,D2) < I2 +

ε

2
. (14)

Let D be a partition of the interval [a, b], which consist of all the points of the
partition D1 and the partition D2. Then obviously

S(f,D) = S(f,D1) + S(f,D2) a S(f,D) = S(f,D1) + S(f,D2).

By adding the inequalities (13) and (14) together we obtain

I1 + I2 − ε < S(f,D) ≤ S(f,D) < I1 + I2 + ε.

According to Lemma 24(i) is thus
∫ b
a f = I1 + I2. �

Remark. It can be easily realized that the formula (12) holds for every a, b, c ∈ R,
provided that there exists an integral of the function f over the interval

[
min{a, b, c},max{a, b, c}

]
.

Theorem 26 (linearity of Riemann integral). Let f and g be functions which have
the Riemann integral over the interval [a, b] and let α ∈ R. Then

(i) the function αf has the Riemann integral over [a, b] and∫ b

a
αf = α

∫ b

a
f,

(ii) the function f + g has the Riemann integral over [a, b] and∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g. (15)

Proof. Let us notice that for a = b are both assertions obvious. In what follows,
we thus suppose that a < b.

(i) Assume first that α ≥ 0. Then for each partition D of the interval [a, b]
follows S(αf,D) = αS(f,D) and S(αf,D) = αS(f,D). Thus we obtain at

once
∫ b
aαf = α

∫ b
a f and

∫ b
aαf = α

∫ b
a f , which gives us the required equality.

Next, let D = {xi}ni=0 be an arbitrary partition of the interval [a, b]. Since
sup[xi−1,xi](−f) = − inf [xi−1,xi] f holds for i = 1, . . . , n (see the remark on the
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page ??), we obtain S(−f,D) = −S(f,D). Thus we have∫ b

a
(−f) = inf

{
S(−f,D); D is a partition of [a, b]

}
=

= inf
{
−S(f,D); D is a partition of [a, b]

}
=

= − sup
{
S(f,D); D is a partition of [a, b]

}
=

= −
∫ b

a
f = −

∫ b

a
f.

we could obtain similarly
∫ b
a (−f) = −

∫ b
a f .

Finally according to the previous we get for α < 0∫ b

a
αf =

∫ b

a

(
− |α| f

)
= −

∫ b

a
|α| f = − |α|

∫ b

a
f = α

∫ b

a
f.

(ii) Let us choose an arbitrary ε > 0. From the Lemma 24(i) we can find
partitions D1 and D2 of the interval [a, b] such that∫ b

a
f − ε

2
< S(f,D1) ≤ S(f,D1) <

∫ b

a
f +

ε

2
,∫ b

a
g − ε

2
< S(g,D2) ≤ S(g,D2) <

∫ b

a
g +

ε

2
.

Let D be a refinement of both D1 and D2 on the interval [a, b]. Then according
to (7) it follows that∫ b

a
f − ε

2
< S(f,D) ≤ S(f,D) <

∫ b

a
f +

ε

2
,∫ b

a
g − ε

2
< S(g,D) ≤ S(g,D) <

∫ b

a
g +

ε

2
.

(16)

From the definitions of the upper and lower sums and from the Example ??,
we obtain the inequalities S(f + g,D) ≤ S(f,D) + S(g,D) and S(f + g,D) ≥
S(f,D) + S(g,D). This together with the inequalities (16) yields∫ b

a
f +

∫ b

a
g − ε < S(f,D) + S(g,D) ≤ S(f + g,D) ≤

≤ S(f + g,D) ≤ S(f,D) + S(g,D) <

∫ b

a
f +

∫ b

a
g + ε.

According to Lemma 24(i) the equality (15) thus holds. �

Theorem 27. Let a, b ∈ R, a < b, and let f and g be functions which have the
Riemann integral over the interval [a, b]. Then:
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(i) If f(x) ≤ g(x) for each x ∈ [a, b], then
∫ b
a f ≤

∫ b
a g.

(ii) The function |f | has the Riemann integral over [a, b] and
∣∣∫ b
a f
∣∣ ≤ ∫ b

a |f |
holds.

Proof. (i) Applying Theorem 26, we obtain
∫ b
a g −

∫ b
a f =

∫ b
a (g − f) ≥ 0, since

S(g − f,D) ≥ 0 holds for each partition D of the interval [a, b].
(ii) If we know that the function |f | has the Riemann integral over [a, b], then

the required equality could be proved easily. It is because− |f(t)| ≤ f(t) ≤ |f(t)|
holds for each t ∈ 〈a, b〉 and thus according to (i) and Theorem 26(i) we have

−
∫ b

a
|f | =

∫ b

a
− |f | ≤

∫ b

a
f ≤

∫ b

a
|f | .

From that we obtain the equality from assertion and the proof is completed.
Let us prove now that the function |f | has the Riemann intergral over [a, b].

Let us choose ε > 0, then from the Lemma 24(ii) we could find a partition D =
{xi}ni=0 of the interval [a, b] such that S(f,D) − S(f,D) < ε. For i = 1, . . . , n
let us put

Mi = sup
[xi−1,xi]

f, mi = inf
[xi−1,xi]

f,

M̂i = sup
[xi−1,xi]

|f | , m̂i = inf
[xi−1,xi]

|f | .

According to Example ?? the inequality M̂i − m̂i ≤ Mi − mi holds for i =
1, . . . , n. By using these inequalities we obtain

S(|f | , D)− S(|f | , D) =
n∑
i=1

M̂i(xi − xi−1)−
n∑
i=1

m̂i(xi − xi−1) =

=
n∑
i=1

(M̂i − m̂i)(xi − xi−1) ≤

≤
n∑
i=1

(Mi −mi)(xi − xi−1) =

=
n∑
i=1

Mi(xi − xi−1)−
n∑
i=1

mi(xi − xi−1) =

= S(f,D)− S(f,D) < ε.

However, according to Lemma 24(ii) it means that the integral
∫ b
a |f | exists. �

To show that every continuous function on a closed interval has the Riemann
integral, the following notion will be needed.
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Definition. We say that a function f is uniformly continuous on an interval I ,
provided that

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x, y ∈ I, |x− y| < δ : |f(x)− f(y)| < ε.

Remark. Let us note the difference between the definition of a function which is
continuous on the interval I and the definition of a function which is uniformly
continuous on the interval I . The function f is continuous on I if and only if it is
continuous at each point of I with respect to I , in other words

∀x ∈ I ∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀y ∈ I, |x− y| < δ : |f(x)− f(y)| < ε,

which is equivalent to

∀ε ∈ R, ε > 0 ∀x ∈ I ∃δ ∈ R, δ > 0 ∀y ∈ I, |x− y| < δ : |f(x)− f(y)| < ε.

Both definitions thus differ only in the order of quantifiers. The difference is that
in definition of continuity for a given ε we are searching for δ separately for each
point x ∈ I (and thus the value δ generally depends on x and can be different for
different x), in definition of uniform continuity for a given ε we are searching for
one δ, and this δ-neighbourhood is then used at each point x ∈ I , in other words
this δ is the same for all x ∈ I .

From what we have just said it can be seen that every uniformly continuous
function on I is a continuous function on I . However, the converse implication
generally does not hold. It is not difficult to show that the function f(x) = 1/x,
x ∈ (0, 1), is continuous on this interval, but not uniformly continuous.

Theorem 28. If a function f is continuous on a bounded closed interval [a, b], then
it is uniformly continuous on [a, b].

Proof. Let us suppose that f is continuous, but not uniformly continuous on [a, b].
Then there exists ε > 0 such that

∀δ ∈ R, δ > 0 ∃x, y ∈ [a, b], |x− y| < δ : |f(x)− f(y)| ≥ ε.
Hence we get especially that for each n ∈ N there exist xn, yn ∈ [a, b] satisfying
|xn − yn| < 1/n and |f(xn)− f(yn)| ≥ ε. Due to compactness of the set [a, b],
we could from the sequence {xn}∞n=1 choose a convergent subsequence {xnk}∞k=1
which converges to x ∈ [a, b]. Concurrently it must hold lim

k→∞
ynk = x, since

|ynk − x| ≤ |ynk − xnk |+ |xnk − x| ≤ 1/nk + |xnk − x| .
The function f is continuous at x, hence according to the Heine theorem fol-
lows lim

k→∞
f(xnk) = f(x) and lim

k→∞
f(ynk) = f(x). On the other hand we have

|f(xnk)− f(ynk)| ≥ ε and that is a contradiction. �

Theorem 29. Let the function f be continuous on the interval [a, b]. Then f has
the Riemann integral on [a, b].
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Proof. Let us choose an arbitrary ε > 0. According to the previous theorem we
could find δ > 0 such that

∀x, y ∈ [a, b], |x− y| < δ : |f(x)− f(y)| < ε

b− a
.

Let us choose a partition D = {xj}nj=0 such that xj − xj−1 < δ, j = 1, . . . , n.
From the Example ?? we obtain

Mj −mj = sup
[xj−1,xj ]

f − inf
[xj−1,xj ]

f ≤ ε

b− a
.

It thus follows that

0 ≤ S(f,D)− S(f,D) =
n∑
j=1

(Mj −mj)(xj − xj−1) ≤

≤
n∑
j=1

ε

b− a
(xj − xj−1) =

=
ε

b− a
(b− a) = ε.

Now we use Lemma 24(ii) once more. �

Theorem 30. Let f be a continuous function on an interval (a, b) and let c ∈ (a, b).
If we put F (x) =

∫ x
c f for x ∈ (a, b), then F ′(x) = f(x) for each x ∈ (a, b), in

other words F is a primitive function of f over (a, b).

Proof. According to Theorem 29 F (x) ∈ R holds for each x ∈ (a, b), so F is a
real function defined on (a, b). Let us now choose a point x ∈ (a, b) fixedly. We
want to show that F ′(x) = f(x) holds, in other words

lim
h→0

(
F (x+ h)− F (x)

h
− f(x)

)
= 0.

Let us choose an arbitrary ε ∈ R, ε > 0. Since the function f is continuous at the
point x, we could find δ ∈ R, 0 < δ ≤ min{b − x, x − a}, such that for each
t ∈ B(x, δ) the inequality |f(t)− f(x)| < ε holds. Let us take now h ∈ P (0, δ).
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Then we have x+ h ∈ (a, b). For h > 0 we could write∣∣∣∣1h(F (x+ h)− F (x)
)
− f(x)

∣∣∣∣ =

=

∣∣∣∣1h
(∫ x+h

c
f(t) dt−

∫ x

c
f(t) dt

)
− f(x)

∣∣∣∣ =

=

∣∣∣∣1h
∫ x+h

x
f(t) dt− f(x)

∣∣∣∣ =

=

∣∣∣∣1h
∫ x+h

x
f(t) dt− f(x) · 1

h

∫ x+h

x
1 dt

∣∣∣∣ =

=
1

h
·
∣∣∣∣∫ x+h

x

(
f(t)− f(x)

)
dt

∣∣∣∣ ≤
≤ 1

h

∫ x+h

x
|f(t)− f(x)| dt ≤

≤ 1

h

∫ x+h

x
ε dt =

1

h
· hε = ε.

(We used in this order Theorem 25(ii) together with the following remark, Theo-
rem 26, Theorem 27(ii) and Theorem 27(i).) For h < 0 can be shown the same
inequality similarly, it is only necessary to pay attention to the fact that in this case
we have x + h < x . Hence, it is justified F ′(x) = lim

h→0

1
h

(
F (x + h) − F (x)

)
=

f(x). �

The previous theorem enables us to prove Theorem 3 about the existence of a
primitive function.

The proof of Theorem 3. Let us choose c ∈ (a, b) and put

F (x) =

∫ x

c
f(t) dt, x ∈ (a, b).

The function F is defined on the whole interval (a, b) (Theorem 29) and according
to Theorem 30 for each x ∈ (a, b) F ′(x) = f(x) holds. The function F is thus a
primitive function of f over (a, b). �

The following theorem gives instructions, how to calculate the Riemann inte-
gral from a primitive function.
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Theorem 31 (Newton-Leibniz formula). Let f be continuous on a bounded closed
interval [a, b], a < b, and F is a primitive function of f over (a, b). Then there exist
limits lim

x→a+
F (x) ∈ R, lim

x→b−
F (x) ∈ R and

∫ b

a
f = lim

x→b−
F (x)− lim

x→a+
F (x). (17)

Proof. Let the function f̃ be defined on the interval [a− 1, b+ 1] by:

f̃(x) =


f(a) for x ∈ (a− 1, a),
f(x) for x ∈ [a, b],
f(b) for x ∈ (b, b+ 1).

Let nextG : (a−1, b+1)→ R be defined byG(x) =
∫ x
a f̃ . The function f̃ is con-

tinuous on (a− 1, b+ 1), according to Theorem 30 is thus G a primitive function
of f̃ over (a−1, b+1). The function G|(a,b) is a primitive function of f over (a, b)
and therefore there exists c ∈ R such that F = G|(a,b)+c. The functionG is contin-
uous at the points a and b, hence there exists limits lim

x→b−
F (x) = lim

x→b−
G(x) + c ∈

R, lim
x→a+

F (x) = lim
x→a+

G(x) + c ∈ R. We thus have∫ b

a
f = G(b) = G(b)−G(a) = lim

x→b−
G(x)− lim

x→a+
G(x) =

=
(

lim
x→b−

F (x)− c
)
−
(

lim
x→a+

F (x)− c
)

=

= lim
x→b−

F (x)− lim
x→a+

F (x).

�

Remark. Let us put

[F ]ba =

 lim
x→b−

F (x)− lim
x→a+

F (x) for a < b,

lim
x→b+

F (x)− lim
x→a−

F (x) for b < a.

Then the Newton-Leibniz formula can be written as∫ b

a
f = [F ]ba

also for b < a.

From the Newton-Leibniz formula follows the following two theorems often
used in calculation.
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Theorem 32 (integration by parts). Let the functions f , g, f ′ and g′ be continuous
on an interval [a, b].1 Then ∫ b

a
f ′g = [fg]ba −

∫ b

a
fg′.

Proof. The function fg is a primitive function of the function f ′g + fg′ over the
interval (a, b). Therefore ∫ b

a
(f ′g + fg′) = [fg]ba.

holds according Theorem 31. The formula then follows from Theorem 26. �

Theorem 33 (integration by substitution). Let the function f be continuous on an
interval [a, b]. Let next the function ϕ have a continuous derivative on an interval
[α, β] and map it to the interval [a, b]. Then∫ β

α
f
(
ϕ(x)

)
ϕ′(x) dx =

∫ ϕ(β)

ϕ(α)
f(t) dt.

Proof. Let us notice first that due to continuity both of the integrals exist. Let the
function f̃ be defined on the interval (a− 1, b+ 1) by:

f̃(t) =


f(a) for t ∈ (a− 1, a),
f(t) for t ∈ [a, b],
f(b) for t ∈ (b, b+ 1).

Let G be a primitive function of f̃ over (a − 1, b + 1). From the Theorem 31 and
Theorem 4(i) (since ϕ

(
(α, β)

)
⊂ (a− 1, b+ 1) holds) we get∫ β

α
f
(
ϕ(x)

)
ϕ′(x) dx =

∫ β

α
f̃
(
ϕ(x)

)
ϕ′(x) dx =

[
G
(
ϕ(x)

)]β
α

=

= G
(
ϕ(β)

)
−G

(
ϕ(α)

)
=

∫ ϕ(β)

ϕ(α)
f̃(t) dt =

∫ ϕ(β)

ϕ(α)
f(t) dt,

and the third equality follows from the continuity of the function G ◦ ϕ on the
interval [α, β]. �

By using Riemann integral we now prove Theorem ??.

Theorem. There exist exactly one function log satisfying these properties:
(i) Dlog = (0,+∞),

(ii) log is increasing on (0,+∞),
(iii) ∀x, y ∈ (0,+∞) : log xy = log x+ log y,

1Here, a value of f ′ at the points a and b stands for corresponding one-sided derivatives.
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(iv) lim
x→1

log x
x−1 = 1.

Proof. Let us put

F (x) =

∫ x

1

1

t
dt, x ∈ (0,+∞).

We show, that the function F has the required properties.
(i) From Theorem 29 it follows that the function F is defined on the interval

(0,+∞).
(ii) The function F is increasing on the interval (0,+∞) since F ′(x) = 1

x > 0
for each x ∈ (0,+∞) according to Theorem 30.

(iii) Let x > 0 and y > 0. Then it follows

F (xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt = F (x) +

∫ xy

x

1
t
x

· 1

x
dt =

= F (x) +

∫ y

1

1

z
dz = F (x) + F (y),

where the last but one equation follows from Theorem 33 for ϕ(t) = t
x .

(iv) Here we have

lim
x→1

F (x)

x− 1
= lim

x→1

F (x)− F (1)

x− 1
= F ′(1) = 1.

Now it remains to prove the uniqueness. Let us suppose that the function G
satisfies the conditions of the theorem as well. Then we could derive (similarly to
Section ??) that G′(x) = 1

x , x ∈ (0,+∞), and G(1) = 0. The function F has
also these properties. Therefore, according to Theorem 1, F = G on the interval
(0,+∞) and this is what had to be proved. �

Example 34. Evaluate
∫ 3

1

1

x
√
x2 + 5x+ 1

dx.

Solution. Let us put f(x) = 1
x
√
x2+5x+1

. The function f is continuous on the
interval [1, 3], it thus has the Riemann integral over this interval. We evaluate it by
applying Theorem 31.

We use the Euler substitution
√
x2 + 5x+ 1 = x+ t and get

x =
1− t2

2t− 5
and dx =

−2(t2 − 5t+ 1)

(2t− 5)2
dt.

Then we need to calculate∫
2

t2 − 1
dt

c
= log

t− 1

t+ 1
, t ∈ (1,+∞).
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The function

F (x) = log

√
x2 + 5x+ 1− x− 1√
x2 + 5x+ 1− x+ 1

is thus a primitive function of f over the interval (1, 3).
Now it can be calculated easily∫ 3

1
f = [F ]31 = log

1

3
− log

√
7− 2√

7
= log

√
7

3(
√

7− 2)
= log

7 + 2
√

7

9
.

Another possibility is to use Theorem 33 for calculation. For ϕ(t) = 1−t2
2t−5 we

have ϕ
(√

7− 1
)

= 1 and ϕ(2) = 3, and thus according to Theorem 33 follows∫ 2

√
7−1

2

t2 − 1
dt =

∫ 3

1

1

x
√
x2 + 5x+ 1

dx.

This yields∫ 3

1

1

x
√
x2 + 5x+ 1

dx =

∫ 2

√
7−1

2

t2 − 1
dt =

=

[
log

t− 1

t+ 1

]2
√
7−1

= log
7 + 2

√
7

9
.

♣

Example 35. Evaluate
∫ π

0

1

1 + 3 cos2 x
dx.

Solution. According to Example 18

F (x) =


1
2 arctg

( tg x
2

)
for x ∈ (0, π2 ),

π
4 for x = π

2 ,
1
2 arctg

( tg x
2

)
+ π

2 for x ∈ (π2 , π)

is a primitive function to the integrand over (0, π). Then we have∫ π

0

1

1 + 3 cos2 x
dx = [F ]π0 = 0 +

π

2
− 0 =

π

2
.

There is a very frequent mistake in omitting the sticking, i.e. in the wrong
reasoning that the function 1

2 arctg
( tg x

2

)
(which is not defined at the point π2 ) is a

primitive function of the integrand over the whole interval (0, π). We would thus
get ∫ π

0

1

1 + 3 cos2 x
dx =

[
1

2
arctg

(
tg x

2

)]π
0

= 0− 0 = 0.

At this point it should surprise us that an integral of a positive continuous function
is equal to zero – which is not possible!
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Note that at this particular example we could avoid the sticking of a primitive
function by using the substitution t = tg(x/2). Another possibility of solving the
problem is using Theorem 25. According to it follows∫ π

0

1

1 + 3 cos2 x
dx =

∫ π
2

0

1

1 + 3 cos2 x
dx+

∫ π

π
2

1

1 + 3 cos2 x
dx =

=

[
1

2
arctg

(
tg x

2

)]π
2

0

+

[
1

2
arctg

(
tg x

2

)]π
π
2

=

=
π

4
+
π

4
=
π

2
.

♣

Let us now look at some geometric applications of the definite integral.

Example 36. Let a, b, p, q ∈ R and 0 < a < b, 0 < p < q. Calculate the area of
the shape bounded by graphs of the functions

x 7→ x2

p
, x 7→ x2

q
, x 7→

√
ax and x 7→

√
bx.

FIGURE 7.

Solution. We could easily calculate x-coordinates of the four intersections of the
curves:

x1 = 3
√
ap2, x2 = 3

√
bp2, x3 = 3

√
aq2 and x4 = 3

√
bq2.
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The area of the shape is equal to∫ x2

x1

x2

p
dx+

∫ x4

x2

√
bxdx−

∫ x3

x1

√
ax dx−

∫ x4

x3

x2

q
dx =

=

[
x3

3p

]x2
x1

+

[
2
√
bx3

3

]x4
x2

−

[
2
√
ax3

3

]x3
x1

−
[
x3

3q

]x4
x3

=

=
1

3
(b− a)(q − p).

♣

We could also calculate the length of curves using a definite integral. We will
not try to define a curve generally – that is not easy. In our case the curve will be
an arbitrary set of the form

{[x, y] ∈ R2; a ≤ x ≤ b, y = f(x)},

where f is a differentiable function on the interval [a, b], whose derivative is con-
tinuous on [a, b].

Let the length of a curve be defined as follows. LetD = {xk}nk=0 is an arbitrary
partition of the interval [a, b] and Pk = [xk, f(xk)] for k = 0, 1, . . . , n. Line
segments connecting the points Pk−1 and Pk, k = 1, . . . , n form a polygonal chain,
whose lenght is

l(D) =
n∑
k=1

|Pk−1Pk| ,

where |Pk−1Pk| denotes the length of the line segment, which connects the points
Pk−1 and Pk. The length of a curve is defined to be the number

L = sup
{

l(D); D is a partition of the interval [a, b]
}
.

For the length of the polygonal chain l(D) it holds:

l(D) =
n∑
k=1

√
(xk − xk−1)2 +

(
f(xk)− f(xk−1)

)2
=

=

n∑
k=1

(xk − xk−1)

√
1 +

(
f(xk)− f(xk−1)

xk − xk−1

)2

.

From the Lagrange Mean value theorem (Theorem ??) we obtain that for each
k ∈ {1, . . . , n} there exists a number ξk ∈ (xk−1, xk) such that

f(xk)− f(xk−1)

xk − xk−1
= f ′(ξk).
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Hence

l(D) =
n∑
k=1

√
1 +

(
f ′(ξk)

)2 · (xk − xk−1).
Let us put g(x) =

√
1 +

(
f ′(x)

)2. From our assumptions it follows that the func-
tion g is continuous on [a, b]. Next, we have

n∑
k=1

inf
[xk−1,xk]

g · (xk − xk−1) ≤ l(D) ≤
n∑
k=1

sup
[xk−1,xk]

g · (xk − xk−1).

The length of the polygonal chain is thus between lower and upper sum of the
function g corresponding to the respective partition D. Since g has the Riemann
integral over [a, b], it could be deduced that

L =

∫ b

a
g(x) dx =

∫ b

a

√
1 +

(
f ′(x)

)2
dx.

By the end we will write (without derivation) formulas for calculation of the
surface area and the volume of a solid of revolution. We will take these notions
only intuitively and we will not write their exact definitions here.

Let a non-negative continuous function f have a continuous derivative on an
interval [a, b]. Rotating the graph of this function around the x-axis forms a surface
of a solid of revolution, whose area P could be calculated by the formula

P = 2π

∫ b

a
f(x)

√
1 +

(
f ′(x)

)2
dx.

FIGURE 8.

Let f be a continuous non-negative function on an interval [a, b]. Then the
volume V of a solid of revolution obtained by rotating of the set {[x, y] ∈ R2; a ≤
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x ≤ b; 0 ≤ y ≤ f(x)} around the x-axis could be calculated by the formula

V = π

∫ b

a
f2(x) dx.

Example 37. Calculate the volume of a ball with centre in the origin and the ra-
dius r > 0.

Solution. Let us put f(x) =
√
r2 − x2, x ∈ [−r, r] and calculate according to the

foregoing formula

V = π

∫ r

−r

(√
r2 − x2

)2
dx = π

∫ r

−r
(r2 − x2) dx =

= π

[
r2x− 1

3
x3
]r
−r

=
4

3
πr3.

♣

3.3. Zobecněný Riemannův integrál

V tomto oddílu zobecníme pojem Riemannova integrálu tak, abychom mohli
integrovat i některé neomezené funkce a také některé funkce definované na neomezených
intervalech.

Lemma 38 (spojitost Riemannova integrálu). Necht’ a, b ∈ R, a < b, a funkce f
má na intervalu [a, b] Riemannův integrál. Pak platí∫ b

a
f = lim

x→b−

∫ x

a
f = lim

x→a+

∫ b

x
f.

Proof. Dokážeme pouze první rovnost, druhou lze dokázat obdobně. Protože f
má Riemannův integrál na [a, b], je na [a, b] omezená, a tedy existuje M > 0
takové, že |f(x)| ≤ M pro každé x ∈ [a, b]. Zvolme libovolné ε > 0. Položme
δ = min{ε/M, b− a}. Pak pro x ∈ P−(b, δ) platí∣∣∣∣∫ b

a
f −

∫ x

a
f

∣∣∣∣ =

∣∣∣∣∫ b

x
f

∣∣∣∣ ≤ ∫ b

x
|f | ≤

∫ b

x
M dt = M(b− x) < ε,

přičemž jsme postupně použili Větu 25 a Větu 27. �

Lemma 39. Necht’ a, b ∈ R∗, a < b, a funkce f má Riemannův integrál na
každém podintervalu [x, y] ⊂ (a, b). Necht’ dále c ∈ (a, b), existují limity lim

x→a+

∫ c
x f
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a lim
y→b−

∫ y
c f a jejich součet má smysl (tj. je definovaný). Pak pro každé d ∈ (a, b)

existují lim
x→a+

∫ d
x f a lim

y→b−

∫ y
d f a platí

lim
x→a+

∫ d

x
f + lim

y→b−

∫ y

d
f = lim

x→a+

∫ c

x
f + lim

y→b−

∫ y

c
f.

Proof. Zvolme libovolné d ∈ (a, b). Dle předpokladu existuje Riemannův integrál∫ d
c f , což je reálné číslo. Platí tedy

lim
x→a+

∫ c

x
f + lim

y→b−

∫ y

c
f = lim

x→a+

∫ c

x
f + lim

y→b−

(∫ d

c
f +

∫ y

d
f

)
=

= lim
x→a+

(∫ c

x
f +

∫ d

c
f

)
+ lim
y→b−

∫ y

d
f =

= lim
x→a+

∫ d

x
f + lim

y→b−

∫ y

d
f,

přičemž jsme několikrát použili Větu 25 spolu s poznámkou za ní. �

Definition. Necht’ a, b ∈ R∗, a < b, a necht’ funkce f je definovaná na intervalu
(a, b). Má-li funkce f Riemannův integrál na každém podintervalu [x, y] ⊂ (a, b)
a existuje-li c ∈ (a, b) takové, že limity lim

x→a+

∫ c
x f a lim

y→b−

∫ y
c f existují a jejich

součet má smysl, pak definujeme zobecněný Riemannův integrál funkce f na
intervalu (a, b) jako

∫ b

a
f = lim

x→a+

∫ c

x
f + lim

y→b−

∫ y

c
f.

Remark. Podle Lemmatu 39 je tato definice korektní, nebot’ hodnota součtu lim
x→a+

∫ c
x f+

lim
y→b−

∫ y
c f nezávisí na volbě dělicího bodu c ∈ (a, b). Všimněme si, že z Věty 25

a z Lemmatu 38 plyne, že má-li funkce f Riemannův integrál na intervalu [a, b], má
i zobecněný Riemannův integrál na intervalu (a, b) a oba integrály jsou si rovny.
To nás opravňuje používat symbol

∫ b
a f i pro zobecněný Riemannův integrál na in-

tervalu (a, b). Dále si uvědomme, že hodnota zobecněného Riemannova integrálu
může být i +∞ nebo −∞ na rozdíl od Riemannova integrálu.
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Example 40. Zkoumejme existenci následujících zobecněných Riemannových in-
tegrálů: ∫ +∞

0
e−x dx = lim

z→0+

∫ 1

z
e−x dx+ lim

y→+∞

∫ y

1
e−x dx =

= lim
z→0+

[−e−x]1z + lim
y→+∞

[−e−x]y1 =

= lim
z→0+

(−e−1 + e−z) + lim
y→+∞

(−e−y + e−1) = 1;

∫ +∞

0
x dx = lim

z→0+

∫ 1

z
x dx+ lim

y→+∞

∫ y

1
x dx =

= lim
z→0+

[
1
2x

2
]1
z

+ lim
y→+∞

[
1
2x

2
]y
1

=
1

2
+ (+∞) = +∞;∫ +∞

−∞
x dx = lim

z→−∞

∫ 0

z
x dx+ lim

y→+∞

∫ y

0
x dx =

= lim
z→−∞

[
1
2x

2
]0
z

+ lim
y→+∞

[
1
2x

2
]y
0

= −∞+ (+∞),

tento součet limit však není definovaný, a tedy zobecněný Riemannův integrál∫ +∞
−∞ x dx neexistuje a rovnosti v posledním výpočtu nemají smysl.

Následující lemma ukazuje, že pro omezené funkce na omezených intervalech
pojmy Riemannova integrálu a zobecněného Riemannova integrálu splývají.

Lemma 41. Necht’ a, b ∈ R, a < b, a funkce f je omezená na intervalu [a, b].
Jestliže existuje Riemannův integrál funkce f na každém podintervalu [c, d] ⊂
(a, b), pak existuje i Riemannův integrál funkce f na intervalu [a, b].

Proof. Necht’ M > 0 je konstanta splňující |f(x)| < M pro každé x ∈ [a, b].
Zvolme libovolné ε ∈ R, ε > 0, a dále body c, d ∈ (a, b) tak, aby c < d a c− a <
ε

8M , b − d < ε
8M . Podle předpokladu existuje Riemannův integrál

∫ d
c f . Podle

Lemmatu 24(ii) existuje děleníD′ intervalu [c, d] takové, že S(f,D′)−S(f,D′) <
ε
2 . Necht’D je dělení intervalu [a, b], které vznikne přidáním bodů a, b k děleníD′.
Pak

S(f,D) = (c− a) sup
[a,c]

f + S(f,D′) + (b− d) sup
[d,b]

f ≤

≤M(c− a) + S(f,D′) +M(b− d) < S(f,D′) +
ε

4
.

Obdobným způsobem obdržíme S(f,D) > S(f,D′)− ε
4 . Celkově tedy dostáváme

S(f,D) − S(f,D) < S(f,D′) − S(f,D′) + ε
2 < ε, což podle Lemmatu 24(ii)

znamená, že existuje Riemannův integrál
∫ b
a f . �
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Může se stát, že funkce f má Riemannův integrál na všech podintervalech
intervalu (a, b) a přesto nemá zobecněný Riemannův integrál (viz Příklad 40). Pro
nezáporné funkce ovšem tato potíž nevzniká.

Lemma 42. Necht’ a, b ∈ R∗, a < b, f je nezáporná na (a, b) a f má Riemannův
integrál na každém podintervalu [x, y] ⊂ (a, b). Potom f má zobecněný Rieman-
nův integrál na (a, b).

Proof. Zvolme c ∈ (a, b). Je-li c < x < y < b, pak z Vět 25(ii) a 27(i) plyne∫ y

c
f =

∫ x

c
f +

∫ y

x
f ≥

∫ x

c
f,

což znamená, že funkce y 7→
∫ y
c f je neklesající na intervalu (c, b). Podle věty

o limitě monotónní funkce (Věta ??) tedy existuje lim
y→b−

∫ y
c f . Podobně se lze

přesvědčit o existenci lim
x→a+

∫ c
x f . Podle Věty 27(i) a věty o limitě a uspořádání

(Věta ??) jsou obě limity nezáporné. Jejich součet je tedy definovaný, a tudíž exis-
tuje zobecněný Riemannův integrál f na (a, b). �

Pro zobecněný Riemannův integrál platí analogie některých vět o Riemannově
integrálu.

Theorem 43. Necht’ a, b ∈ R∗ a c ∈ (a, b).
(i) Jestliže funkce f má zobecněný Riemannův integrál na (a, b), pak má f

zobecněný Riemannův integrál i na (a, c) a (c, b) a platí∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

(ii) Necht’ funkce f má zobecněný Riemannův integrál na (a, c) a (c, b), f je
omezená na nějakém okolí bodu c a součet

∫ c
a f +

∫ b
c f má smysl. Pak f má

zobecněný Riemannův integrál na (a, b) a platí∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof. (i) Zvolme u ∈ (a, c). Z Lemmatu 39 plyne existence lim
x→a+

∫ u
x f . Dále

podle Lemmatu 38 platí lim
y→c−

∫ y
u f =

∫ c
u f , kde poslední integrál je Riemannův,

a tedy reálné číslo. Zobecněný Riemannův integrál funkce f na (a, c) tedy existuje
a platí∫ c

a
f = lim

x→a+

∫ u

x
f + lim

y→c−

∫ y

u
f = lim

x→a+

∫ u

x
f +

∫ c

u
f = lim

x→a+

∫ c

x
f,
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přičemž poslední rovnost plyne z věty o aritmetice limit a z Věty 25(ii). Obdobně
obdržíme ∫ b

c
f = lim

y→b−

∫ y

c
f.

Tvrzení nyní snadno plyne z definice zobecněného Riemannova integrálu.
(ii) Necht’ u ∈ (a, c), v ∈ (c, b) jsou takové body, že funkce f je omezená

na [u, v]. Podle definice zobecněného Riemannova integrálu existují Riemannovy
integrály funkce f na podintervalech [x, y] ⊂ (a, c). Z Lemmatu 41 plyne, že
existuje Riemannův integrál

∫ c
u f a Lemma 38 pak dává rovnost

∫ c
u f = lim

y→c−

∫ y
u f .

Dostáváme tedy podobně jako v důkazu (i)∫ c

a
f = lim

x→a+

∫ c

x
f.

Analogicky ukážeme i ∫ b

c
f = lim

y→b−

∫ y

c
f.

Právě provedené úvahy spolu s Větou 25 implikují existenci Riemannova inte-
grálu funkce f na libovolném podintervalu [x, y] ⊂ (a, b), odkud spolu s výše
uvedenými rovnostmi plyne tvrzení věty. �

Theorem 44 (linearita zobecněného Riemannova integrálu). Necht’ a, b ∈ R∗,
a < b, f a g jsou funkce mající zobecněný Riemannův integrál na intervalu (a, b)
a necht’ α ∈ R. Potom

(i) funkce αf má zobecněný Riemannův integrál na (a, b) a platí∫ b

a
αf = α

∫ b

a
f,

má-li pravá strana smysl,
(ii) je-li součet

∫ b
a f +

∫ b
a g definovaný, pak má funkce f +g zobecněný Rieman-

nův integrál na (a, b) a platí∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Tuto větu lze dokázat pomocí Lemmatu 39, Věty 26 a věty o aritmetice limit
(Věta ??).

Theorem 45. Necht’ a, b ∈ R∗, a < b, a necht’ f a g jsou funkce mající zobecněný
Riemannův integrál na intervalu (a, b). Potom platí:

(i) Je-li f(x) ≤ g(x) pro každé x ∈ (a, b), pak
∫ b
a f ≤

∫ b
a g.

(ii) Funkce |f |má zobecněný Riemannův integrál na intervalu (a, b) a platí
∣∣∫ b
a f
∣∣ ≤∫ b

a |f |.
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Proof. (i) Zvolme pevně c ∈ (a, b). Pro každé y ∈ (c, b) platí dle Věty 27(i)∫ y
c f ≤

∫ y
c g. Použitím věty o limitě a uspořádání (Věta ??) dostáváme nerovnost

lim
y→b−

∫ y
c f ≤ lim

y→b−

∫ y
c g. Podobně ukážeme, že platí i nerovnost lim

x→a+

∫ c
x f ≤

lim
x→a+

∫ c
x g. Sečtením těchto nerovností dokážeme tvrzení (i).

(ii) Podle definice má funkce f Riemannův integrál na každém podintervalu
[x, y] ⊂ (a, b). Podle Věty 27(ii) má tedy také funkce |f | Riemannův integrál na
každém podintervalu [x, y] ⊂ (a, b). Podle Lemmatu 42 tak existuje zobecněný
Riemannův integrál funkce |f | na intervalu (a, b). Zbytek tvrzení se dokáže ana-
logicky jako v důkazu Věty 27(ii). �

Theorem 46. Necht’ a, b ∈ R∗, a < b, f je spojitá na (a, b), a F je primitivní
funkce k f na (a, b). Pak zobecněný Riemannův integrál funkce f na (a, b) existuje,
právě když existují limity lim

x→a+
F (x) a lim

x→b−
F (x) a jejich rozdíl má smysl. V tom

případě platí ∫ b

a
f = [F ]ba = lim

x→b−
F (x)− lim

x→a+
F (x). (18)

Proof. ⇒ Zvolme c ∈ (a, b). Pro libovolné x ∈ (a, b) existuje Riemannův integrál∫ x
c f a platí ∫ x

c
f = [F ]xc = F (x)− F (c), (19)

kde první rovnost plyne z Newtonovy-Leibnizovy formule (Věta 31) a druhá ze
spojitosti funkce F v bodech c a x. Použitím (19) dostaneme

lim
x→b−

F (x) = F (c) + lim
x→b−

∫ x

c
f,

lim
x→a+

F (x) = F (c)− lim
x→a+

∫ c

x
f.

Obě limity tedy existují, jejich rozdíl má smysl a platí vzorec (18).
⇐ Podobě jako v předchozí části důkazu vyjdeme ze vztahu (19) a limitním

přechodem dokážeme požadovaná tvrzení. �

Pokud zobecněný Riemannův integrál funkce f na intervalu (a, b) existuje
a přitom je konečný, pak říkáme, že

∫ b
a f konverguje. Pokud je roven +∞ nebo

−∞, pak říkáme, že diverguje. Máme tedy následující možnosti:∫ b

a
f

 existuje a je roven

{
reálnému číslu, tj. konverguje,
+∞ nebo −∞, tj. diverguje,

neexistuje.

Example 47. Spočtěte integrál
∫ +∞

−∞

1

x2 + 1
dx.
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Solution. Integrovaná funkce je spojitá na R, primitivní funkcí k ní je funkce arctg.
Podle Věty 46 tedy dostáváme∫ +∞

−∞

1

x2 + 1
dx = [arctg x]+∞−∞ =

π

2
−
(
−π

2

)
= π.

♣

Example 48. Spočtěte integrály
∫ +∞

0

x

x2 + 1
dx a

∫ +∞

−∞

x

x2 + 1
dx.

Solution. Integrovaná funkce je spojitá na R a primitivní funkcí k ní je funkce
F (x) = 1

2 log(x2 + 1). Platí

F (0) = 0, lim
x→+∞

F (x) = lim
x→−∞

F (x) = +∞.

Z Věty 46 pak plyne, že
∫ +∞
0

x
x2+1

dx = +∞ a
∫ +∞
−∞

x
x2+1

dx neexistuje. ♣

Example 49. Spočtěte
∫ 1

0
log x dx.

Solution. Funkce log je spojitá na intervalu (0,+∞). Primitivní funkci k ní spočteme
pomocí metody per partes∫

log x dx = x log x−
∫
x · 1

x
dx

c
= x log x− x.

Hodnota uvedené primitivní funkce v bodě 1 je −1 a dále podle Příkladu ?? platí

lim
x→0+

(x log x− x) = 0.

Odtud a z Věty 46 dostáváme, že
∫ 1
0 log x dx = −1. ♣

Example 50. Integrál
∫ +∞

1
xα dx konverguje, právě když α < −1.

Proof. Pro α 6= −1 je primitivní funkcí k funkci xα na intervalu (1,+∞) funkce
xα+1

α+1 . S pomocí Věty 46 dostaneme∫ +∞

1
xα dx =

[
xα+1

α+ 1

]+∞
1

=

{
0− 1

α+1 = − 1
α+1 pro α < −1,

+∞− 1
α+1 = +∞ pro α > −1.

Pro α = −1 platí∫ +∞

1
xα dx =

∫ +∞

1

1

x
dx = [log x]+∞1 = +∞− 0 = +∞.

Je vhodné porovnat tento příklad s Větou ??. �
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Example 51. Integrál
∫ 1

0
xα dx konverguje, právě když α > −1.

Proof. Pro α 6= −1 je primitivní funkcí k funkci xα na intervalu (0, 1) funkce
xα+1

α+1 . S pomocí Věty 46 dostaneme∫ 1

0
xα dx =

[
xα+1

α+ 1

]1
0

=

{
1

α+1 − 0 = 1
α+1 pro α > −1,

1
α+1 − (−∞) = +∞ pro α < −1.

Pro α = −1 platí∫ 1

0
xα dx =

∫ 1

0

1

x
dx = [log x]10 = 0− (−∞) = +∞. �

Remark. Podobně jako v předchozím příkladu lze ukázat, že je-li c, d ∈ R, c < d,
pak

∫ d
c (x − c)α dx konverguje, právě když platí α > −1. Stejně tak pro d < c

integrál
∫ c
d (c−x)α dx konverguje, právě když α > −1. Toto pozorování využijeme

později v konkrétních příkladech.

U řady integrálů poznáme, zda konvergují, pokud je porovnáme s vhodnou
funkcí x 7→ xα. K tomu nám poslouží následující dvě věty.

Theorem 52 (srovnávací kritérium). Necht’ a, b ∈ R∗, a < b, funkce f a g splňují
0 ≤ f(x) ≤ g(x) pro všechna x ∈ (a, b) a f je na (a, b) spojitá. Pokud konverguje∫ b
a g, pak konverguje i

∫ b
a f .

Proof. Ze spojitosti funkce f a z Lemmatu 42 plyne existence zobecněného Rie-
mannova integrálu

∫ b
a f . Podle Věty 45(i) potom tento integrál konverguje. �

Theorem 53 (limitní srovnávací kritérium). Necht’ f a g jsou spojité nezáporné
funkce na intervalu [a, b), b ∈ R∗, a existuje limita lim

x→b−
f(x)
g(x) = γ ∈ R∗.

• Je-li γ ∈ (0,+∞), pak
∫ b
a f konverguje, právě když konverguje

∫ b
a g.

• Je-li γ = 0, pak z konvergence
∫ b
a g plyne konvergence

∫ b
a f .

• Je-li γ = +∞, pak z divergence
∫ b
a g plyne divergence

∫ b
a f .

Proof. Předpokládejme nejprve, že γ ∈ 〈0,+∞). Z definice limity plyne, že ex-
istuje takové c ∈ R, že pro všechna x ∈ (c, b) je

∣∣f(x)
g(x) − γ

∣∣ < 1. Speciálně pro

x ∈ (c, b) máme 0 ≤ f(x)
g(x) < γ+1, neboli 0 ≤ (x) < (γ+1)g(x). Předpokládáme-

li, že
∫ b
a g konverguje, pak z Věty 43(i) plyne konvergence integrálu

∫ b
c g. Konver-

guje tedy také
∫ b
c (γ + 1)g (Věta 44(i)), a proto dle Věty 52 konverguje i integrál∫ b

c f . Funkce f je spojitá na [a, c], a tedy podle Věty 29 integrál
∫ c
a f konverguje.

Podle Věty 43(ii) tak konverguje i integrál
∫ b
a f . Odtud plyne druhý bod tvrzení

a jedna implikace v prvním bodě.
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Nyní předpokládejme, že platí γ ∈ (0,+∞)∪{+∞}. Potom máme lim
x→b−

g(x)
f(x) ∈

[0,+∞), čili podle již dokázaného platí, že konverguje-li
∫ b
a f , pak konverguje

i
∫ b
a g. Odtud plyne třetí bod tvrzení a zbývající implikace v prvním bodě. �

Remarks. 1. Analogická tvrzení platí pro funkce na intervalu (a, b].
2. Porovnejte srovnávací kritérium a jeho limitní verzi s analogickými kritérii pro
konvergenci řad uvedenými v kapitole ??.

Ukažme si několik příkladů, jak tyto věty používat.

Example 54. Zjistěte, zda
∫ +∞

1
x20e−x

2
dx konverguje.

Solution. Funkce f(x) = x20e−x
2

je spojitá a kladná na intervalu [1,+∞). Víme,
že
∫ +∞
1

1
x2

dx konverguje (Příklad 50). Dále platí

lim
x→+∞

f(x)
1
x2

= lim
x→+∞

x22

ex2
= 0,

a tedy podle Věty 53 integrál ze zadání konverguje. ♣

Example 55. Zjistěte, zda
∫ +∞

1

x17 + 36

x18 + 51x7 + 5
dx konverguje.

Solution. Integrovaná funkce je spojitá a kladná na intervalu [1,+∞). Protože
stupeň čitatele je o jedna menší než stupeň jmenovatele, je vhodné srovnat inte-
grovanou funkci s funkcí 1/x:

lim
x→+∞

x17+36
x18+51x7+5

1
x

= lim
x→+∞

x18 + 36x

x18 + 51x7 + 5
= 1.

Podle Věty 53 integrál ze zadání konverguje, právě když konverguje integrál
∫ +∞
1

1
x dx.

Tento integrál však diverguje podle Příkladu 50. Tudíž i zadaný integrál diver-
guje. ♣

Example 56. Zjistěte, pro které hodnoty α ∈ R konverguje
∫ π

0
sinα x dx.

Solution. Integrovaná funkce je spojitá a kladná na intervalu (0, π). Rozdělme in-
terval (0, π) na dvě části – zkoumejme

∫ π/2
0 sinα x dx a

∫ π
π/2 sinα x dx, nebot’ inte-

grál ze zadání konverguje, právě když konvergují oba uvedené integrály přes menší
intervaly (Věta 43).

Funkce x 7→ sinα x je spojitá na intervalu (0, π/2] a lim
x→0+

sinα x
xα = 1. Tedy∫ π/2

0 sinα x dx konverguje, právě když konverguje
∫ π/2
0 xα dx. Tento integrál kon-

verguje, právě když α > −1 (Příklad 51 a poznámka za ním).
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Zbývá vyšetřit
∫ π
π/2 sinα x dx. Protože však sin(π−x) = sinx, je tento integrál

roven integrálu z předchozího odstavce, a tedy konverguje, právě když α > −1.
Integrál ze zadání tedy konverguje, právě když α > −1. ♣

3.4. Cvičení

K zadané funkci nalezněte na co největších intervalech nějakou primitivní
funkci F .
1. (x2 − x) expx 2. 5x sinx

3.
log2 x

x
4.

x√
4− x4

5.
1

3x2 − 2x− 1
6.

2x

(x+ 1)(x4 + 2x2 + 1)

7.
cotg x

sinx+ cosx− 1
8.

sinx

sin3 x+ cos3 x

9.
√

2x+ 1

x2
10.

x+ 2

(x2 + x+ 1)2(x− 1)

11.
1

(x+ 1)
√
x2 + x+ 1

12.
1

x
√

2 + x− x2

Spočtěte následující určité integrály.

13.
∫ π/4

0

sinx− cosx

sinx− 2 cos3 x
dx 14.

∫ 1

−1/2

1√
8 + 2x− x2

dx

15.
∫ π

0
x2 sin2 x dx 16.

∫ 1/2

0
arccosx dx

17.
∫ 1

−1

x√
5− 4x

dx 18.
∫ 1

0
x log2 x dx

19.
∫ +∞

0
x2e−x dx 20.

∫ +∞

−∞
x2e−x dx

21.
∫ +∞

−∞
x3e−x

2
dx 22.

∫ +∞

0
x3e−x

2
dx

23. Vypočítejte obsah obrazce ohraničeného grafy dvou funkcí x 7→ 2
1+x2

a x 7→
x2.
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24. Vypočítejte obsah obrazce ohraničeného grafy funkcí x 7→ x2 − 6x + 8,
x 7→ −4x+ 7 a x 7→ 2x− 8.

25. Vypočítejte délku křivky, která je grafem funkce f(x) = log(cosx) pro
x ∈ [0, π/6].

26. Vypočítejte obsah rotační plochy, která vznikne rotací křivky x 7→ x2/2,
x ∈ [0, 3/4], kolem osy x.

27. Vypočítejte objem rotačního tělesa, které vznikne rotací obrazce ležícího
v rovině x, y kolem osy x. Obrazec je ohraničen křivkami, jejichž rovnice jsou
x2 − 1

2y
2 = 1 a y2 − x2 = 1.

28. Pro které hodnoty parametrů p, q ∈ R konverguje
∫ 1

0
xp(1− x)q dx?

29. Zjistěte, pro které hodnoty parametrů α, β, γ ∈ R konverguje integrál∫ π
2

0
sinα x cosβ x(1− cosx)γ dx.

Výsledky cvičení

1.F (x) = (x2−3x+3) expx na celém R 2.F (x) = 5x

1+log2 5
(log 5·sinx−cosx)

na celém R 3. F (x) = 1
3 log3 x na intervalu (0,+∞) 4. F (x) =

1
2 arcsin(12x

2) na intervalu (−
√

2,
√

2) 5. F (x) = 1
4 log

∣∣∣ x−13x+1

∣∣∣ na každém

z intervalů (−∞,−1/3), (−1/3, 1) a (1,+∞) 6. F (x) = −1
2 log |x+ 1| +

1
4 log(x2 + 1) + 1

2
x−1
x2+1

na intervalech (−∞,−1) a (−1,+∞) 7. F (x) =

−1
2 cotg x

2 + 1
2 log

∣∣tg x
2

∣∣ na libovolném intervalu neobsahujícím body množiny
{kπ; k ∈ Z} ∪ {π/2 + 2kπ; k ∈ Z} 8. F (x) = −1

3 log |tg x+ 1| +
1
6 log(tg2 x− tg x+ 1) + 1√

3
arctg 2 tg x−1√

3
na libovolném intervalu neobsahujícím

body množiny {(2k + 1)π/2; k ∈ Z} ∪ {−π/4 + kπ; k ∈ Z} 9. F (x) =

log
|√2x+1−1|√

2x+1+1
−
√
2x+1
x na intervalech (−1/2, 0) a (0,+∞) 10. F (x) =

1
3 log |x− 1|− 1

6 log(x2 +x+ 1)− 5
√
3

9 arctg
(
2x+1√

3

)
− 1

3 ·
x−1

x2+x+1
na intervalech

(−∞, 1) a (1,+∞) 11. F (x) = log
∣∣∣√x2+x+1−x−2√

x2+x+1−x

∣∣∣ na intervalech (−∞,−1)

a (−1,+∞) 12. F (x) = 1√
2

log

∣∣∣∣∣
√
x+1
2−x−

1√
2√

x+1
2−x+

1√
2

∣∣∣∣∣ na intervalech (−1, 0) a (0, 2)

13. 2√
7

(
arctg 3√

7
− arctg 1√

7

)
14. π/6 15. π

3

6 −
π
4 16. π6 −

√
3
2 + 1
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17. 1/6 18. 1/4 19. 2 20. +∞ 21. 0 22. 1/2 23. π − 2/3
24. 9/4 25. 1

2 log 3 26. π
16

(
255
64 −2 log 2

)
27. 4

3π
(
3
√

3−2
)

28. Integrál
konverguje, právě když p > −1 a q > −1. 29. Integrál konverguje, právě když
β > −1 a α+ 2γ > −1.
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