Exam test (sample)

for Mathematics 2, SS 2017/18

1. (15 points) Find the rank of the following matrix depending on the parameters $x, y \in \mathbb{R}$:

/11	12	13	14	
	20 + x		24	
$\begin{vmatrix} 31 \\ 41 \end{vmatrix}$	32	33	34	•
$\setminus 41$	42	43	40 + y	

2. (15 points) Compute the antiderivative

$$\int \frac{x+7}{(x+1)^2(x^2+2x+5)} dx.$$

3. (20 points) Find supremum and infimum (and maximum and minimum if they exist) of the function f on the set M, where

$$f(x, y, z) = x,$$
 $M = \{ [x, y, z] \in \mathbb{R}^3 : x^2 + y^2 + 2z^2 = 4, xz \ge 1 \}.$

Solution.

1. Let us apply elementary row and column operations

$$\begin{pmatrix} 11 & 12 & 13 & 14 \\ 21 & 20+x & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 40+y \end{pmatrix} \sim \begin{pmatrix} 11 & 12 & 13 & 14 \\ -1 & -4+x & -3 & -4 \\ -2 & -4 & -6 & -8 \\ -3 & -6 & -9 & -16+y \end{pmatrix} \sim \begin{pmatrix} 1 & 4-x & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 16-y \\ 11 & 12 & 13 & 14 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 4-x & 3 & 4 \\ 0 & -4+2x & 0 & 0 \\ 0 & -6+3x & 0 & 4-y \\ 0 & -32+11x & -20 & -30 \end{pmatrix} \sim \begin{pmatrix} 1 & 4-x & 3 & 4 \\ 0 & -32+11x & -20 & -30 \\ 0 & -6+3x & 0 & 4-y \\ 0 & -4+2x & 0 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 3 & 4 & 4-x \\ 0 & -20 & -30 & -32+11x \\ 0 & 0 & 4-y & -6+3x \\ 0 & 0 & 0 & -4+2x \end{pmatrix}.$$

We now distinguish several cases:

- 1. $x \neq 2$ and $y \neq 4$, then rank of the matrix is 4,
- 2. x = 2 and $y \neq 4$, then rank of the matrix is 3,
- 3. $x \neq 2$ and y = 4, then the last matrix is not in the row echelon form and the last row can be subtracted to zero, so rank of the matrix is 3,
- 4. x = 2 and y = 4, then rank of the matrix is 2.

Grading: 9 pts - transformation of the matrix, 6 pts - discussion.

Remark: If you first subtract the first row from each of the others, then you get a more elegant solution.

2. The function is continuous on $(-\infty, -1)$, $(-1, +\infty)$, so the antiderivative is defined on these intervals.

We compute the partial fractions:

$$\frac{x+7}{(x+1)^2(x^2+2x+5)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+2x+5},$$

which yields the equality

$$x + 7 = A(x + 1)(x^{2} + 2x + 5) + B(x^{2} + 2x + 5) + (Cx + d)(x + 1)^{2}.$$

Insert x = -1 and obtain B = 3/2. Compare the coefficient at 1, x, and x^3 , we get

$$7 = 5A + 5B + D = 5A + D + \frac{15}{2}$$

$$1 = 7A + 2B + C + 2D = 7A + C + 2D + 3$$

$$0 = A + C.$$

Subtract the third equation from the second one we obtain

$$-1/2 = 5A + D$$

$$-2 = 6A + 2D$$

Solution of the system is A = 1/4, C = -1/4, D = -7/4. We have the equality

$$\int \frac{x+7}{(x+1)^2(x^2+2x+5)} \, \mathrm{d}x = \frac{1}{4} \int \frac{1}{x+1} \, \mathrm{d}x + \frac{3}{2} \int \frac{1}{(x+1)^2} \, \mathrm{d}x - \frac{1}{4} \int \frac{x+7}{x^2+2x+5} \, \mathrm{d}x.$$

The first and second integrals are easy:

$$\int \frac{1}{x+1} \, \mathrm{d}x \stackrel{c}{=} \ln |x+1|, \quad \int \frac{1}{(x+1)^2} \, \mathrm{d}x \stackrel{c}{=} -\frac{1}{x+1}.$$

We split the third integral into two parts

$$\int \frac{x+7}{x^2+2x+5} \, \mathrm{d}x = \frac{1}{2} \int \frac{2x+2}{x^2+2x+5} \, \mathrm{d}x + 6 \int \frac{1}{x^2+2x+5} \, \mathrm{d}x.$$

Here the first integral is (substitution $t = x^2 + 2x + 5$)

$$\int \frac{2x+2}{x^2+2x+5} \, \mathrm{d}x \stackrel{c}{=} \ln(x^2+2x+5).$$

In the second integral we use the standard procedure to complete the square first and we get

$$\int \frac{1}{x^2 + 2x + 5} dx = \int \frac{1}{(x+1)^2 + 2^2} dx \stackrel{c}{=} \frac{1}{2} \operatorname{arctg}\left(\frac{x+1}{2}\right).$$

Putting everything together we have

$$\int \frac{x+7}{(x+1)^2(x^2+2x+5)} \, \mathrm{d}x \stackrel{c}{=} \frac{1}{4} \ln|x+1| - \frac{3}{2} \cdot \frac{1}{x+1} - \frac{1}{8} \ln(x^2+2x+5) - \frac{3}{4} \operatorname{arctg}\left(\frac{x+1}{2}\right).$$

Grading: 2 pts - domain of the antiderivative, 6 pts - parcial fractions, 2 pts - two simple integrals, 3 pts - the third integral, 2 pts - final result.

3. The set M is closed, since it is an intersection of two sets which are closed by Theorem 11: $\{[x, y, z] : x^2 + y^2 + 2z^2 = 4\}$ and $\{[x, y, z] : xz \ge 1\}$. The set is bounded, since $|x|, |y|, |z| \le 2$. So, M is compact. Since f is continuous, M attains its maximum and minimum on M. We find suspected points first on $M_1 = \{[x, y, z] : x^2 + y^2 + 2z^2 = 4, xz > 1\}$ and then on $M_2 = \{[x, y, z] : x^2 + y^2 + 2z^2 = 4, xz = 1\}$.

In M_1 : By the Lagrange multiplier theorem we either have $\nabla g = o$, or $\nabla f + \lambda \nabla g = o$, where $g(x, y, z) = x^2 + y^2 + 2z^2 - 4$. Since $\nabla g = (2x, 2y, 4z)$, we have $\nabla g = o$ only if x = y = z = 0, and $[0, 0, 0] \notin M_1$. The second possibility leads to the system

$$1 + 2\lambda x = 0 \tag{1}$$

$$2\lambda y = 0 \tag{2}$$

$$4\lambda z = 0 \tag{3}$$

$$x^2 + y^2 + 2z^2 = 4. (4)$$

From the third equation we have either $\lambda = 0$ (contradiction with the first equation) or z = 0 (then xz > 1 cannot be true). So, there are no suspected points in M_1 . In M_2 : By the Lagrange multipliers theorem, either ∇g_1 , ∇g_2 are linearly dependend or $\nabla f + a \nabla g_1 + b \nabla g_2 = o$, where $g_1(x, y, z) = x^2 + y^2 + 2z^2 - 4$ and $g_2(x, y, z) = xz - 1$. The vectors (2x, 2y, 4z) and (z, 0, x) are linearly dependend only if y = 0, 2x = cz and 4z = cx, i.e. $c = \pm 2\sqrt{2}$ and $x = \pm \sqrt{2}z$. Since xz = 1 we have $x = \pm \sqrt[4]{2}$ and $z = \pm 1/\sqrt[4]{2}$. However, this contradicts $x^2 + y^2 + 2z^2 = 4$.

It remains to solve the system

$$1 + 2ax + bz = 0 \tag{5}$$

$$2ay = 0 \tag{6}$$

$$4az + bx = 0 \tag{7}$$

$$x^2 + y^2 + 2z^2 = 4 (8)$$

$$xz = 1. (9)$$

From the second equation we have either a = 0 or y = 0. If a = 0, the third equation yields b = 0 (contradiction with the first equation) or x = 0 (contradiction with the fifth equation). So, y = 0. Then we have $z = \frac{1}{x}$ and inserting this to the fourth equation we obtain

$$x^2 + \frac{2}{x^2} = 4.$$

This leads (multiply by $x^2 \neq 0$) to $x^4 - 4x^2 + 2 = 0$, which gives four solutions

$$x = \pm \sqrt{2 \pm \sqrt{2}}.$$

So, we have suspected points

$$\left[\pm\sqrt{2\pm\sqrt{2}},0,\frac{1}{\pm\sqrt{2\pm\sqrt{2}}}\right].$$

Obviously, f(x) = x is maximal in

$$\left[\sqrt{2+\sqrt{2}}, 0, \frac{1}{\sqrt{2+\sqrt{2}}}\right]$$

and minimal in

$$\left[-\sqrt{2+\sqrt{2}}, 0, -\frac{1}{\sqrt{2+\sqrt{2}}}\right].$$

The values of maximum resp. minimum are $\sqrt{2+\sqrt{2}}$, resp. $-\sqrt{2+\sqrt{2}}$.

Grading: 5 pts — existence of extrema (including some reasoning), 4 pts — M1 ($\nabla g = o$ 1 pt, system 3 pts), 9 pts — M2 (linear independence 4 pts, system 5 pts), 2 pts — final answer.