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Preface

This textbook is intended for Economy students of the Faculty of Social Sci-
ences CU as reference materials to the lecture Mathematics I–IV. We believe how-
ever that the text may also be useful for students of the Faculty of Maths and
Physics in their first two years. The somewhat unusual order of the chapters is
due to the needs of courses in microeconomics at FSS.

Theorems are numbered within chapters. If we wish to reference a theorem in
the same chapter we simply use the number of the theorem (e.g. Theorem 8). If
we reference a theorem in another chapter we also use the chapter number (e.g.
Theorem 5.26). The symbol � (or ♣) designates the end of a proof (or an example).

We would like to thank our colleagues from MFF UK P. Holickému, J. Kopáčkovi,
J. Spurnému, L. Zajíčkovi and the following students of FSS UK M. Hoerové‚
O. Kokešovi and J. Maškové for their advice and valued remarks which have im-
proved the text.
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CHAPTER 1

Sets, statements and numerical sets

In this chapter we would like to demonstrate how mathematical claims are for-
mulated and the basic methods of their proofs. Further we would like to specify
some terms you have already met at secondary school, like a statement, real num-
bers and so on, more precisely. Initially it may seem that this is a little unnecessary,
but already in the second chapter we will see that for example without an exact
definition of what a real number is some important claims cannot be proven.

1.1. Sets

The aim of this section is to repeat notation commonly used for work with sets
and to define the basic operations with sets. As we will tend to use very specific
sets we will not spend time on the question what a general set is. This problem
is at the boundary of mathematics and philosophy and therefore is not an easy
one to answer. For our purposes we will suffice with the (somewhat imprecise)
description: A set is any collection of distinct objects (which we call elements) into
a single whole.

The fact that the element a belongs to the set A, will be represented as a ∈ A.
We write a /∈ A to denote that a does not belong to A.

We may define a set by listing its elements or by specifying certain properties
that the elements must possess. In the first case we use the notation

{a, b, c, . . . },

where a, b, c, . . . are the elements of the set (e.g. {2, 3, 4, 5}), and in the second
case we write

{a ∈M ; a has the property V },
where M is some given set (e.g. {a ∈ N; a is smaller than 6}, while the symbol N
denotes the set of all natural numbers).

We say that a set A is part of a set B (or A is a subset of B), if all elements
of A are also elements of B. We express this by writing A ⊂ B and we call the
relationship between sets an inclusion.
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2 1. SETS, STATEMENTS AND NUMERICAL SETS

Two sets are equal (A = B), if they have the same elements, that is to say
A ⊂ B and B ⊂ A both hold simultaneously.

The empty set is the set, which contains no elements. We denote it with the
symbol ∅. The empty set is a subset of any other set.

We now define operations which create new sets from two (or more) other sets.
The union of the sets A and B is the set made of all elements that belong to

at least one of the sets A or B. The union of the sets A and B is denoted by the
symbol A ∪ B. This definition can be generalized to use any system of sets Aα,
where α is an index from some non-empty index set I (be it finite or infinite). We
define

⋃
α∈I Aα as the set of all those elements, which belong to at least one of the

sets Aα.
The intersection of two setsA andB is the set of those elements which belong

to A and B simultaneously. (Notice that the intersection of two non-empty sets
may also be an empty set.) If two sets have an empty intersection we call them
disjoint. The intersection of the sets A and B is denoted as A ∩ B. As before we
can generalize the term intersection to any system of sets Aα, α ∈ I , I 6= ∅. We
define

⋂
α∈I Aα as the set of elements that belong to all of Aα.

The difference of two sets A and B (we write A \ B) is the set of elements
which belong to A but not to B.

Let us define one more set operation: Let us have m sets A1, . . . , Am. The
Cartesian product of A1 ×A2 × · · · ×Am is the set of all ordered m-tuples{

[a1, a2, . . . , am]; a1 ∈ A1, . . . , am ∈ Am
}
.

In the Cartesian product operation one cannot (in general) interchange the or-
der of the sets because A×B 6= B ×A, if A 6= B.

IfA is a set and n is a natural number, then instead ofA× · · · ×A︸ ︷︷ ︸
n-times

we writeAn.

To finish the current section we will prove the following theorem.

Theorem 1 (de Morgan rules). Let us have the sets S, Aα, α ∈ I , where I 6= ∅.
Then

S \
⋃
α∈I

Aα =
⋂
α∈I

(S \Aα) and

S \
⋂
α∈I

Aα =
⋃
α∈I

(S \Aα).

Proof. Let us conduct a proof of the first of the given claims. Recall the definition
of the equality of two sets. We must prove two inclusions, i.e.

S \
⋃
α∈I

Aα ⊂
⋂
α∈I

(S \Aα) and simultaneously
⋂
α∈I

(S \Aα) ⊂ S \
⋃
α∈I

Aα.
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If x ∈ S \
⋃
α∈I Aα, then x belongs to S, but does not belong to the union⋃

α∈I Aα. Therefore x /∈ Aα for each index α ∈ I . This means for every α ∈ I
that x ∈ S \Aα, and so x ∈

⋂
α∈I(S \Aα). Thus we prove the first inclusion.

Let x ∈ S \Aα for each of the α. Then x ∈ S, but x /∈ Aα for all α. therefore
x /∈

⋃
α∈I Aα. Thus we see x ∈ S \

⋃
α∈I Aα, which proves the second inclusion.

Try to prove the second of the de Morgan rules yourself. �

1.2. Propositional calculus, mathematical proofs

A statement is any claim for which it makes sense to say that it either holds (is
true), or does not hold (is false). An example of a true statement is “2 < 3”, and ex-
ample of a false statement is “The number 2 is odd.”
Not every grammatically legible sentence is a statement. For example the sentence
“What will the weather be like tomorrow?” or “Let the natural number n be even.”
are not statements. Let us assign the number 1, to all true statements and the num-
ber 0 to untrue statements.

The negation of the statement A is the statement: “It is not true that A holds.”
We denote this new statement by nonA. The relationship between the truth of A
and nonA is given in the following table:

A nonA
0 1
1 0

The conjuctiuon of the statements A and B is the statement: “Both A and B
are true.” This statement is true if both A and B are true; in all other cases it is
false. We denote it as A & B. The table of its values is

A B A & B
0 0 0
0 1 0
1 0 0
1 1 1

The disjunction of A and B is the statement: “At least one of A or B holds.”
We denote this symbolically as A ∨ B. The statement A ∨ B is true if at least
of one A or B is true and is false if both A and B are false. The veracity of the
statement is given by the table

A B A ∨B
0 0 0
0 1 1
1 0 1
1 1 1
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A very important statement is: “If A holds, then B also holds.” This statement
can also be understood as “The statement A implies B.” This statement is always
true, except if A is true and B is false. It is called an implication, is denoted as
A⇒ B and its table is

A B A⇒ B
0 0 1
0 1 1
1 0 0
1 1 1

The statementA in the implication is called the assumption (or also the premise),
the statementB is called the conclusion. We can read implications as follows: “The
veracity of statement A guarantees the veracity of B.” The veracity of A is a suffi-
cient condition for the veracity of B. The veracity of B is a necessary condition
for the veracity of A.

We can use these basic operations to create more complicated statements. Let
us give two important examples.

The statement (A ⇒ B) & (B ⇒ A) is true if and only if both statements
A⇒ B and B ⇒ A are true.

The table of values is
A B (A⇒ B) & (B ⇒ A)
0 0 1
0 1 0
1 0 0
1 1 1

The statement we have just described is denoted by the symbol A ⇔ B; we
write A ⇔ B instead of (A ⇒ B) & (B ⇒ A). The statement A ⇔ B is
called equivalence. We read it as follows: “A holds if and only if B holds” or
“(The veracity of the statement) A is a necessary and sufficient condition for (the
veracity of) B.” Notice that A⇔ B is true exactly when both statements A and B
are simultaneously true or both false.

Let us also consider the statement (nonA) ∨ B. Now let us continue purely
mechanically by filling in the table of values:

A B nonA (nonA) ∨B
0 0 1 1
0 1 1 1
1 0 0 0
1 1 0 1

Because the table (nonA)∨B is the same as the table of the statementA⇒ B,
both of these statements are equivalent, that is to say (A⇒ B)⇔

(
(nonA) ∨B

)
is true.
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Example 2. Prove the equivalence of the statements A ⇒ B and (nonB) ⇒
(nonA).

Solution. The equivalence of the statements is obvious from the following table:

A B nonB nonA A⇒ B (nonB)⇒ (nonA)
0 0 1 1 1 1
0 1 0 1 1 1
1 0 1 0 0 0
1 1 0 0 1 1

♣

A predicate is an expression, from which we retrieve a statement by substi-
tuting an element from a given set into the form as a variable. (The statement may
depend on more than one variable – in this case the number of sets given must cor-
respond to the number of variables taken by the form.) For example, the following
expressions are prediactes:

“x < 10”, x ∈ {1, 2, 3, 4, 7, 8, 9, 10, 11}, (1)

“x < y”, x ∈ {−1, 0, 4, 6, 8}, y ∈ {4, 5, 6, 7, 8, 9}.

If we substitute x = 1 into the form (1) then we get a true statement, for x = 10
we get a false statement.

Generally we can write a prediacte as

A(x1, x2, . . . , xm), x1 ∈M1, x2 ∈M2, . . . , xm ∈Mm.

Now let A(x), x ∈ M , be a prediacte. If we say that: “For all x ∈ M it holds
that A(x).”, then we have a statement. (In case of the form (1) the statement is
untrue.) We may write this as

∀x ∈M : A(x).

The symbol ∀ is called the universal qualifier.
If we say that: “There exists an x ∈M such that A(x).”, Then we also retrieve

a statement. We write this as

∃x ∈M : A(x).

In the case of the form (1) this is a true statement. The symbol ∃ is called the
existential quantifier. Further we use the notation

∃!x ∈M : A(x),

Which we read as “There exists exactly one x ∈M such that A(x).”
If a prediacte has several variables then we may relate them to one another us-

ing quantifiers. This way we get new prediacte with fewer variables or statements.
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Let us have the prediacte V (x, y), x ∈M1, y ∈M2. Now we can create new forms
of a single variabley ∈M2 as follows:

∀x ∈M1 : V (x, y), ∃x ∈M1 : V (x, y).

We can create statements from these forms using another quantifier as follows:

∀y ∈M2 :
(
∀x ∈M1 : V (x, y)

)
, ∀y ∈M2 :

(
∃x ∈M1 : V (x, y)

)
,

∃y ∈M2 :
(
∀x ∈M1 : V (x, y)

)
, ∃y ∈M2 :

(
∃x ∈M1 : V (x, y)

)
.

We generally write the statements above as:

∀y ∈M2 ∀x ∈M1 : V (x, y), ∀y ∈M2 ∃x ∈M1 : V (x, y),

∃y ∈M2 ∀x ∈M1 : V (x, y), ∃y ∈M2 ∃x ∈M1 : V (x, y).

Similarly we write the statements, which contain three or more quantifiers. Let
us introduce some more notation. Let A and P be prediactes taking the variable
x ∈M . Then

∀x ∈M,P (x) : A(x) means the same as ∀x ∈M :
(
P (x)⇒ A(x)

)
,

∃x ∈M,P (x) : A(x) means the same as ∃x ∈M :
(
P (x) & A(x)

)
.

The first statement is read as “For every x ∈ M satisfying P the statement A(x)
holds.” The second statement is read as “There exists an x ∈M satisfying P such
that A(x) holds.” An example of statements of this type are the statements

∀x ∈ {1, 3, 20}, x > 10: A(x) or ∃x ∈ {1, 3, 20}, x > 10: A(x),

where A is a prediacte taking the variable x ∈ {1, 3, 20}.
In order to negate a statement containing quantifiers we change universal quan-

tifiers into existential and existential into universal a negate the prediacte. For ex-
ample

non
(
∀x ∈M1 ∃y ∈M2 ∀z ∈M3 : V (x, y, z)

)
is the same as

∃x ∈M1 ∀y ∈M2 ∃z ∈M3 : nonV (x, y, z).

The claim above can be verified from the two obvious following rules. Let V be a
prediacte of the variable x ∈M , then

non
(
∀x ∈M : V (x)

)
means the same as ∃x ∈M : nonV (x),

non
(
∃x ∈M : V (x)

)
means the same as ∀x ∈M : nonV (x).

The order of the quantifiers in some formulas can be interchanged at will as
the following example shows Let A(m, d) mean “The man m is the father of the
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child d.”, while we take m ∈ M , d ∈ D, where M is the set of men and D is the
set of children. An analysis of the statements

∃d ∈ D ∀m ∈M : A(m, d), ∀m ∈M ∃d ∈ D : A(m, d),

∃m ∈M ∀d ∈ D : A(m, d), ∀d ∈ D ∃m ∈M : A(m, d)

shows that the order of the quantifiers ∃ and ∀ is important.

Mathematical theories are made of definitions, theorems and proofs. The def-
initions determine the new terms, theorems communicate the properties of these
terms and the relationships between them. Mathematical theorems have assump-
tions and conclusions. The proofs of these theorems are sequences of consider-
ations that lead to the conclusion of the theorem. In our considerations we use
the assumptions and previously proven theorems. Only the existence of a logically
correct proof will allow us to use a theorem in our later deductions.

At the same time a graduate of a course of mathematics should gain the ability
to carry out considerations like: what could be said if a claim was true and what is
still unknown. Considerations like these are irreplaceable, especially when looking
for new results. It is necessary however to remain very critical, in order that one
doesn’t interchange one’s wish for a claim to be true with certainty of the claim
itself. One of the aims of this text is to cultivate this critical thinking of the reader
towards his reasoning.

Now we will demonstrate a few of the basic ways to prove mathematical theo-
rems. Let us assume that we have a mathematical theorem expressed as an implica-
tion, which is a very common scenario. We want to prove the implication A ⇒ B
for certain statements A and B.

Direct proof. By using the veracity of the statementA we show the veracity of
the statement C1, using C1 we show the veracity of C2, from which we show C3,
and so on until, using the veracity of Cn we show the statement B. We then have
discovered the following chin of implications

A⇒ C1, C1 ⇒ C2, C2 ⇒ C3, . . . , Cn−1 ⇒ Cn, Cn ⇒ B.

If we want to prove a theorem directly then we must find some appropriate in-
termediary terms C1, . . . , Cn, which lead from the assumptions to the conclusion.
Unfortunately there is no algorithm or general rule for how to find them in prac-
tice. Mathematics is a creative activity and without a certain degree of cunning one
cannot prove any new theorem.

Remark. In the following examples we will work with natural, whole, rational and
real numbers. So far we have sufficed with an intuitive understanding of them. In
the section 1.4 we define real numbers more precisely. For now let us recall that a
rational number is the quotient of a whole number with a natural number.
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Example 3 (Cauchy inequality). Let a1, . . . , an, b1, . . . , bn be real numbers. Then
it holds that (

n∑
i=1

aibi

)2

≤

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
. (2)

Proof. If all the numbers a1, . . . , an are equal to zero then we have equality in (2).
Let us therefore assume that at least one of the numbers a1, . . . , an is non-zero. Let
us consider the expression

n∑
i=1

(aix+ bi)
2, (3)

which can be written in the form(
n∑
i=1

a2i

)
x2 + 2

(
n∑
i=1

aibi

)
x+

(
n∑
i=1

b2i

)
.

The x2 coefficient is non-zero and the expression(3) is non-negative for any x real,
therefore the equation(

n∑
i=1

a2i

)
x2 + 2

(
n∑
i=1

aibi

)
x+

(
n∑
i=1

b2i

)
= 0

has at most one real root. The discriminantD of this quadratic equation is less than
or equal to zero. From here we see

D = 4

(
n∑
i=1

aibi

)2

− 4

(
n∑
i=1

a2i

)(
n∑
i=1

b2i

)
≤ 0,

which very simply gives (2). �

Indirect proof. This type of proof is based on the equivalence of the statements
A ⇒ B and nonB ⇒ nonA (see Example 2). If the second is true then so is the
first. Therefore it suffices to find any proof of the second statement.

Proof by contradiction. This method is based on the equivalence of the state-
ments A ⇒ B and non(A & nonB). In this method of proof we assume the
veracity of A & nonB. If we are able to deduce statement C, which we know to
be false, then A & nonB must also be false (one cannot deduce a false statement
from a true statement). It therefore holds that non(A & nonB), or A⇒ B.

Example 4. If the real number y solves the equation y2 = 2, then y is not rational.

Proof. Let y2 = 2 and let y be a rational number, i.e. y = p/q, where p is a whole
number and q is a natural number. Further we may assume that the numbers p
and q are indivisible. Our assumption implies that p2 = 2q2, and therefore p2 can
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be divided by two. >From here we see that p can be divided by two and therefore
p2 can be divided by four. Sincep2 = 4k, where k is a whole number, and using
our starting equation p2 = 2q2 we get that q2, and therefore also q, is divisible by
two. This is however a contradiction because we have proven that two indivisible
numbers p and q have a common factor 2. The equation y2 = 2 therefore has no
solution in rational numbers. �

Recall that the set of natural numbers is denoted by N. In our text we will not
consider 0 to be a natural number.

Mathematical induction. One can use this type of proof to show statements
of the following sort

∀n ∈ N : V (n), (4)

where V (n), n ∈ N is a prediacte. In the first step of mathematical induction we
show the veracity of the statement V (1). In the second step we prove the statement

∀n ∈ N : V (n)⇒ V (n+ 1),

that is we assume the veracity of V (n) (the so called induction hypothesis) and
deduce the veracity of V (n+ 1). >From these two steps we get the veracity of the
statement (4). The following example should shed light on the technique.

Example 5. Prove that for every n ∈ N it holds that
n∑
j=1

j2 =
1

6
n(n+ 1)(2n+ 1). (5)

Proof. For n = 1 the left hand side is equal to
∑1

j=1 j
2 = 1 and the right hand

side is 1
6 · 2 · 3 = 1. Therefore the statement holds for n = 1. Let us assume the

veracity of the relationship (5) for some fixed n, i.e.
n∑
j=1

j2 =
1

6
n(n+ 1)(2n+ 1).

We want to prove
n+1∑
j=1

j2 =
1

6
(n+ 1)(n+ 2)(2n+ 3). (6)

The left hand side of (6) can be written as

n+1∑
j=1

j2 =

(
n∑
j=1

j2

)
+ (n+ 1)2.
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but the sum on the right hand side can be calculated by the induction hypothesis.
By conducting some algebraic alterations we get

n+1∑
j=1

j2 =
1

6
n(n+ 1)(2n+ 1) + (n+ 1)2 =

1

6
(n+ 1)(n+ 2)(2n+ 3).

Thus the proof is concluded. �

1.3. Numerical sets

We will devote the two following sections to numbers. First let briefly us say
something about real numbers and make a short remark about complex numbers. In
the section 1.4 we will give a precise definition of the set of real numbers by formu-
lating three groups of properties which uniquely determine the set (the axiomatic
approach to real numbers).

We will denote the set of whole numbers as Z and the set of rational numbers
as Q. The set Q is already rather broad. All numerical calculations conducted by
computers are contained by it. Nevertheless there are still many good reasons to
enlarge it. One of those is to get a positive answer to the existence of the n-th root
of a non-negative number:

Does there exist, for any non-negative number x and any natural number n a
non-negative number y satisfying yn = x?

In Example 4 we have shown that the answer is negative in the realm of rational
numbers since the solution to the equation y2 = 2 cannot be a rational number.

A reasonable extension of the set Q is the set of real numbers, which we denote
as R. (The question of the existence of the n-th root of a non-negative number is in
the affirmative.) There are many ways how to conduct such an enlargement – in the
following section we assume the position that the extension has already been made
and characterize the set of real numbers by their properties, which we call axioms.

If anyone is interested in knowing more about how to enrich the set Q into R,
then it can be found in J. Kopáček: Matematická analýza nejen pro fyziky I, Mat-
fyzpress 2004. Because managing all such details is rather difficult we recommend
that the reader accepts our approach, at least for the time being.

One of the motivations for further extending the set of reals sets, would be to
find the roots of algebraic equations. Although the equation

x2 + 1 = 0

does not have roots in the set of reals, it does have roots in the set of complex
numbers, which are an extension of the reals.
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The set of complex numbers C is defined as the set of all objects of the type
a = a1 + a2i, where a1 a a2 are real numbers and i is the so called imaginary
unit. The number a1 is called the real part of the number a (we write Re a), and
the number a2 is the imaginary part (we write Im a).

If b = b1 + b2i, b1, b2 ∈ R, we define:

a+ b = (a1 + b1) + (a2 + b2)i,

a · b = (a1 · b1 − a2 · b2) + (a1 · b2 + a2 · b1)i,
a = a1 − a2i (the complex conjugate to the number a),

|a| =
√
a21 + a22 (absolute value of the complex number).

The precise introduction of the root is conducted in Theorem 14. We identify the
set of all complex numbers with imaginary part equal to zero with the set of real
numbers. The operations of addition and multiplication of complex numbers can
be simplified into the multiplication and addition of real numbers. It follows from
the definition of the multiplication of complex numbers that i2 = i · i = −1.

The following theorem shows the solubility of algebraic equations in the set
of complex numbers. The proof of this theorem is not simple and so we will not
include it.

Theorem 6 (fundamental theorem of algebra). Let n ∈ N, a0, . . . , an ∈ C, an 6=
0. Then the equation

anz
n + an−1z

n−1 + an−2z
n−2 + · · ·+ a1z + a0 = 0

has at least one solution z ∈ C.

In the following example we will summarize some of the properties of complex
numbers.

Example 7. Prove that:

(i) ∀z ∈ C : |z|2 = zz,
(ii) ∀z ∈ C : z = z,

(iii) ∀z1 ∈ C ∀z2 ∈ C : z1 + z2 = z1 + z2,
(iv) ∀z1 ∈ C ∀z2 ∈ C : z1z2 = z1 · z2,
(v) ∀z ∈ C : z ∈ R⇔ z = z.

Proof. (i) Let z ∈ C. Then we have the numbers a, b ∈ R such that z = a + bi.
Further it holds that

zz = (a+ bi)(a− bi) = a2 − abi+ abi− b2i2 = a2 + b2 = |z|2 .

(ii) This claim is obvious.
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(iii) Let z1, z2 ∈ C. Then we have the numbers a1, a2, b1, b2 ∈ R such that
z1 = a1 + b1i and z2 = a2 + b2i. It holds that

z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i =

= (a1 + a2)− (b1 + b2)i = a1 − b1i+ a2 − b2i =

= z1 + z2.

(iv) Let z1, z2 ∈ C. Then we have the numbers a1, a2, b1, b2 ∈ R such that
z1 = a1 + b1i and z2 = a2 + b2i. It holds that

z1z2 = (a1 + b1i)(a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i =

= (a1a2 − b1b2)− (a1b2 + a2b1)i,

z1 · z2 = (a1 + b1i) · (a2 + b2i) = (a1 − b1i)(a2 − b2i) =

= a1a2 − a1b2i− b1a2i− b1b2 = (a1a2 − b1b2)− (a1b2 + a2b1)i,

and the claim is proven.
(v) The claim is obvious.

�

1.4. The set of real numbers

The set of real numbers R can be described as the set on which we have
defined the operations addition and multiplication, which we will represent with
the usual symbols and the relation order (≤), which satisfy the following three
groups of properties.

I. Properties of addition and multiplication and their interdependence:
• ∀x, y ∈ R : x+ y = y + x (commutativity of addition),1

• ∀x, y, z ∈ R : x+ (y + z) = (x+ y) + z (associativity of addition),
• there exists an element of R (which we denote as 0 and call zero element),

such that for all x ∈ R we have x+ 0 = x,
• ∀x ∈ R ∃!y ∈ R : x+ y = 0 (y is the opposite number of x and we denote it

as −x),
• ∀x, y ∈ R : x · y = y · x (commutativity of multiplication),
• ∀x, y, z ∈ R : x · (y · z) = (x · y) · z (associativity of multiplication),
• there exists a non-zero element (which we will denote as 1 and call the identity

element) such that for all x ∈ R we have 1 · x = x,
• ∀x ∈ R \ {0} ∃!y ∈ R : x · y = 1 (this y we denote as x−1 or also 1

x ),

1The symbol “∀x, y ∈ R” means the same as “∀x ∈ R ∀y ∈ R”. We will use this convention
in the obvious way throughout the following.
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• ∀x, y, z ∈ R : (x+ y) · z = x · z + y · z (distributivity).

II. The order relation and its relationship to addition and multiplication:
• ∀x, y, z ∈ R : (x ≤ y & y ≤ z)⇒ x ≤ z (transitivity),
• ∀x, y ∈ R : (x ≤ y & y ≤ x)⇒ x = y (weak anti-symmetry),
• ∀x, y ∈ R : x ≤ y ∨ y ≤ x,
• ∀x, y, z ∈ R : x ≤ y ⇒ x+ z ≤ y + z,
• ∀x, y ∈ R : (0 ≤ x & 0 ≤ y)⇒ 0 ≤ x · y.

Convention. When we write x ≥ y it is the same as writing y ≤ x. By x < y we
imply the case where x ≤ y, but x 6= y (i.e. sharp inequality). Real numbers for
which x > 0 (or x < 0), will be called positive (or negative). Real numbers for
which x ≥ 0 (or x ≤ 0), will be called non-negative (or non-positive).

In the following, instead of writing a · b we will simply write ab and instead
of a + (−b) we will simply write a − b. Further we will use the usual notation
an = a · · · a︸ ︷︷ ︸

n-times

a a−n = 1/an, where n ∈ N. For a ∈ R, a 6= 0, we put a0 = 1.

The above listed properties are also held by the set of rational numbers, Q. In
order to formulate the final properties of real numbers which distinguish R from
Q, we will need the following definition.

Definition. We say that the set M ⊂ R is bounded from below, if there exists a
number a ∈ R such that for every x ∈M we have x ≥ a. Such a number a is called
a lower bound of the set M . Similarly we define a set as being a set bounded
from above and an upper bound. We say that the set M ⊂ R is bounded, if it is
bounded from above and below.

III. The infimum axiom:
LetM ⊂ R be a non-empty bounded set. Then there exists exactly one number

g ∈ R, which has the following properties:

(i) ∀x ∈M : x ≥ g,
(ii) ∀g′ ∈ R, g′ > g ∃x ∈M : x < g′.

We denote the number g with the symbol inf M and call it the infimum of M .

Remark. The infimum axiom says that one can always find a largest lower bound
to a non-empty set bounded from below. This remarkable axiom does not hold in
the set of rational numbers! More will be said about this in the section 1.5.

All the basic rules you learned at secondary school for making calculations
with real numbers can be deduced from these axioms. Let us show this on a few
examples.
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Theorem 8.
(i) ∀x ∈ R : x · 0 = 0 · x = 0,

(ii) ∀x ∈ R : − x = (−1) · x,
(iii) ∀x, y ∈ R : xy = 0⇒ (x = 0 ∨ y = 0),
(iv) ∀x ∈ R ∀n ∈ N : x−n = (x−1)n,
(v) ∀x, y ∈ R : (x > 0 & y > 0)⇒ xy > 0,

(vi) ∀x ∈ R, x ≥ 0 ∀y ∈ R, y ≥ 0 ∀n ∈ N : x < y ⇔ xn < yn.

Proof. (i) It holds that

x = 1 · x = (1 + 0) · x = 1 · x+ 0 · x = x+ 0 · x.
If we add to x = x+ 0 · x the number −x on both sides we get the required claim.

(ii) It holds that

0 = 0 · x = (1− 1) · x = 1 · x+ (−1) · x = x+ (−1) · x.
If in 0 = x+ (−1) · x we add −x to both sides then we get the claim.

(iii) If x = 0, then we are done. If x 6= 0, then there existsx−1 ∈ R and it holds
that

0 = x−1 · 0 = x−1(xy) = (x−1x)y = 1 · y = y.

(iv) Using the commutativity and associativity of multiplication we get

xn · (x−1)n = xn · (x−1 · · ·x−1︸ ︷︷ ︸
n-times

) = (x · x−1) · · · (x · x−1)︸ ︷︷ ︸
n-times

= 1 · · · 1 = 1.

(v) From the final axiom of the second group we get that xy ≥ 0. According to
(iii) however, we see that xy 6= 0, otherwise x or y would be 0. Together we have
xy > 0.

(vi) If n = 1, then the claim is obvious. If n > 1 then we can write

yn − xn = (y − x) · (yn−1 + yn−2x+ · · ·+ yxn−2 + xn−1).

If y > x, then both bracketed expressions are positive numbers and therefore it
holds that 0 < yn − xn, that is xn < yn.

Now let yn > xn. If y = x, then also yn = xn, which is a contradiction. In
case y < x, we get a contradiction from yn < xn, which we have already proven.

�

If we take a line, put a point on it, call it the origin, mark a unit of length and
designate a direction as positive, then we can identify this line with R. We often
talk about real numbers as points of the real axis.

Let a, b be two real numbers with, a ≤ b. The open interval (a, b) is the set
{x ∈ R; a < x < b}. The closed interval [a, b] is the set {x ∈ R; a ≤ x ≤ b}.
Similarly we define half-open intervals [a, b) and (a, b].

The number a (or b) in the definitions of intervals are called the left (or right)
endpoint of the interval. Endpoints may or may not be elements of the interval.
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So the endpoint a belongs to the intervals [a, b) and [a, b], but not to the interval
(a, b], nor to (a, b). It can be seen from our definitions that [a, a] is a set containing
the single point {a}, while (a, a) = ∅. A point which belongs to an interval, but is
not an endpoint is a so called interior point of the interval.

The intervals which we have just defined are bounded subsets of the real num-
bers. Further we define unbounded intervals

(a,+∞) = {x ∈ R; x > a},
[a,+∞) = {x ∈ R; x ≥ a},
(−∞, a) = {x ∈ R; x < a},
(−∞, a] = {x ∈ R; x ≤ a}

and finally we put (−∞,+∞) = R.
Since we have taken the stance that the real numbers R are specified by the

axioms I–III, then we should verify that the sets N, Z and Q are its subsets and that
the usual rules of arithmetic work there.

By repeatedly adding the real number 1 to 0 we get the set of naturals, N. If we
add zero and the opposite numbers of the the naturals to the naturals (the existence
of the opposites are guaranteed by the fourth property in group I), then we get the
set Z of all whole numbers. The products p(q−1), where p ∈ Z and q ∈ N, form
the set Q.

This idea is only a rough sketch of how to approach the proof of the claim,
it is not a detailed proof itself. We avoided checking that if we transfer the arith-
metic operations from R to those subsets then we get the usual operations on these
smaller sets.

A real number that is not a rational number is called an irrational number.
The set R \Q is called the set of irrational numbers.

Example 9. It holds that inf (0, 1) = 0.

Proof. We have to prove that the number 0 has the properties (i) and (ii) of the
infimum axiom, i.e. it is the greatest lower bound of the set (0, 1). By the definition
of the interval (0, 1) the number 0 is a lower bound and therefore we have (i). We
now choose any g′ ∈ R, g′ > 0. If we put g′ ≥ 1, then for x = 1

2 it holds that
x ∈ (0, 1) and x < g′. If g′ < 1, then we put x = g′

2 . Because x > 0 and x < 1,
we have that x belongs to the interval (0, 1) and x < g′. The number 0, therefore,
also has the property (ii). Hence we get inf (0, 1) = 0. �
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1.5. Implications of the infimum axiom and further
properties of R

The infimum axiom (axiom III from section 1.4) can be used to show the exis-
tence of the smallest upper bound of a non-empty set bounded from above.

Definition. Let M ⊂ R and G ∈ R. We say that the number G is the supremum
of the set M , if:

(i) ∀x ∈M : x ≤ G,
(ii) ∀G′ ∈ R, G′ < G ∃x ∈M : x > G′.

Theorem 10 (on the supremum). Let M ⊂ R be a non-empty set bounded from
above. Then there exists exactly one supremum of the set M .

Proof. Given a set M we create the set −M = {−x; x ∈ M}. This set is non-
empty and bounded from below. If A ∈ R is an upper bound of M , then −A is a
lower bound of −M . Therefore there exists inf (−M) = g. We put G = −g and
show that G is the supremum of the set M .

If x ∈ M , then −x ∈ −M and so g ≤ −x by the properties of the infimum.
>From here we see that x ≤ −g = G. The property (i) from the definition of
the supremum is therefore satisfied. We now choose any G′ ∈ R, G′ < G. Then
−G′ > −G = g and therefore by the second property of the infimum we have a
y ∈ −M with y < −G′. For every number y ∈ −M we have an x ∈ M , such
that −x = y, and so x = −y > G′. So condition (ii) from the definition of the
supremum holds too.

Now let us show uniqueness. Let H ∈ R have the properties (i) and (ii). If
H < G then by (ii) for G there exists x ∈ M , x > H . This is a contradiction
of property (i) for H however. Similarly if H > G, then by (ii) for H there exists
x ∈M , x > G. This is a contradiction of property (i) forG. ThereforeH = G. �

Remark. The supremum of the set M is denoted as supM . Notice that we have
observed above that supM = − inf (−M).

Definition. Let M ⊂ R. We say that a is the greatest element (maximum) of
the set M (we write maxM ), if a ∈ M and a is an upper bound of the set M .
Similarly we define the smallest element (minimum) of M , which we denote as
minM .

Remarks. 1. Notice that for every bounded non-empty set we have inf M ≤ supM .
Equality holds if and only if the set M is a singleton.
2. If the set M has a maximum then supM = maxM , if it has a minimum
then inf M = minM . For the interval (0, 1) it holds that inf (0, 1) = 0 and also
sup (0, 1) = 1, but the numbers 0 and 1 do not belong to the interval (0, 1) and this
set does not have a greatest or smallest element.
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Lemma 11. Let M ⊂ R and let

∀x, y ∈M ∀z ∈ R, x < z < y : z ∈M.

Then M is an interval.

Proof. If M = ∅, then the claim is obvious. If M is not bounded from below or
above then M = R = (−∞,+∞). If we take any number z ∈ R, then there
exists x ∈M , x < z (because M is not bounded from below) and also there exists
y ∈ M , y > z (because M is not bounded from above). By the assumption we
have therefore that z ∈M .

If M is bounded and non-empty then we put G = supM and g = inf M .
Then we have (g,G) ⊂M . So if z ∈ (g,G), then by the definition of the infimum
there exists an x ∈ M , such that x < z, and similarly by the definition of the
supremum there exists a y ∈ M , y > z. By our hypothesis we have z ∈ M .
Further M ⊂ [g,G], because g is a lower bound on M and G is an upper bound
on M . The set M is therefore the interval whose endpoints are g and G, and these
endpoints may or may not belong to M .

The other cases (i.e. M is bounded only from below or only from above) are
proven similarly. �

Theorem 12. For every r ∈ R there exists an integer part r, i.e. the number k ∈ Z
such that, k ≤ r < k + 1. The integer part of the number r is determined uniquely
and we denote it as [r].

Proof. Let r ∈ R. Denote M = {n ∈ Z; n ≤ r}. The number r is an upper bound
of the set M , and therefore M is bounded from above. Now we will prove that M
is non-empty. Let us assume that this is not true. Then for every n ∈ Z it holds
that n > r, and therefore the set Z is bounded from below. The set Z is non-empty
and so there exists an infimum g ∈ R of the set Z. Then for every n ∈ Z we have
n ≥ g. If n ∈ Z, then also n − 1 ∈ Z, and therefore n − 1 ≥ g. For every n ∈ Z
then it holds that n ≥ g + 1. The element g + 1 is therefore a lower bound of the
set Z, which is a contradiction with the assumption that g = inf Z. The set M is
therefore non-empty.

There exists therefore the supremum G ∈ R of the set M . By the definition of
the supremum there exists k ∈ M such that G − 1 < k. Then k + 1 > G, and so
k + 1 /∈M . Using this and the fact that k ∈M we see k ≤ r < k + 1.

Uniqueness is not hard to show. �

An interesting implication of the infimum axiom is the statement of the un-
boundedness of natural numbers from above. This statement is often referred to as
Archimedes’ axiom.

Theorem 13 (Archimedes’ axiom). For every x ∈ R there exists an n ∈ N, for
which x < n.
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Proof. The claim follows immediately from the previous theorem since it suffices
to put

n = max{1, [x] + 1}. �

Remark. An axiom is a claim that forms the basis of a theory and is something that
is not proven. >From the point of view of our approach, where we deduced Theo-
rem 13 from axiom III of the set R, it would be more correct to speak about Archimedes’
property. Let us note however that we can construct the same set R from a different
set of axioms than those axioms I, II a III, and one of the axioms used could be
exactly Archimedes’ property.

Theorem 14 (on the n-th root). For every x ∈ [0,+∞) and every n ∈ N there
exists exactly one y ∈ [0,+∞) satisfying yn = x.

Proof. If n = 1 or x = 0, the existence and uniqueness of y are clear. In the further
we will therefore assume that n > 1 and x > 0. Call

S = {z ∈ [0,+∞); zn ≥ x}.

This set is non-empty (max{1, x} ∈ S) and bounded from below (0 is a lower
bound). Call y = inf S. By Lemma 11 and Theorem 8 (vi) the set S is an interval,
and further we either have S = [y,+∞), or S = (y,+∞).

Assume that yn > x. Then we have y > 0 and we can choose h ∈ R such that

0 < h < min

{
y,
yn − x
nyn−1

}
. (7)

Then we have y − h > 0 and

(y − h)n = yn − (yn − (y − h)n) =

= yn − h
(
yn−1 + yn−2(y − h) + · · ·+ y(y − h)n−2 + (y − h)n−1

)
>

> yn − hnyn−1 > yn − (yn − x) = x.

It therefore holds that y − h ∈ S. Then, however, y is not a lower bound of the
set S, which is a contradiction.

Now let us assume that yn < x. Choose h ∈ R such that

0 < h < min

{
x− yn

n(y + 1)n−1
, 1

}
. (8)

Then we have

(y + h)n = yn + ((y + h)n − yn) =

= yn + h
(
(y + h)n−1 + (y + h)n−2y + · · ·+ (y + h)yn−2 + yn−1

)
<

< yn + hn(y + 1)n−1 < yn + (x− yn) = x.
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Then it holds that y+h /∈ S. On the other hand y+h ∈ S, because S = [y,+∞), or
S = (y,+∞). Thus we arrive at a contradiction. Therefore we must have yn = x.
(Notice that this implies that S = [y,+∞).)

Uniqueness is guaranteed by claim (vi) in Theorem 8. �

Remark. The reader may well be surprised by the choice of upper bounds for h
in the expressions (7) and (8). Let us now try to explain how we came to the es-
timate (7). We want to choose the number h in such a way that y − h > 0 and
also (y − h)n > x. In order to satisfy the first of these requirements it suffices
to have h < y. Satisfying the second is somewhat harder however because we do
not see straight away from the required inequality(y − h)n > x what condition
on h will be able to guarantee this. In the proof we estimate (y − h)n from be-
low by the expression yn − hnyn−1, for which we can easily find all h such that
yn − hnyn−1 > x. This is satisfied if h < yn−x

nyn−1 . For such h, obviously we will
also have (y − h)n > x.

Notice also that the inequality (y − h)n > x cannot be rewritten as y − h >
n
√
x, because, as yet, we have not yet proven the existence of the n-th root so the

expression n
√
x cannot be used in the proof.

Further remarks. 1. The number y from Theorem 14 is called the n-th root of the
number x and we write is as n

√
x. Instead of 2

√
x we usually write

√
x. It is not hard

to deduce the well known rules for calculating with roots.
2. Let x ∈ R, x > 0, and p, q ∈ N. The expression xp/q represents the number
q
√
xp and the expression x−p/q represents the number 1/xp/q. It can be shown that

if p′, q′ ∈ N are such that p′/q′ = p/q, then xp
′/q′ = xp/q.

3. If x ∈ R, x < 0, and n ∈ N is odd, then we define n
√
x = − n

√
−x. Truly then

( n
√
x)n = (− n

√
−x)n = −( n

√
−x)n = −(−x) = x.

Now we can easily see that the set of irrational numbers is non-empty. By
Theorem 14 we have a number

√
2 ∈ R. We have proven in Example 4, there is no

rational number satisfying y2 = 2. Therefore we have
√

2 ∈ R \Q.
A very important implication of Theorem 13 is the theorem, that states that

every real number can be approximated by a rational number with error as small as
required. Notice that this is a result of the following fact.

Theorem 15 (on the density of Q and R\Q in R). Let a, b ∈ R, a < b. Then there
exists r ∈ Q satisfying a < r < b and s ∈ R \Q satisfying a < s < b.

Proof. By Theorem 13 for every number 1/(b − a) there exists a number n ∈ N
such that 1/(b − a) < n. Therefore na + 1 < nb. It now suffices to put r =
([na] + 1)/n.

Further, using what we have already proven there exists a rational number r′ ∈
(r, b). Put s = r + (r′ − r)/

√
2. �
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Remark. >From the proof of Theorem 14 and from Theorem 15 it follows that
√

2 = inf {y ∈ [0,+∞) ∩Q; y2 ≥ 2}.
We know however that

√
2 is not rational and therefore the infimum axiom does

not hold in the set of rational numbers.

Definition. For every x ∈ R we define the absolute value of x as

|x| = max{x,−x}.
Therefore |x| = x, if x ≥ 0, and |x| = −x, if x ≤ 0.

Remarks. 1. For every x ∈ R we have:
(i) |x| ≥ 0,

(ii) |x| = 0⇔ x = 0,
(iii) |x| = |−x|,
(iv) ∀λ ∈ R : |λx| = |λ| |x|.
2. Geometrically we can interpret |x| as the distance of the point x from the
origin on the real axis. The expression |x− y| is called the distance of the point x
from the point y.

3. Let x ∈ R. Let us consider
√
x2. First of all we see by Theorem 14 on the n-th

root that
√
x2 exists. It is a non-negative number and its second power is equal to

x2. Such a number is |x|, because |x|2 = |x| |x| =
∣∣x2∣∣ = x2. This number is

(again by the statement on the n-th root) uniquely determined. Therefore we get√
x2 = |x|.

Remark. Notice that the set M ⊂ R is bounded if and only if there exists some
K ∈ R such that for all x ∈M it holds that |x| ≤ K.

Theorem 16 (triangle inequality). For every a, b ∈ R it holds that

|a+ b| ≤ |a|+ |b| . (9)

Proof. Obviously − |a| ≤ a ≤ |a| a − |b| ≤ b ≤ |b|. By adding the inequalities we
get −(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|, which is equivalent to the inequality (9). �

Corollary 17. (i) For every x, y ∈ R we have∣∣|x| − |y|∣∣ ≤ |x− y| . (10)

(ii) For every x, y, z ∈ R we have

|x− y| ≤ |x− z|+ |z − y| .

Proof. (i) In (9) put a = y, b = x − y and subsequently put a = x, b = y − x.
From which you can retrieve (10) independently.

(ii) This inequality is often also called the triangle inequality. The proof is easy,
in (9) we put a = x− z, b = z − y. �



1.5. IMPLICATIONS OF THE INFIMUM AXIOM AND FURTHER PROPERTIES OF R 21

Solved exercises are intended to improve the reader’s orientation in section 1
concerning the infimum and supremum of a set. Below you can find exercises
which review secondary school knowledge and several exercises about the supre-
mum and infimum.

Example 18. Find the supremum and infimum of the set

M =
{m
n

; m ∈ N, n ∈ N, m < n
}
.

Solution. We often try to solve exercises on finding the supremum and infimum
of non-empty bounded sets of real numbers by “guessing” the answer and then
later checking that we were right by verifying the properties of the infimum or
supremum. There is no general way to find the supremum or infimum.

Let us consider the setM , and make the estimate that supM = 1 and inf M =
0. Let us now prove this.

We want to prove that the number 1 has both of the properties from the def-
inition of the supremum. The assumption that m < n, immediately gives that
m/n < 1, and the number 1 is therefore an upper bound of the set M . Let us now
choose any number A < 1. We want to prove that A is not an upper bound of the
set M , that is that there exists an element a ∈ M , for which we have a > A. We
look for our number in the form n/(n+1). (All numbers of this form belong to the
set M .) >From the requirement n/(n + 1) > A we get that the natural number n
must satisfy the condition n > A/(1 − A). Such an n must exist however thanks
to Archimedes’ axiom. We have proven that the number 1 is the supremum of the
set M . In our proof we have used Theorem 15.

The number 0 is a lower bound of the set M – all of its elements are positive.
In order to show that the number B > 0 cannot be a lower bound of the set it
suffices to realize that there exists a natural n such that 1/n < B. The number
1/n, however, is an element of M . ♣

Example 19. Find the supremum and infimum of the set

M =

{
n+ 1

n
; n ∈ N

}
.

Solution. Looking at the elements of the set M for n = 1, 2, 3, . . . , we notice that
they are the numbers 2, 3/2, 4/3, . . . It seems that supM = 2 a inf M = 1. Let
us check this.

The number 2 is an upper bound of the set M – the inequality (n+ 1)/n ≤ 2
is equivalent with the inequality 1 ≤ n. If A < 2, then there exists an element
of the set M , which is bigger than A – and that number is 2. Therefore supM =
maxM = 2.

For every n ∈ N we have (n + 1)/n > 1. In order to prove that the number 1
is the largest lower bound we choose A > 1 and try to find n ∈ N satisfying (n+
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1)/n < A. We easily see that such an n exists by Archimedes’ axiom. Therefore
we have inf M = 1. ♣

1.6. Exercises

In this section we assume secondary-school level knowledge of the reader on
trigonometric functions, the natural logarithm (log),the decimal (log10) and the
exponential function. These functions are introduced precisely in the section 4.3.

Solve the following equations and inequalities in the set of real numbers.
1.
√

6x+ 7 = 2x− 1 2. 3 +
√
x− 1 >

√
2x

3.
∣∣∣∣3x− 1

x+ 5

∣∣∣∣ ≤ 1 4.
log(3x− 5)

log(x− 1)
= 2

5. cosx = −1/2 6. sin 2x+ cos 2x = 1 + tg x

7. 3 tg2 x− 4
√

3 tg x ≥ −3 8. cosx+ cotg x = 1 + sinx

9. log10(x+ 3) + log10(x− 2) = 2− log10 2

10. Is there a x ∈ Q such that 22x · 3x = 144?
Solve the following inequalities with the parameter a ∈ R.

11.
x+ a

x
≤ x+ 2 12.

√
x+ a < x

Solve the following exercises and represent their solutions graphically in R2.
13. sin y = cosx 14. x2 + y2 ≤ 4 & x+ y2 > 1

15.
√
x2 + 4y2 − 9 > x

16. Let M denote the set of all men and W denote the set of all women. Consider
the following predicate, where m ∈M , w ∈W :

S(m,w) : “The man m is the husband of the woman w.”,

L1(m,w) : “The man m loves the woman w.”,

L2(m,w) : “The woman w loves the man m.”

Using quantifiers, logical conjunctions and the forms S, L1, L2 express the follow-
ing claims:

(i) Every married man loves his wife.
(ii) There exists an unfaithful wife.

(iii) Every woman loves some man.
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17. Find the supremum and infimum of the set

M =

{
(−1)n · n

n+ 1
; n ∈ N

}
.

18. Find the supremum and infimum of the set M = (0, 1) ∪ {−1, 2}.

Solutions

1. x = 3 2. x ∈ [1, 50) 3. x ∈ [−1, 3] 4. x = 3 5. x = 2π/3 + 2kπ,
x = −2π/3 + 2kπ, k ∈ Z 6. x = kπ, x = π(4k + 1)/8, k ∈ Z
7. x ∈ (−π/2 + kπ, π/6 + kπ] ∪ [π/3 + kπ, π/2 + kπ), k ∈ Z
8. x = π/4 + kπ, x = 3π/2 + 2kπ, k ∈ Z 9. x = 7 10. Ano, x = 2.
11.

a ≤ −1/4 x ∈ (0,+∞)

−1/4 < a < 0 x ∈
[(
−1−

√
1 + 4a

)
/2,
(
−1 +

√
1 + 4a

)
/2
]
∪ (0,+∞)

a = 0 x ∈ [−1, 0) ∪ (0,+∞)

a > 0 x ∈
[(
−1−

√
1 + 4a

)
/2, 0

)
∪
[(
−1 +

√
1 + 4a

)
/2,+∞

)
12.

a < −1/4 x ∈ [−a,+∞)

−1/4 ≤ a < 0 x ∈
[
−a,

(
1−
√

1 + 4a
)
/2
)
∪
((

1 +
√

1 + 4a
)
/2,+∞

)
a ≥ 0 x ∈

((
1 +
√

1 + 4a
)
/2,+∞

)
13. y = −x+ π/2 + 2kπ, y = x+ π/2 + 2kπ, x ∈ R, k ∈ Z
16. (i) ∀m ∈M ∀w ∈W : S(m,w)⇒ L1(m,w)
(ii) ∃w ∈W ∃m1,m2 ∈M : m1 6= m2 & S(m1, w) & L2(m2, w)
(iii) ∀w ∈W ∃m ∈M : L1(m,w)

17. supM = 1, inf M = −1 18. supM = 2, inf M = −1





CHAPTER 2

Sequences of real numbers

2.1. Convergence of sequences

Definition. If to every natural number n we assign a real number an, then we call
{an}∞n=1 a sequence of real numbers. The number an is called the n-th term of
this sequence. The sequence {an}∞n=1 equals the sequence {bn}∞n=1, if an = bn for
every n ∈ N. In the following we will sometimes use the notation {an} instead of
{an}∞n=1.

The set of all terms of a sequence {an}∞n=1 is the set

{x ∈ R; ∃n ∈ N : x = an}.

Remark. It is necessary to distinguish between the sequences {an}∞n=1 and the
set of the elements of the sequence. For example the set of the elements of the
sequence {(−1)n} is {−1, 1}.

Example 1. The sequences {n}, {1/n}, {(−1)n} are given explicitly. A sequence
may also be specified as follows: a1 = 1, an+1 = (n + 1)an, n ∈ N. This is an
example of a sequence defined recurrently. It can easily be checked by mathemat-
ical induction that an = 1 · 2 · · · (n− 1) ·n. We denote this number as n! (and read
it as n factorial). It is advantageous to make the definition 0! = 1.

Definition. We say that the sequence {an} is

• bounded from above , if the set of its elements is bounded from above,
• bounded from below, if the set of its elements is bounded from below,
• bounded, if the set of the elements of this sequence is bounded.

Definition. We say that the sequence {an} is

• non-decreasing, if an ≤ an+1 for every n ∈ N,
• increasing, if an < an+1 for every n ∈ N,
• non-increasing, if an ≥ an+1 for every n ∈ N,
• decreasing, if an > an+1 for every n ∈ N.

The sequence {an} is monotone, if it satisfies one of the previous conditions. The
sequence {an} is strictly monotone, if it is increasing or decreasing.

25
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Realize that the fact that a sequence is not decreasing does not mean that it is
non-decreasing.

One of the important aspects of sequences which is often investigated is their
asymptotic behavior for n “growing above all bounds”. Consider the sequence of
real numbers {an}, where an = 1 + (−2/3)n for n ∈ N. The following picture
shows the behavior of some of the first terms of this sequence.

FIGURE 1.

It can easily be noticed that the terms of the sequence {an} approaches the
number 1 as n “grows”. This intuitive idea can be expressed using exact mathe-
matical terms.

Definition. Let x0 ∈ R, ε ∈ R, ε > 0. The neighborhood of the point x0 of
radius ε denotes the set

B(x0, ε) = {x ∈ R; |x− x0| < ε}.

Remark. The neighborhood B(x0, ε) is actually the set of points on the real line
whose distance from the point x0 is smaller than the given positive number ε. It
holds that

B(x0, ε) = (x0 − ε, x0 + ε).

Definition. We say that the sequence {an} has the limit equal to the real numberA,
if it holds that

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an ∈ B(A, ε).

Further wee will say that the sequence {an} is convergent, if there exists an A ∈
R, which is the limit of {an}.

In the previous definition the idea of the sequence {an} “approaching” to the
number A is understood as follows: whenever we choose a positive ε ∈ R, then
there must exist an index n0 ∈ N such that, for all indexes n ∈ N, which are greater
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or equal to n0, it holds that an belongs to the interval (A− ε,A+ ε). The given n0
will depend on the choice of ε, in general (see the following two pictures).

FIGURE 2. FIGURE 3.

Theorem 2 (uniqueness of the limit). Every sequence has at most one limit.

Proof. Let A,B ∈ R be two limits of the same sequence {an}. Choose ε > 0. By
the definition of the limit there exist natural numbers nA, nB such that for every
index n ∈ N, n ≥ nA, we have |A− an| < ε/2 and for every n ∈ N, n ≥ nB , we
have |B − an| < ε/2.

Choose n0 = max{nA, nB}. For indexes n ≥ n0 both of the prvious inequal-
ities hold simultaneously, and therefore, by the triangle inequality, we have

0 ≤ |A−B| ≤ |A− an0 |+ |B − an0 | < ε/2 + ε/2 = ε.

Because |A−B| < ε for every ε, we see that |A−B| = 0, therefore A = B. �

The previous theorem allows us to introduce the following notation. If the se-
quence {an} has a limit, then we denote it by the symbol lim

n→∞
an or simply lim an.

Example 3. Prove that lim 1/n = 0.

Proof. Choose ε > 0. We are to prove that there exists an n0 such that for all
n ≥ n0 we have −ε < 1/n < ε. The inequality on the left −ε < 1/n is satisfied
for all n natural. The right inequality 1/n < ε is satisfied if and only if n > 1/ε.
It suffices, therefore, to choose n0 as any natural number greater than 1/ε, because
for n ≥ n0 we have1/n ≤ 1/n0 < ε. Such a natural number n0 must exist by
Archimedes’ axiom (Theorem 1.13). �

Example 4. Prove that the sequence {(−1)n} is not convergent.

Proof. Let us conduct our proof by contradiction. Let us assume that lim(−1)n =
A ∈ R. Choose ε = 1/4. Bn the definition of the limit there exists an n0 ∈ N such
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that for all natural numbers n ≥ n0 we have |A− (−1)n| < 1/4. By using the
triangle inequality we get

2 =
∣∣(−1)n0 − (−1)n0+1

∣∣ ≤ |(−1)n0 −A|+
∣∣A− (−1)n0+1

∣∣ <
< 1/4 + 1/4 = 1/2,

which is a contradiction. �

Remark. In Example 3 we verified the limit of the number 0, which we “guessed”
is in fact the limit of the sequence {1/n}. In the following example we used the
definition to prove that the limit of the sequence {(−1)n} cannot exist. The defini-
tion does not, however, tell us how we should go about finding the limit itself. We
will therefore now try, in the following sections, to build a simple theory, whose
theorems will clarify the basic properties of the limit and will sometimes be useful
in calculating the limit of specific examples.

Example 5. Prove that lim an = a, if and only if lim |an − a| = 0.

Proof. By the definition of the limit it holds that lim an = a, if and only if

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an − a| < ε,

and lim |an − a| = 0, if and only if

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 :
∣∣|an − a| − 0

∣∣ < ε.

Now the properties of the absolute value imply the desired equivalence. �

Theorem 6. Every convergent sequence is bounded.

Proof. Denote lim an = A ∈ R. Then there exists an n0 ∈ N such that for all
n ∈ N, n > n0, we have A− 1 < an < A+ 1. Put h1 = max{|A− 1| , |A+ 1|}.
It holds that

∀n ∈ N, n > n0 : |an| ≤ h1. (1)
Let h2 = max{|a1| , |a2| , . . . , |an0 |}. It holds that

∀n ∈ {1, 2, . . . , n0} : |an| ≤ h2. (2)

For h = max {h1, h2} it follows from (1) and (2):

∀n ∈ N : |an| ≤ h
and the sequence {an} is bounded. �

Remark. A bounded sequence may non-convergent. An example is the sequence
{(−1)n}.

Definition. Let {an}∞n=1 be a sequence of real numbers. If {nk}∞k=1 is an in-
creasing sequence of natural numbers, then {ank}∞k=1 is called a subsequence
of {an}∞n=1 or also chosen sequence of the sequence {an}∞n=1.
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Theorem 7. Let {ank}∞k=1 be a subsequence of the sequence {an}∞n=1. If lim
n→∞

an =

A ∈ R, then also lim
k→∞

ank = A.

Proof. Choose ε > 0. Then there exists an n′ ∈ N such that

∀n ∈ N, n ≥ n′ : |A− an| < ε.

Then for all k ≥ n′ we have nk ≥ n′, and therefore |ank −A| < ε and the theorem
has been proven. �

Remark. The previous theorem allows us to prove the claim about the non-existence
of the limit lim(−1)n differently than we did in Example 4. If we denote an =
(−1)n, n ∈ N, Then lim

k→∞
a2k = 1 and also lim

k→∞
a2k+1 = −1. This means that if

lim(−1)n = A ∈ R, then 1 = A and −1 = A, which is a contradiction.

Remark. Let m0 ∈ N a lim an = A ∈ R. If we have, for a sequence {bn}, that
an = bn for all n ∈ N, n ≥ m0, then also lim bn = A. This can be easily seen from
the definition of the limit. If we choose ε > 0, then we can find the corresponding
n0 ∈ N satisfying

∀n ∈ N, n ≥ n0 : |an −A| < ε.

For all natural n ≥ max{m0, n0} then it holds that

|bn −A| = |an −A| < ε.

The above statement can be formulated also as follows: if we change a finite num-
ber of terms of a convergent sequence then the newly formed sequence will have
the same limit since the two sequences equal each other after a certain given index.

Definition. Let {an} and {bn} be two given sequences. We define
• the sum (or difference) of these sequences as

{an} ± {bn} = {an ± bn},
• the product of there sequences as

{an} · {bn} = {an · bn},
• the quotient of these sequences as

{an}/{bn} = {an/bn},
where the last is only defined if bn 6= 0 for all n ∈ N.

Theorem 8 (arithmetic of the lmit). Let lim an = A ∈ R and lim bn = B ∈ R.
Then

(i) lim (an + bn) = A+B,
(ii) lim (an · bn) = A ·B,

(iii) if B 6= 0 and bn 6= 0 then for all n ∈ N, we have lim(an/bn) = A/B.
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Remark. The theorem says that if its hypothesis are satisfied, the limit of the sum
(product, quotient) of two sequences equals the sum (product, quotient) of the limit
of these sequences.

Proof of Theorem 8 (iii). Let us restrict ourselves to the proof of the statement
about the limit of the quotient, which is the most complicated. We have to prove
that

∀ε ∈ R, ε > 0 ∃m ∈ N ∀n ∈ N, n ≥ m :

∣∣∣∣anbn − A

B

∣∣∣∣ < ε. (3)

We can use the estimates on the difference |an −A| and |bn −B| – and we know
these are small for large n ∈ N. Our task then is to find an estimate of the absolute
value in (3) by a suitable expression in which we can use the smallness of the differ-
ences |an −A| a |bn −B|. By putting the expression over a common denominator
and adding zero in a clever way, i.e. (0 = −AB +AB) we get∣∣∣∣anbn − A

B

∣∣∣∣ =

∣∣∣∣anB − bnAbnB

∣∣∣∣ =

∣∣∣∣anB −AB +AB −Abn
bnB

∣∣∣∣ .
Now we use the triangle inequality on the inequality we got. We get∣∣∣∣anbn − A

B

∣∣∣∣ ≤ ∣∣∣∣anB −ABbnB

∣∣∣∣+

∣∣∣∣AB −AbnbnB

∣∣∣∣ =

=
1

|bn|
|an −A|+

|A|
|bn| |B|

|bn −B| .
(4)

The right hand side of this equation contains “small” differences |an −A| and |bn −B|,
the question now is whether the factors 1/ |bn| and |A| /(|bn| |B|) cannot “spoil”
this in some way. But because |A| / |B| is a real number, it suffices to think how
the factor 1/ |bn| behaves as n grows . By the definition of the limit and from the
inequality (i) from Corollary 1.17 we have, for the number |B| /2, an n0 ∈ N such
that for all n ≥ n0 it holds that

|B| − |bn| ≤
∣∣|B| − |bn|∣∣ ≤ |B − bn| < |B| /2.

>From here it follows for n ≥ n0 that 1/ |bn| < 2/ |B|. We use this estimate in the
inequality (4) and if we put K = max{2/ |B| , 2 |A| /|B2|}, then we have

∀n ∈ N, n ≥ n0 :

∣∣∣∣anbn − A

B

∣∣∣∣ ≤ 2

|B|
|an −A|+

2 |A|
|B2|

|bn −B| ≤

≤ K · (|an −A|+ |bn −B|).
(5)

Let now ε > 0. There exist numbers n1 ∈ N, n2 ∈ N such that

∀n ∈ N, n ≥ n1 : |an −A| <
ε

2K
, (6)

∀n ∈ N, n ≥ n2 : |bn −B| <
ε

2K
. (7)
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Putm = max {n0, n1, n2}. For n ≥ mwe have that the inequalities (5), (6) and (7)
hold simultaneously. Therefore we have

∀n ∈ N, n ≥ m :

∣∣∣∣anbn − A

B

∣∣∣∣ < K ·
( ε

2K
+

ε

2K

)
= ε.

Thereby the statement (iii) of Theorem 8 proven. �

Remark. We have conducted the previous proof very thoroughly – which we will
not always do, sometimes we will omit the proof completely. Mostly this will be
for proofs that the reader could “think up” by themselves. If we leave out a harder
proof, based on deeper ideas we will always draw attention to this fact. Try to prove
statements (i) and (ii) from the previous theorem yourself.

Example 9. Theorem 8 answers the question of the limit of the product only when
both sequences are convergent. There is no true general claim about the case where
one or both of the sequences diverge. Let us look at some specific examples:

• For {an} = {(−1)n}, {bn} = {(−1)n} it holds that lim anbn = 1.
• For {an} = {n2} and {bn} = {1/n} it holds thatlim anbn = limn is not

equal to any real number. This can be seen immediately from Theorem 6,
because the sequence {n} is not bounded.
• For {an} = {n} and {bn} = {1/n2} it holds that lim anbn = lim 1/n = 0.

Think about similar examples for other arithmetic operations and try and construct
some similar examples.

Example 10. Calculate lim
n3 + n

2n3 + 1
.

Solution. The sequences {n3 +n} and {2n3 + 1} are not convergent because they
are not bounded. Therefore we cannot use the theorem on the limit of the quotient
directly. For large n the number n3 will be much larger than n, in the expression
n3 + n the “dominant role” will therefore be played by the term n3. Similarly, in
the expression 2n3 + 1 the “dominant role” will be played by the term 2n3. We
will use this observation in the following calculation.

lim
n3 + n

2n3 + 1
= lim

n3
(
1 + 1

n2

)
n3
(
2 + 1

n3

) = lim
1 + 1

n2

2 + 1
n3

=
1

2
.

The final equality follows from Theorem 8 and from the Example 3. ♣

Sometimes the following result is useful.

Theorem 11. Let lim an = 0 and let the sequence {bn} be bounded. Then it holds
that lim anbn = 0.
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Proof. Because {bn} is bounded there exists a positive number K ∈ R, such that
|bn| < K for all natural n. Choose ε > 0. Because lim an = 0, given ε/K we can
find a number n0 ∈ N such that fir all natural n ≥ n0 we have |an| = |an − 0| <
ε/K. For all n ≥ n0 therefore

|anbn − 0| = |anbn| = |an| |bn| < (ε/K) ·K = ε.

We have proven that for every ε > 0 there exists an n0 ∈ N such that for every
natural n ≥ n0 we have |anbn − 0| < ε. That means, by the very definition of the
limit, that lim anbn = 0. �

Example 12. By the previous theorem it holds that lim sinn
n = lim

(
1
n · sinn

)
= 0.

The previous theorems have put into context the limit and operation on the
real numbers. Now we will look at the relationship between the limit and the order
relation.

Theorem 13. Let lim an = A ∈ R and lim bn = B ∈ R.
(i) Let there exist an n0 ∈ N such that for all natural n ≥ n0 it holds that

an ≥ bn. Then A ≥ B.
(ii) Let A < B. Then there exists an n0 ∈ N such that for all natural n ≥ n0 we

have an < bn.

Proof. Statement (i) is a corollary of statement (ii).
In order to prove (ii), we choose ε = (B − A)/2. >From the definition of the

limit it follows that there exists a natural number n0, for which we have

∀n ∈ N, n ≥ n0 : an < A+ (B −A)/2 = B − (B −A)/2 < bn.

�

Theorem 14 (squeeze theorem). Let {an}, {bn} be two convergent sequences
and {cn} be such a sequence that:

(i) there exists an n0 ∈ N such that for all n ∈ N, n ≥ n0, it holds that an ≤
cn ≤ bn,

(ii) lim an = lim bn.
Then lim cn exists and it holds that lim cn = lim an.

Proof. Denote lim an = A. For any given number ε > 0 there exists an n1 ∈ N
such that for n ≥ n1 it holds that

A− ε < an < A+ ε and A− ε < bn < A+ ε.

>From here and from hypothesis (i) it follows for n ≥ max{n0, n1}
A− ε < an ≤ cn ≤ bn < A+ ε,

therefore cn ∈ B(A, ε). �
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2.2. Infinite limits

Besides the case where the terms of a sequence approach a real number A, it
makes sense to consider other possible behavior of sequences.

Definition. We say that the limit of the sequence {an} is +∞ (we read plus infin-
ity), if

∀L ∈ R ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an > L.

We say that the limit of the sequence {an} is −∞ (we read minus infinity), if

∀K ∈ R ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an < K.

The theorem on the uniqueness of the limit holds also in the case that the limit
may be plus or minus infinity.

Theorem 15 (uniqueness of the limit of sequence). Every sequence has at most
one limit.

Proof. Let us have the sequence {an}. We have shown that at most one real number
can be the limit of the sequence {an}. It suffices to show that none of the following
cases can occur:

(i) the sequence {an} is convergent and simultaneously has the limit +∞,
(ii) the sequence {an} is convergent and simultaneously has the limit −∞,

(iii) the sequence {an} has the limit +∞ and simultaneously −∞.

Let us assume case (i) occurs. According to Theorem 6 there exists an L ∈ R
such that an ≤ L for every n ∈ N. Because the sequence {an} has the limit +∞,
there exists an n0 ∈ N such that for every n ≥ n0 we have an > L, which is a
contradiction. Check yourself that none of the remaining possibilities can occur.

�

Remark. We also use the symbol lim an to denote the value of the limit of the
sequence (if it exists). We can differentiate the behavior of a given sequence as
follows:

lim an

 exists and is

{
real, that is equal to a real number,
infinite, that is equal to +∞ or −∞,

does not exist.

Example 16. Let us show that limn2 = +∞. Choose L ∈ R. According to
Theorem 1.13 there exists n0 ∈ N such that n0 > L. Then for every n ∈ N such
that n ≥ n0 we have n2 ≥ n20 ≥ n0 > L.
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Now let us conduct the extension of the real axis with the elements +∞ and−∞
and state how the operations of addition and multiplication can be defined on
these new elements. The extended real axis, i.e. the set R ∪ {+∞,−∞}, and
we will denote it as R∗. We extend the original order of the set R onto the elements
+∞ and −∞ such that −∞ < +∞ and for any x ∈ R it holds that −∞ < x
and +∞ > x.

Addition and multiplication on R∗ is defined as:
• ∀a ∈ R∗ \ {+∞} : −∞+ a = a+ (−∞) = −∞,
• ∀a ∈ R∗ \ {−∞} : +∞+ a = a+ (+∞) = +∞,
• ∀a ∈ R∗, a > 0: a · (±∞) = ±∞,
• ∀a ∈ R∗, a < 0: a · (±∞) = ∓∞,
• ∀a ∈ R : a

±∞ = 0.
It can be seen from the above list that the operations addition and multiplication

are not defined for all pairs of R∗. For example the expressions +∞ + (−∞) or
0 · (+∞) are not defined. Why are some expressions defined and others not? The
extension of the operations onto R∗ have been conducted so that the following
theorem could hold, whose proof is similar to Theorem 8.

Theorem 17 (arithmetic of the limit). Let lim an = A ∈ R∗ and lim bn = B ∈ R∗.
Then it holds that:

(i) lim (an + bn) = A+B, if the right hand side is defined,
(ii) lim (an · bn) = A ·B, if the right hand side is defined,

(iii) if bn 6= 0 for all n ∈ N, then lim(an/bn) = A/B, if the right hand side is
defined.

The expression +∞ + (−∞) is not defined because nothing can be extracted
about lim(an + bn) from the hypothesis that lim an = +∞ and lim bn = −∞. In
this context consider the following examples:
• if {an}= {n}, {bn}= {−n}, then lim an = +∞, lim bn = −∞ and lim(an+
bn) = 0;
• if {an}= {n}, {bn}= {−2n}, then lim an = +∞, lim bn = −∞ and lim(an+
bn) = −∞;
• if {an}= {2n}, {bn}= {−n}, then lim an = +∞, lim bn = −∞ and lim(an+
bn) = +∞.

Similarly one can rationalize why some other expressions are not defined. One
of these is the expression A/0. Therefore we cannot use Theorem 17 to calculate
limits of the type “A/0”, nevertheless the following variant of the theorem on the
limit of quotients holds.

Theorem 18. Let lim an = A ∈ R∗, A > 0, lim bn = 0 and let there exist
an n0 ∈ N such that for every n ∈ N, n ≥ n0, it holds that bn > 0. Then
lim an/bn = +∞.
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Proof. We consider two cases.
1. Let us assume that A ∈ R. We take L ∈ R, L > 0. Then there exist

n1, n2 ∈ N such that

∀n ∈ N, n ≥ n1 : an > A− 1

2
A =

1

2
A,

∀n ∈ N, n ≥ n2 : bn <
A

2L
.

Then for all n ∈ N, n ≥ max{n0, n1, n2}, it holds that

an
bn

>
1
2A
A
2L

= L.

2. The case A = +∞ still remains. Again we take L ∈ R, L > 0. Then there
exist n1, n2 ∈ N such that

∀n ∈ N, n ≥ n1 : an > 1,

∀n ∈ N, n ≥ n2 : bn <
1

L
.

Then for every n ∈ N, n ≥ max{n0, n1, n2}, we have

an
bn

>
1
1
L

= L.

�

For infinite limits the following squeeze theorem holds.

Theorem 19. Let {an} and {cn} be sequences satisfying:
(i) there exists an n0 ∈ N such that for every n ∈ N, n ≥ n0, we have an ≤ cn,

(ii) lim an = +∞.
Then it holds that lim cn = +∞.

Proof. Choose L ∈ R. Then we find n1 ∈ N such that for every n ∈ N, n ≥ n1,
we have an > L. For every natural n ≥ max{n0, n1}, we have that cn ≥ an > L,
by which we have proven that lim cn = +∞. �

According to the previous theorem it suffices to find only one “squeezing”
sequence to prove the claim lim cn = +∞. The following theorem is an obvious
analogy for the previous theorem for the limit equal to −∞.

Theorem 20. Let the sequence {an} and {cn} satisfy the following conditions:
(i) there exists an n0 ∈ N such that ∀n ∈ N, n ≥ n0, it holds that an ≥ cn,

(ii) lim an = −∞.
Then lim cn = −∞.
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Remark. It is not hard to show that the theorem on the limit of subsequences (The-
orem 7) and the theorem on the limit and order (Theorem 13) also hold for infinite
limits.

So far we have defined the term supremum for non-empty subsets of R bounded
from above and the infimum for non-empty subsets of R bounded from below. Now
we introduce the term suprema and infima also for unbounded sets of real numbers.

Definition. Let M ⊂ R be a non-empty set. If M is not bounded from above
then we define supM = +∞. If M is not bounded from below then we define
inf M = −∞.

Remark. Notice that this definition is in agreement with the claim that the supre-
mum is the smallest upper bound of the set. Let M ⊂ R. If we look at M as a
subset of R∗, then by the definition of the order +∞ is an upper bound of M . If
the set M is not bounded from above, then there is no upper bound for M in the
real numbers, and so the element +∞ is the smallest upper bound M .

The following claim shows an interconnection between the terms limit of a
sequence and supremum of a set.

Lemma 21. Let M ⊂ R be a non-empty set, G ∈ R∗. Then the following claims
are equivalent:

(i) G = supM .
(ii) The element G is an upper bound of M and there exists a sequence {xn}∞n=1

of points in M , for which limxn = G.

Proof. If G = supM , then G is obviously an upper bound of M .
If G = +∞, then M is not bounded from above and therefore for every n ∈ N

there exists an xn ∈ M , xn > n. According to Theorem 19 we have limxn =
+∞ = G.

In the case that G ∈ R, then according to the definition of the supremum, for
every n ∈ N we can find an xn ∈ M , xn > G − 1/n. Because G is an upper
bound M , is automatically xn ≤ G for every n ∈ N. According to Theorem 14 we
have that limxn = G.

Now let us prove the opposite implication. Because G is an upper bound of the
non-empty set it holds that G ∈ R ∪ {+∞}. If G = +∞, then the sequence {xn}
is not bounded from above by the definition of the limit. The set M is therefore not
bounded from above and therefore supM = +∞.

Now assume that G ∈ R. Condition (i) from the definition of the supremum is
satisfied by our hypothesis. In order to check condition (ii) we choose any number
G′ ∈ R, G′ < G. Then from the definition of the limit is follows that there exists
an n0 ∈ N for which xn0 > G′ (it suffices to take ε = G − G′). We have found
an element in M , which is greater then G′, and so we have verified condition (ii)
from the definition of the supremum. �
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Remark. An analogical claim holds for the infimum of course.

In the following examples we will show how the previous theorems can be
used.

Example 22. It holds that

lim
n→∞

qn =


+∞, if q > 1,
1, if q = 1,
0, if q ∈ (−1, 1),
does not exist, if q ≤ −1.

Proof. Firstly let us consider the case q > 1. Here we can write q = 1 + h, where
h > 0. By the binomial theorem we have qn = (1 + h)n ≥ 1 + hn for every
n ∈ N. Of course lim

n→∞
(1 + hn) = +∞, and according to Theorem 19 we have

lim qn = +∞.
If q ∈ (0, 1), then by the previous paragraph lim(q−1)n = +∞. By applying

Theorem 17 we get

lim qn = lim
1

(q−1)n
= 0.

The cases q = 0, q = 1 and q = −1 are completely obvious. If q ∈ (−1, 0),
then lim |qn| = lim |q|n = 0, and therefore lim qn = 0 (Example 5).

Finally, if q < −1, then we have lim q2n = lim(q2)n = +∞ and conversely
lim q2n+1 = lim q(q2)n = −∞. We have found two subsequences with differing
limits and therefore lim qn does not exist. �

Example 23. Let {an} be a sequence of non-negative numbers having the limit
A ∈ R. Then lim

√
an =

√
A.

Proof. Let us assume first that A = 0. We choose ε > 0 arbitrarily. Then there is
an n0 ∈ N such that for all n ∈ N, n ≥ n0, it holds that |an| < ε2. For every n ∈ N
it holds that

∣∣√an∣∣ < ε. This consideration shows that in the case A = 0 we have
lim
√
an =

√
A. Now assume that A > 0. Then for every n ∈ N it holds that∣∣∣√an −√A∣∣∣ =

∣∣∣∣∣ an −A
√
an +

√
A

∣∣∣∣∣ ≤ 1√
A
|an −A| .

>From here and from the fact that lim 1√
A
|an −A| = 0 it follows that lim

∣∣√an−√
A
∣∣ = 0 by Theorem 14. Therefore lim

√
an =

√
A.

The claim of the example can be extended as follows. Let k ∈ N and {an} is a
sequence of non-negative numbers with the limit equal to A ∈ R∗. Then

lim k
√
an =

{
k
√
A, if A ∈ R,

+∞, if A = +∞.
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We can prove this using Theorem 4.16, the notes on page 67 and Example 4.32. �

Example 24. It holds that lim n
√
n = 1.

Proof. With respect to the fact that n
√
n ≥ 1, we can write n

√
n = 1 + ηn, where

ηn ≥ 0. For n ∈ N, n ≥ 2, it holds that

n = (1 + ηn)n ≥ 1 + nηn +
n(n− 1)

2
η2n ≥

n(n− 1)

2
η2n ≥

n2

4
η2n.

>From here we get for n ≥ 2 the inequality 2√
n
≥ ηn. According to the previous

example and Theorem 8 we get lim 2√
n

= 0, so according to Theorem 14 we have
lim ηn = 0. >From whence we get our claim. �

Example 25. Calculate lim
(√

4n2 − n− 2n
)
.

Solution. We cannot use the theorems on the quotient of limits because

lim
√

4n2 − n = lim
√
n(4n− 1) = +∞ and lim 2n = +∞.

We will try to alter it into a form where we can directly use the theorem on the
arithmetic of limits.

First we multiply the n-th term of our sequence by one, but written in the
following form √

4n2 − n+ 2n√
4n2 − n+ 2n

and we use the expression (a− b)(a+ b) = a2− b2, where we put a =
√

4n2 − n,
b = 2n. Thus we get(√

4n2 − n− 2n
)
·
√

4n2 − n+ 2n√
4n2 − n+ 2n

=
−n√

4n2 − n+ 2n
.

We multiply on both sides by 1/n and get√
4n2 − n− 2n =

−1√
4− 1

n + 2
.

Because the last equality for all n ∈ N, by Theorem 17 and Examples 23 we get

lim
(√

4n2 − n− 2n
)

= lim
−1√

4− 1
n + 2

= −1/4.

♣

Example 26. Calculate lim
n
√

2n+ 5− 3 3
√

2n
√
n3 + 2 +

3
√
n4

.
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Solution. In order to understand the quotient better let us try a “dry-run” of the
calculations. The numbers 5 and 2, which appear under the roots are small in com-
parison with n, which grows above all bounds. The following terms appear in the
quotient n: n3/2, n1/3 and n4/3. The highest exponent is 3/2. Now we will continue
similarly as in Example 10. Thus we get

n
√

2n+ 5− 3 3
√

2n
√
n3 + 2 +

3
√
n4

=
n3/2

(√
2 + 5/n− 3 6

√
4/n7

)
n3/2

(√
1 + 2/n3 + 6

√
1/n

) .
The limit of the last expression can be calculated easily using Theorem 17 on the
arithmetic of the limit and Example 23:

lim

√
2 + 5/n− 3 6

√
4/n7√

1 + 2/n3 + 6
√

1/n
=
√

2.

♣

2.3. Deeper theorems on limits

Let us realize the following important property of monotone sequences.

Theorem 27. Every monotone sequence has a limit. If {an} is non-decreasing then
lim an = sup {an; n ∈ N}. If {an} is non-increasing then lim an = inf {an; n ∈
N}.

Proof. Let the sequence {an} be non-decreasing. Let us firstly assume that the
sequence is not bounded from above, which means that sup {an; n ∈ N} = +∞.
Let us therefore prove that lim an = +∞. Let us choose the number L ∈ R.
Because {an} is not bounded from above we can surely find an index n0 such that
an0 > L. Because {an} is non-decreasing, however, it holds that an ≥ an0 > L
for every n ≥ n0. Thus it has been proven that lim an = +∞.

If {an} is bounded from above then we put A = sup {an; n ∈ N} ∈ R.
We will prove that the number A is the limit of our sequence. Let us choose some
ε > 0. BecauseA−ε < A, there exists an element of {an; n ∈ N}, call it an0 , such
thatA−ε < an0 . On the other hand {an} is non-decreasing andA−ε < an0 ≤ an
for all n ≥ n0. The inequality an < A + ε holds for all n ∈ N, because A is an
upper bound for the entire set of elements of the sequence {an}. For a chosen ε > 0
we have found an n0 ∈ N such that

∀n ∈ N, n ≥ n0 : A− ε < an < A+ ε.

Thus it has been proven that the number A is the limit of the sequence {an}.
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The claim for non-increasing sequences can been proven similarly. The other
possibility is to consider the sequence {−an} and use the already proven claim for
non-decreasing sequences and Theorem17. �

Remark. The importance of the previous theorem lies in the fact that it allows one
to show the existence of a limit of a sequence without needing to calculate its value.
The information of the existence of the limit is sometimes useful in itself. In some
cases this information allows us to calculate the exact value of the limit in further
calculations, see, for instance, the following example.

Example 28. Choose the number c > 0 and examine the limit of the sequence
{an}, which is determined in the following way:

a1 =
√
c, an+1 =

√
an + c for every n ∈ N. (8)

Solution. First we realize that the sequence {an} is well defined. The first term is
defined explicitly and is non-negative. If we assume that an is defined and is non-
negative then an+1 is also defined and non-negative. According to the principle of
mathematical induction, the sequence {an} is defined and is non-negative.

Let us assume for a moment that the sequence {an} has a real limit. We denote
the limit by the letterA. From (8) it follows that for all n ∈ N we have a2n+1 = an+
c. According to Theorem 7 on the limit of subsequences we have lim an+1 = A
and according to Theorem 8 about the arithmetic of the limit we get lim a2n+1 = A2

and lim(an+c) = A+c. Then we haveA2 = A+c, from here we calculate thatA
is either equal to

(
1+
√

1 + 4c
)
/2, or

(
1−
√

1 + 4c
)
/2. The second of those values

is negative and as such cannot be the limit of the sequence, since all its terms are
non-negative. It would be a contradiction with Theorem 13. If the sequence {an}
has a real limit then the value must be

(
1 +
√

1 + 4c
)
/2.

It remains to prove that our hypothesis on the existence of the limit is indeed
satisfied. To do this we use Theorem 27. The sequence {an} is increasing. Since
a1 < a2 and if an−1 < an, then also

an =
√
an−1 + c <

√
an + c = an+1,

so we see that our sequence is increasing by the principle of mathematical induc-
tion. According to Theorem 27 the sequence {an} has a limit lim an = sup {an; n ∈
N}.

The sequence {an} is bounded from above. We have a1 <
√
c + 1 and if

an <
√
c+ 1, then

an+1 =
√
an + c <

√√
c+ 1 + c <

<

√
c+ 2

√
c+ 1 =

√(√
c+ 1

)2
=
√
c+ 1.
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>From the principle of mathematical induction it follows that for all n ∈ N we have
an <

√
c+1, and therefore {an} is bounded from above, so sup {an; n ∈ N} ∈ R.

Therefore we also have lim an ∈ R. ♣

Example 29. Determine for which real numbers x the sequence
{(
x3/(3x− 2)

)n}
is monotone.

Solution. In order for the quotient to make sense we have to eliminate x = 2/3. For
all other values of x ∈ R it is simply a geometric sequence. Note that the sequence
{qn} is monotone if and only if q ≥ 0. If q = 0 or q = 1, the sequence is constant
(i.e. the set of elements of the terms of the sequence has only one element), for
0 < q < 1 the sequence is decreasing and for q > 1 it is increasing.

It is therefore necessary to conduct a discussion and find for which x ∈ R
the values of the quotient lie in the interval (0, 1), or in the interval (1,+∞), and
for which x the value is equal to 0 or 1. By solving the corresponding inequalities
we get that the sequence

{(
x3/(3x− 2)

)n} is increasing for x ∈ (−∞,−2) ∪
(2/3, 1)∪ (1,+∞) and decreasing for x ∈ (−2, 0). For the values x = −2, x = 0
and x = 1 the sequence is constant. For the remaining real numbers x the sequence
is not monotone. ♣

We now include an important property of bounded sequences, whose meaning
will become apparent in the following chapters.

Theorem 30 (Bolzano-Weierstraß theorem). Let {xn} be a bounded sequence of
real numbers. Then there exists a convergent subsequence {xnk}.

Proof. The sequence {xn} is bounded and therefore there exists an interval [A,B]
containing all the terms of the sequence {xn}. We construct the intervals {[ak, bk]}∞k=1
satisfying the following two conditions for all k ∈ N:

(i) the set Ik = {n ∈ N; xn ∈ [ak, bk]} is infinite,
(ii) the interval [ak+1, bk+1] is either equal to [ak, (ak+bk)/2], or [(ak+bk)/2, bk].

For k = 1 it suffices to put a1 = A and b1 = B. Let us have, for some k ∈ N,
the interval [ak, bk] satisfying condition (i). If the set of indexes {n ∈ N; xn ∈
[ak, (ak + bk)/2]} is infinite then we put ak+1 = ak
and bk+1 = (ak + bk)/2. If this is not so then from the property (i) we get that
there is an infinite set of indexes {n ∈ N; xn ∈ [(ak + bk)/2, bk]}. In this case we
put ak+1 = (ak + bk)/2 and bk+1 = bk. By this the convergence of the sequence
of intervals is achieved.

Now (again by induction) we construct an increasing sequence of natural num-
bers {nk}∞k=1 such that xnk ∈ [ak, bk] for every k ∈ N. The element nk can be
chosen arbitrarily from the infinite (and so non-empty) set Ik \ {1, 2, . . . , nk−1}.

Further we see by (ii) that the sequence {ak}∞k=1 is non-decreasing and bounded
and the sequence {bk}∞k=1 is non-increasing and is bounded. By the theorem on the
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limit of monotone sequences (Theorem 27) it holds that both sequences have a
real limit. Denote lim

k→∞
ak = α and lim

k→∞
bk = β. Further we have bk − ak =

2−(k−1)(B − A) for every k ∈ N, and so lim(bk − ak) = 0, which by Theorem 8
means that α = β. We also know that ak ≤ xnk ≤ bk for every k ∈ N. The squeeze
theorem (Theorem 14) gives that the sequence {xnk}∞k=1 converges to α. �

2.4. Exercises

Decide whether the following sequences are monotone.

1. {2n+ (−1)n} 2.
{

(n+ 1)/
√
n2 + 2n− 2

}
Calculate the following limits.

3. lim
3n2 + 5n

−n2 + 4n+ 1
4. lim

3n + 5n + 10n

(−2)n+1 + 5n+1 + 10n+1

5. lim

(
4 + (−1)n

−7

)n
6. lim

1

n
· sinn2

7. lim cos2(nπ/4) 8. lim(n+ cosn)

9. lim
1 + 2 + · · ·+ n

3
√

8n6 − n
10. lim

2n + (−2)n

3n

11. lim
(√
n+ 5−

√
n+ 1

)
12. lim

(
3

√
(n+ 1)2 − 3

√
(n− 1)2

)

Solutions

1. The sequence is non-decreasing. 2. The sequence is decreasing. 3. −3
4. 1/10 5. 0 6. 0 7. Does not exist. 8. +∞ 9. 1/4 10. 0
11. 0 12. 0



CHAPTER 3

Mappings

The aim of this chapter is to introduce the concept of a mapping and other
closely related terms. A more abstract approach allows us to include a wide range
of specific cases (functions of one real variable, functions of multiple variables,
linear mappings), which we will be interested in the course of the text.

Definition. Let A and B be a pair of sets. A mapping f from the set A into the
set B assigns every element x of the set A one element y from the set B. The
element y is denoted as f(x).

If x ∈ A, y ∈ B and it holds that y = f(x), then the element y is called the
image of the element x and the element x is called the pre-image of the element y.

Let us introduce a few more notations:

• The symbol f : A → B means that the mapping f is a mapping of the set A
into the set B.
• The symbol f : x 7→ f(x) means that the mapping f assigns the elementf(x)

to the element x.
• The set A from the definition is called the domain of the mapping f and we

also use the symbol Df to denote this set.

Example 1. 1. Let us consider formula x 7→ x2. This makes sense for all x ∈ R,
therefore we can use it to define a mapping f : R → R. the set which we are
mapping into can be taken to be [0,+∞). Here we firstly took the allocation and
then asked for what x it is defined. The domain of the mapping was determined as
the largest possible set on which the formula made sense. We will use this same
approach in the following as well. Notice that the target set B from the definition
does not have to be covered entirely by the values f(x).

2. Let us consider the formula x 7→
√
x. The domain of the corresponding mapping

isDf = [0,+∞) (this follows from Theorem 1.14 on the n-th root), and we can
take the target set to be R for example.

3. Notice that sequences of real numbers {an}∞n=1 are actually mappings from the
set N into the set R. More generally, sequences of elements of a set M are map-
pings from the set N into the set M .

43
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4. Let A be the set of all convergent sequences of real numbers {an}, B = R,
f : {an} 7→ lim an. The mapping f allocates each convergent sequence its limit.
5. Let A be the set of all non-empty subsets of R bounded from above, B = R,
f : M 7→ supM . The mapping f allocates each set of real numbers bounded from
above the supremum of the set.
6. Let A = R × (0,+∞), and B be the set of all open and bounded intervals
and f : [a, ε] 7→ (a− ε, a+ ε).

Definition. Let f : A→ B be a mapping.
• The subset Gf = {[x, y] ∈ A × B; x ∈ A, y = f(x)} of the Cartesian

product A×B is called the graph of the mapping f .
• Let M ⊂ A. The image f(M) of the set M in the mapping f is the set

{y ∈ B; ∃x ∈M : f(x) = y} (= {f(x); x ∈M}).
• The set f(A) is called the range of the mapping f . We denote it with the

symbol Rf .
• Let W ⊂ B. The pre-image f−1(W ) of a set W in the mapping f is the set
{x ∈ A; f(x) ∈W}.

Example 2. Let f : A → B be a mapping, X,Y ⊂ A and U, V ⊂ B. Then it
holds that:
• f−1(U ∪ V ) = f−1(U) ∪ f−1(V ) (the pre-image of the union of two sets is

the union of the pre-images of their sets),
• f−1(U ∩ V ) = f−1(U) ∩ f−1(V ) (the pre-image of the intersection of two

sets is the intersection their pre-images),
• f(X ∪ Y ) = f(X) ∪ f(Y ) (The image of the union of two sets is the union

of the image of the sets),
• f(X ∩ Y ) ⊂ f(X) ∩ f(Y ).

The proofs of these claims is not hard to prove. Work out that the opposite inclusion
in the final claim is generally not true.

Later we will use the following terms.

Definition. Let A,B,C be sets, C ⊂ A and f : A→ B is a mapping of the set A
into the set B. The restriction of the mapping f onto the set C is the mapping
f̃ : C → B defined by the formula f̃(x) = f(x) for all x ∈ C. The restriction of f
onto C is denoted as f |C .

Definition. Let f : A → B and g : B → C be two mappings. The symbol g ◦ f
denotes the mapping of the set A into the set C defined by the formula

g ◦ f : x 7→ g
(
f(x)

)
.

A mapping defined this way is called a compound mapping.
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Remark. Let f : A → B and g : C → D. If B ⊂ C, then the compound mapping
g ◦ f is defined as above since we can interpret f as a mapping into C. If it does
not hold that B ⊂ C, then the compound mapping g ◦ f will be understood to by
the mapping g ◦ (f |Ã), where Ã = {a ∈ A; f(a) ∈ C}.

The terms in the following definition are very important.

Definition. We say that the mapping f : A→ B

• maps the set A onto the set B, if f(A) = B, i.e. for every y ∈ B there exists
an x ∈ A such that f(x) = y,
• is injective (also one-to-one), if every pair of distinct points has a pair of

mutually distinct images i.e.

∀x1, x2 ∈ A : x1 6= x2 ⇒ f(x1) 6= f(x2),

• is a bijection A onto B (or also a one-to-one correspondance), if it is one-
to-one and maps A onto B.

Remark. Many problems in mathematics and its applications can be formulated as
the following problem. For a given mapping f : A → B and y ∈ B find the (or a)
solution to the equation

f(x) = y, x ∈ A. (1)
We want the elements x, such that the value in the mapping f(x) is equal to a given
right hand side y. Such an x is then called a solution of the equation (1) with the
right hand side y. The following two questions are important:

(i) Does there exist a solution for every right hand side y from the set B?
(ii) How many for a given right hand side can the equation (1) permit?

If f maps the set A onto the set B, then the first (existential) question is an-
swered in the positive. If the mapping f is one-to-one, then the equation (1) has at
most one solution for each right hand side y– i.e. it either has no solution or only
one.

If we can show that the mapping f is injective and onto (i.e. f mapsA ontoB),
then the equation (1) has exactly one solution for every right hand side, and thus
we answer questions (i) and (ii).

On the basis of what has just been said about an injective mapping ofA ontoB,
it is clear that we can associate a mapping that assigns each right hand side y of the
equation (1) its solution x. Let us make this definition in more detail.

Definition. Let f : A→ B be an injective mapping. To every element y ∈ Rf we
assign the element x ∈ A satisfying f(x) = y. (We know that there is exactly one
such element.) We denote this element x with the symbol f−1(y). Thus we have
defined the mapping f−1 : Rf → A, which is called the inverse mapping to the
mapping f .
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The inverse mapping f−1 is an injective mapping of the set Rf onto the set
A. For every two elements x ∈ A, y ∈ Rf it holds that y = f(x), if and only if
x = f−1(y).

Remark. The symbol IdM means the mapping defined on the set M using the
formula IdM : x 7→ x. We call it the identity mapping on the set M . If f : A→ B
is a bijection then one can easily see that the following equalitlies hold:

f−1 ◦ f = IdA, f ◦ f−1 = IdB .

Directly from the definition of the inverse mapping it follows that (f−1)−1 = f
for any injective mapping f .

The concept of the inverse mapping is very important but one has to be some-
what careful in its application.

Example 3. Let us consider the mapping f : R → [0,+∞), f(x) = x2. This
mapping is onto the set [0,+∞), but it is not injective on its domain. Its inverse
mapping therefore does not exist. Let us use the symbol f1 to denote the restriction
of the mapping f onto the set [0,+∞), that is the mapping

f1 : [0,+∞)→ [0,+∞),

f1 : x 7→ x2.

The mapping f1 is injective from[0,+∞) onto [0,+∞), and f1(x) = y, if and
only if x =

√
y. Therefore

f−11 : [0,+∞)→ [0,+∞),

f−11 : y 7→ √y.
Similarly let

f2 : (−∞, 0]→ [0,+∞),

f2 : x 7→ x2,

we easily get

f−12 : [0,+∞)→ (−∞, 0],

f−12 : y 7→ −√y.

Remark. LetA ⊂ R,B ⊂ R and f : A→ B be a bijection. We recall the definition
of the graph, it is

Gf = {[x, y] ∈ R2; x ∈ A, y = f(x)},
Gf−1 = {[u, v] ∈ R2; u ∈ B, v = f−1(u)}.

Let us now draw both graphs in one picture on the plane, then Gf is symmet-
rical with Gf−1 with respect to the axis of the first quadrant.
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Example 4. Let A be the set of all lines which can be written in point-slope form
(i.e. in the form p = {[x, y]; x ∈ R, y = kx+ q}, where k ∈ R, q ∈ R). Is the set
G = {[p, k]; p ∈ A, k is the gradient of p} ⊂ A× R the graph of a mapping?

Solution. The set G is the graph of a mapping because for every p from A there
exists a gradient k and if [p, k1] ∈ G, [p, k2] ∈ G, then k1 = k2, because each
line in A has only one gradient. The mapping defined by the set G is the mapping
f : A → R, which for every line in point-slope form assigns its gradient k, thus
f : p 7→ k.

The mapping f is a mapping from the set A onto the set R, because for ev-
ery real number k there exists in A a line p, whose gradient is the number k (for
example p = {[x, y] ∈ R2; x ∈ R, y = kx}). The mapping f is not injective
however because one can find two distinct lines p1 ∈ A and p2 ∈ A, such that
f(p1) = f(p2), because they have the same gradient. They are for example the
lines p1 = {[x, y]; x ∈ R, y = x}, p2 = {[x, y]; x ∈ R, y = x+ 1}. ♣

Example 5. Let us define compound mappings f ◦g and g◦f , where the mappings
f and g are given by the formulas f : x 7→ tg x, g : x 7→

√
x.1

Solution. Concerning f ◦ g, we have to find all the x ∈ R for which
√
x is in the

domain of tg. >From the domain of the mapping g, which is the interval [0,+∞),
we must subtract those points

(
(2k − 1)π/2

)2, where k ∈ N. The domain of the
compound function f ◦ g : x 7→ tg

(√
x
)

will therefore be the set

A =
[
0, (π/2)2

)
∪
⋃
k∈N

((
(2k − 1)π/2

)2
,
(
(2k + 1)π/2

)2)
.

The compound mapping g ◦ f will be investigated more quickly. The domain
is the set of real numbers from the domain of the mapping tg, whose values in the
mapping tg are non-negative. The domain therefore is the set

B =
⋃
k∈Z

[kπ, kπ + π/2). ♣

Example 6. Let us have the formula

f : [x, y] 7→

√
x2 + 2x+ y2

x2 − 2x+ y2
.

determine the domain of f and the pre-images of the singleton-sets {0} and {1}.
Solution. The domain is the set

Df =

{
[x, y] ∈ R2;

x2 + 2x+ y2

x2 − 2x+ y2
≥ 0

}
.

1To solve this problem we will suffice with secondary school knowledge of the function tg. The
exact definition will be given in section 4.3.
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>From the solution to the system of equations of two unknowns can be found
that the set Df is the intersection of the complement of two disks and that disks
without their bounding circles {[x, y] ∈ R2; (x + 1)2 + y2 < 1} and the disk
{[x, y] ∈ R2; (x− 1)2 + y2 ≤ 1}. Now

f−1({0}) = {}[x, y] ∈ Df ;

√
x2 + 2x+ y2

x2 − 2x+ y2
= 0.

Therefore f−1({0}) is a circle with its center at [−1, 0] and radius 1 without the
point [0, 0].

The pre-image of the set {1} is

f−1({1}) = {}[x, y] ∈ Df ;

√
x2 + 2x+ y2

x2 − 2x+ y2
= 1 = {[x, y] ∈ Df ; x = 0}.

The set f−1({1}) is therefore the y axis without the point [0, 0]. ♣

We will use the following notation:

sup
M

f = sup f(M) = sup {f(x); x ∈M} and

inf
M
f = inf f(M) = inf {f(x); x ∈M}.

Example 7. Let M be a non-empty set, f : M → R, g : M → R are mappings
and f(x) ≤ g(x) for every x ∈M . Then it holds that

sup
M

f ≤ sup
M

g and inf
M
f ≤ inf

M
g.

Proof. For every x ∈ M it holds that g(x) ≤ supM g, and therefore also f(x) ≤
supM g. The number supM g is an upper bound of the set f(M), therefore the
inequality supM f ≤ supM g holds. The relationship for the infimum is proven
similarly. �

Example 8. Let M be a non-empty set and f, g : M → R. Then it holds that

sup
M

(f + g) ≤ sup
M

f + sup
M

g and

inf
M

(f + g) ≥ inf
M
f + inf

M
g.

Proof. Let us choose any y ∈M . Then it holds that

f(y) + g(y) ≤ sup
M

f + sup
M

g.

The number supM f + supM g is therefore an upper bound of the set {f(y) +
g(y); y ∈M}, and from this the required inequality follows.

The inequality for the infimum is proven similarly. �
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Example 9. LetM be a non-empty set, f : M → R aC ∈ R. If |f(a)− f(b)| ≤ C
for every a, b ∈M , then sup

M
f − inf

M
f ≤ C.

Proof. Let us choose b ∈ M . Then for all a ∈ M it holds that f(a) ≤ C + f(b),
and therefore supM f ≤ C + f(b). >From here we see that supM f − C ≤ f(b)
for every b ∈M , which gives the necessary inequality. �

Example 10. Let M be a non-empty set and f : M → R. Then it holds that

sup
M
|f | − inf

M
|f | ≤ sup

M
f − inf

M
f.

Proof. Put C = supM f − infM f . For every a, b ∈ M it obviously holds that
f(a)− f(b) ≤ C and f(b)− f(a) ≤ C. From here it follows that |f(a)− f(b)| ≤
C. >From the inequality in Corollary 1.17 (i) we have

∣∣|f(a)|−|f(b)|
∣∣ ≤ |f(a)− f(b)| ≤

C for every a, b ∈M . >From Example 9 used on the mapping |f | the required in-
equality holds. �

3.1. Exercises

1. Determine the set D ⊂ R2 of all [x, y] ∈ R2, for which the following formula
is defined

f : [x, y] 7→
√

1

y
− x2.

Determine the pre-images of the sets {0} and {1} in the mapping f : D → R.
Draw them.

2. Let the mapping f : R2 → R be defined by the formula

f : [x, y] 7→ max{x, y}.

Determine the pre-images of the sets {0}, {1}. Represent it graphically.

3. Find the compound mappings f ◦ g and g ◦ f , determine their domain and
ranges if

(i) f : R→ R, f : x 7→ x2; g : (0,+∞)→ R, g : x 7→ log x,
(ii) f : R→ C, f(x) = x+ ix; g : C→ R, g(x) = |x|.

4. Determine whether the following mappings have an inverse and if they do then
determine their domains and ranges and the formulas that define them.

(i) f : (−∞, 0]→ R, f(x) = x2 − 1,
(ii) f : R→ R, f(x) = x2 + x+ 1,

(iii) f : R→ R, f(x) = 2x + 4.
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Solutions

1. D = {[x, y] ∈ R2; x2y ≤ 1, y > 0}, f−1({0}) = {[x, 1/x2]; x ∈ R \ {0}},
f−1({1}) = {[x, 1/(1 + x2)]; x ∈ R}
2. f−1({0}) = {[0, y] ∈ R2; y ≤ 0}∪{[x, 0] ∈ R2; x ≤ 0}, f−1({1}) = {[1, y] ∈
R2; y ≤ 1} ∪ {[x, 1] ∈ R2; x ≤ 1}
3. (i) (f ◦g)(x) = log2 x,Df◦g = (0,+∞),Rf◦g = [0,+∞); (g◦f)(x) = log x2,
Dg◦f = R \ {0}, Rg◦f = R
(ii) (f ◦ g)(x) = |x| + i |x|, Df◦g = C, Rf◦g = {a + ia; a ∈ R, a ≥ 0};
g ◦ f = |x+ ix| =

√
2 |x|, Dg◦f = R, Rg◦f = [0,+∞)

4. (i) Df−1 = [−1,+∞), f−1(x) = −
√
x+ 1

(ii) The inverse mapping does not exist because f is not an injective mapping. for
example f(0) = f(−1) = 1.
(iii) Df−1 = (4,+∞), f−1(x) = log2 (x− 4)



CHAPTER 4

Functions of one real variable

4.1. Limit of a Function

A real function f of one real variable (in the following simply a function) is
a mapping f : M → R, where M is a subset of the set of the real numbers.

Definition. A function f : J → R is increasing on the interval J , if for every pair
x1, x2 ∈ J , x1 < x2, the following inequality holds f(x1) < f(x2). Similarly we
define the term of a decreasing function, non-decreasing and non-increasing on
the interval J .

Definition. A monotone function (respectively strictly monotone function) on
the interval J is a function that is non-decreasing or non-increasing (respectively
increasing or decreasing) on J .

Definition. Let f be a function and M ⊂ Df . We say that the function f is

• bounded from above on M , if the set f(M) is bounded from above,
• bounded from below on M , if the set f(M) is bounded from below,
• bounded on M , if the set f(M) is bounded,
• constant on M , if for every x, y ∈M it holds that f(x) = f(y),
• odd, if for every x ∈ Df it holds that −x ∈ Df and f(−x) = −f(x),
• even, if for every x ∈ Df it holds that −x ∈ Df a f(−x) = f(x),
• periodic with the period a, where a ∈ R, a > 0, if for every x ∈ Df it holds

that x+ a ∈ Df , x− a ∈ Df and f(x+ a) = f(x).

Example 1. Let a, b ∈ R. We define the function

f(x) = ax+ b, x ∈ R.

For a = 0 the function f is constant and Rf = {b}. If a > 0, then f is increasing
on R and is not bounded from above nor below and Rf = R. Prove these claims in
detail and consider how it would be if a < 0. A function defined like f is called an
affine function. If b = 0, we say that f is linear. Here we define the term linear
function differently than is usual at secondary school because this is the definition
used in advanced mathematical books.

51
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In the following pictures we have the graphs of three different functions. On
the first picture it appears that as the values of x approach the point 1, the values
of f(x) approach the value of f at the point 1. In the second picture something
similar can be seen but f(1) is different to the value that f(x) approach as x nears
to 1. In the third picture we see that for x approaching 1 the functional values f(x)
do not approach any one value.

FIGURE 1. FIGURE 2. FIGURE 3.

If we want to express that which is common for the first two pictures then we
will ignore the value of f at the point 1, but rather focus on the fact that the values
f(x) “approach a value”, as x approaches 1. This is appropriately formulated in
the following definitions.

Definition. Deleted neighborhood of a point (also known as a punctured neigh-
borhood of a point) x0 ∈ R with radius ε ∈ R, ε > 0, is the set

P (x0, ε) = {x ∈ R; 0 < |x− x0| < ε},

or
P (x0, ε) = (x0 − ε, x0) ∪ (x0, x0 + ε) = B(x0, ε) \ {x0}.

Definition. We say that the number A ∈ R is the limit of the function f at the
point c ∈ R, if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P (c, δ) : f(x) ∈ B(A, ε).

Try to prove the following theorem yourself using the ideas of the proof of
Theorem 2.2.

Theorem 2 (uniqueness of the limit). A function has at most one limit A ∈ R at
any given point.
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Similarly to sequences, the previous theorem allows us to introduce the follow-
ing notation. If a function f has the limit A ∈ R at the point c ∈ R then we write
lim
x→c

f(x) = A.

Remark. Picture 1 shows the case where the graph of the function f is not “broken”
at the point 1. The limit of this function at the point 1 is the same as the functional
value at the point 1. This situation is so important that it deserves its own definition.

Definition. We say that the function f is continuous at the point c ∈ R, if it holds
that

lim
x→c

f(x) = f(c).

Remark. Consider the fact that a function f is continuous at the point c, if and only
if it holds that

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ B(c, δ) : f(x) ∈ B(f(c), ε).

So far we have defined the term real limit of a function at the point c ∈ R. We
will also want to describe the situation where a “function grows above all bounds
in the neighborhood of a point”. We will also be interested in the behavior of the
function for “very large values of the variable”. In order to avoid having to give dif-
ferent definitions for different cases let us extend the definition of a neighborhood
and a deleted neighborhood also for the points +∞ and −∞.

Definition. Let ε > 0. Then we define

P (+∞, ε) = B(+∞, ε) = (1/ε,+∞),

P (−∞, ε) = B(−∞, ε) = (−∞,−1/ε).

Remark. It can be seen that in the definition above the number 1/ε increases
as ε decreases. The corresponding neighborhood (or deleted neighborhood) gets
smaller. Notice that in the case of +∞ and −∞ that a neighborhood and deleted
neighborhood are the same set.

Definition. We say thatA ∈ R∗ is the limit of the function f at the point c ∈ R∗,
if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P (c, δ) : f(x) ∈ B(A, ε).

With respect to Theorem 2 for c ∈ R∗ and A ∈ R∗ we can use the notation
lim
x→c

f(x) = A, if the limit of f at the point c is A.
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Remarks. 1. Let lim
x→c

f(x) = A, where c ∈ R∗, A ∈ R∗. Then we can distinguish
the two cases:

the limit



at a real point, i.e. c ∈ R, and


A ∈ R (the limit limit is real),
A = +∞ (the limit is infinity),
A = −∞ (the limit is minus infinity),

at infinity, i.e. c = ±∞, and


A ∈ R (the limit is real),
A = +∞ (the limit is infinity),
A = −∞ (the limit is minus infinity).

2. Notice that if, for example A = +∞, then the previous definition can be formu-
lated equivalently as

∀L ∈ R ∃δ ∈ R, δ > 0 ∀x ∈ P (c, δ) : f(x) > L.

Example 3. Show that lim
x→0

1/x2 = +∞.

Solution. Let ε > 0. Then it suffices to put δ =
√
ε. Immediately we see that for

every x ∈ P (0,
√
ε) it holds that 1/x2 > 1/ε, and so 1/x2 ∈ B(+∞, ε). ♣

Example 4. Let us show that lim
x→+∞

1/(1 + x) = 0.

Solution. Choose ε > 0 and take δ = ε. For x ∈ P (+∞, δ) it holds that 0 <
1/(1 + x) < 1/x < ε, and therefore 1/(1 + x) ∈ B(0, ε). ♣

Remark. We can see that the following statement holds from the definition of the
limit. If the function f and g are equal on a certain deleted neighborhood of a point
a ∈ R∗, then if one of the limits lim

x→a
f(x), lim

x→a
g(x), exists then the other also

exists and they are equal.

If we want to define the term right-handed limit (or left-handed), then we will
need the concept of right (and left) handed neighborhoods of a point. These terms
are defined as follows.

Definition. Let c ∈ R and ε > 0. Then we define
• the right-hand neighborhood of a point c as B+(c, ε) = [c, c+ ε),
• the left-hand neighborhood of a point c as B−(c, ε) = (c− ε, c],
• the right-hand deleted neighborhood of a point c as P+(c, ε) = (c, c+ ε),
• the left-hand deleted neighborhood of a point c as P−(c, ε) = (c− ε, c).

We further define
• the left-hand neighborhood of the point +∞ as B−(+∞, ε) = (1/ε,+∞),
• the right-hand neighborhood of the point−∞ asB+(−∞, ε) = (−∞,−1/ε),
• left-hand deleted neighborhood of the point +∞ asP−(+∞, ε) = B−(+∞, ε),
• right-hand deleted neighborhood of the point−∞ asP+(−∞, ε) = B+(−∞, ε).
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Definition. Let A ∈ R∗, c ∈ R ∪ {−∞}. We say that the function f has a right-
handed limit at the point c equal to A (we denote lim

x→c+
f(x) = A)1, if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P+(c, δ) : f(x) ∈ B(A, ε).

Similarly we define the term left-handed limit at the point c ∈ R ∪ {+∞}. For
the left-handed limit of the function f at the point c we use the symbol lim

x→c−
f(x).

Remark. Consider that the function f has a limit at the point c ∈ R if and only if
it has both a left and a right-handed limit at c and that these one-sided limits are
equal.

Definition. Let c ∈ R. We say that the function f is right-continuous at the point c
(or left-continuous), if lim

x→c+
f(x) = f(c) (or lim

x→c−
f(x) = f(c)).

Example 5. Let us define

f(x) =


1 for x > 0,
0 for x = 0,
−1 for x < 0.

We call this function the sign function and denote it as sgn. We can easily see that

lim
x→0+

sgnx = 1 and lim
x→0−

sgnx = −1.

The function sgn is therefore not continuous at the point 0.

Example 6. An affine function f : x 7→ ax + b is continuous at all points c ∈ R.
We can show this directly from the definition. Let us do it in detail for the case that
a > 0. Let us have c ∈ R. Then for x ∈ (c− δ, c+ δ) it holds that

f(c)− aδ < f(x) = f(c) + a(x− c) < f(c) + aδ.

Let ε > 0. If we put δ = ε/a, then it follows from the previous inequality that for
every x ∈ (c− δ, c+ δ) it holds that

f(c)− ε < f(x) < f(c) + ε.

Thus we have proved that lim
x→c

f(x) = f(c).

Let us note that the definition of the limit does not include instructions on how
to find the limit itself (or how to prove that the limit does not exist). Similarly to
the case of sequences we will build a humble theory which allows us to calculate
some limits.

1It is possible to prove uniqueness and therefore that the notation is correct; similarly for the
left-handed limits.
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Theorem 7 (real limits and boundedness). If a function f has a real limit at the
point c ∈ R∗ then there exists some P (c, δ) such that f is bounded on P (c, δ).

Proof. Let us denote lim
x→c

f(x) = A ∈ R. According to the definition of the limit

there exists an δ ∈ R, δ > 0, such that f(x) ∈ B(A, 1) for x ∈ P (c, δ). For this x
we have

A− 1 < f(x) < A+ 1. �

Theorem 8 (arithmetics of the limits of functions). Let c ∈ R∗. If lim
x→c

f(x) =
A ∈ R∗ and lim

x→c
g(x) = B ∈ R∗, then it holds that:

(i) lim
x→c

(
f(x) + g(x)

)
= A+B,

(ii) lim
x→c

(
f(x)g(x)

)
= AB,

(iii) lim
x→c

(
f(x)/g(x)

)
= A/B,

if the right-hand side is defined.

Proof. We will only show the claim about the quotients of two functions forA ∈ R
and B ∈ R, B > 0. The techniques used in the other proofs are similar and we
leave their execution to the reader.

Our aim is to prove that for every ε > 0 there exists a δ > 0 such that

∀x ∈ P (c, δ) :

∣∣∣∣f(x)

g(x)
− A

B

∣∣∣∣ < ε. (1)

>From the definition of the limit it follows that for the number B/2 there exists
η > 0 such that for x ∈ P (c, η) it holds that g(x) ∈ (B − B/2, B + B/2),
and so g(x) > B/2 > 0, therefore the expression f(x)/g(x) is defined for all
x ∈ P (c, η). For x ∈ P (c, η) by using the inequality 1/g(x) < 2/B we estimate∣∣∣∣f(x)

g(x)
− A

B

∣∣∣∣ =
1

|g(x)|B
|f(x)B − g(x)A| =

=
1

|g(x)|B
|f(x)B −AB +AB − g(x)A| ≤

≤ 1

|g(x)|B
(
B |f(x)−A|+ |A| |B − g(x)|

)
≤

≤M
(
|f(x)−A |+ |g(x)−B|

)
,

(2)

where M = max
{

2
B ,

2|A|
B2

}
. Let us now choose ε > 0. From the hypothesis of the

theorem it follows that for the number ε
2M there exists a δ1 > 0 and δ2 > 0 such
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that it holds that

∀x ∈ P (c, δ1) : |f(x)−A| < ε

2M
, (3)

∀x ∈ P (c, δ2) : |g(x)−B| < ε

2M
. (4)

Now if δ is the smallest of the three positive numbers η, δ1 and δ2, then the in-
equalities (2), (3) and (4) simultaneously hold for x ∈ P (c, δ). >From here we see
that (1) follows. �

The expression “A/0” is not defined, nevertheless this theorem holds.

Theorem 9. Let c ∈ R∗, lim
x→c

g(x) = 0, lim
x→c

f(x) = A ∈ R∗ and A > 0. If there

exists some η > 0 such that g is positive on P (c, η), then lim
x→c

(
f(x)/g(x)

)
= +∞.

Proof. Let us consider two cases. Firstly we assume that A ∈ R. Let us choose
L ∈ R arbitrarily. We find δ1 > 0 such that for all x ∈ P (c, δ1) it holds that
f(x) ∈ (A−A/2, A+A/2). Further we find δ2 > 0 such that for all x ∈ P (c, δ2) it
holds that |g(x)| < A

2(|L|+1) . We put δ3 = min{δ1, δ2, η}. Then fro all x ∈ P (c, δ3)

we have 0 < g(x) < A
2(|L|+1) , and so

f(x)

g(x)
>

A
2
A

2(|L|+1)

= |L|+ 1 > L.

Thus we have proved the claim for A ∈ R.
Now let us assume that A = +∞. Again let us choose L ∈ R arbitrarily. We

find δ1 > 0 such that for all x ∈ P (c, δ1) it holds that f(x) > 1. Further we
find δ2 > 0 such that for all x ∈ P (c, δ2) it holds that |g(x)| < 1

|L|+1 . We put
δ3 = min{δ1, δ2, η}. Then for all x ∈ P (c, δ3) we have 0 < g(x) < 1/(|L| + 1),
and so

f(x)

g(x)
>

1

1/(|L|+ 1)
= |L|+ 1 > L. �

Remark. The previous theorems have variations also for one-sided limits. For ex-
ample if c ∈ R ∪ {−∞}, lim

x→c+
g(x) = 0, lim

x→c+
f(x) = A ∈ R∗, A > 0

and there exists an η > 0 such that the function g is positive on P+(c, η), then
lim
x→c+

(
f(x)/g(x)

)
= +∞.

We will illustrate the use of Theorem 8 on the following example.

Example 10. Calculate lim
x→−1

x2 + 3x+ 2

x3 + 2x2 − x− 2
.



58 4. FUNCTIONS OF ONE REAL VARIABLE

Solution. Because the limit of the numerator and the denominator at the point −1
is zero by Theorem 8 (i), (ii) and Example 6, we cannot use the quotient rule of
Theorem 8 (iii). Nevertheless

x2 + 3x+ 2

x3 + 2x2 − x− 2
=

(x+ 1)(x+ 2)

(x+ 1)(x2 + x− 2)
=

x+ 2

x2 + x− 2

Everywhere where the denominator is different from zero. The functions

x 7→ x2 + 3x+ 2

x3 + 2x2 − x− 2
, x 7→ x+ 2

x2 + x− 2

are equal on a certain deleted neighborhood of the point−1, for example P (−1, 1).
According to the remark on page 54 it suffices to calculate the limit of the second
function at −1. Thus we have

lim
x→−1

x2 + 3x+ 2

x3 + 2x2 − x− 2
= lim

x→−1

x+ 2

x2 + x− 2
= −1/2. ♣

Remark. >From Theorem 8 it immediately follows that if the functions f and g are
continuous at the point c ∈ R, then the functions f + g and fg are also continuous
at the point c. Further if g(c) 6= 0, the the function f/g is continuous at c.

Example 11. We already know that the function f(x) = x is continuous at all
points c ∈ R. According to the previous remark the functions x 7→ x2, x 7→ x3, . . .
are also continuous at all points in R.

Definition. A polynomial is a function P having the form

P (x) = a0 + a1x+ · · ·+ anx
n, x ∈ R, (5)

where n ∈ N∪{0} and a0, a1, . . . , an ∈ R. The numbers a0, . . . , an are called the
coefficients of the polynomial of P .

Example 12. Let P be a polynomial in the form P (x) = a0 + a1x+ · · ·+ anx
n,

where n ≥ 1 and an 6= 0. Then

lim
x→+∞

P (x) =

{
+∞, if an > 0,
−∞, if an < 0.

Solution. It can be seen immediately from the definition that lim
x→+∞

x = +∞.
From here, by repeatedly using Theorem 8, we get

lim
x→+∞

P (x) = lim
x→+∞

( a0
xn

+
a1
xn−1

+ . . .+
an−1
x

+ an

)
· xn = an · (+∞).

♣
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Remark. Let n,m ∈ N ∪ {0} and

P (x) = a0 + a1x+ · · ·+ anx
n, x ∈ R,

Q(x) = b0 + b1x+ · · ·+ bmx
m, x ∈ R,

where a0, a1, . . . , an ∈ R, an 6= 0, b0, b1, . . . , bm ∈ R, bm 6= 0. If the polynomi-
als P and Q are equal (i.e. P (x) = Q(x) for all x ∈ R), then

lim
x→+∞

(
P (x)−Q(x)

)
= lim

x→+∞
0 = 0,

which according to Example 12 is only possible if n = m and a0 = b0, . . . , an =
bn.

With respect to this observation we know that the following definition is cor-
rect.

Definition. Let P be a polynomial in the form (5). We say that P is a polynomial
of degree n, if an 6= 0. The degree of the zero polynomial (i.e. the constant zero
function defined on R) is defined as −1.

Once again it can be seen immediately from Theorem 8, that polynomials are
continuous at all points in R. If P , Q are two polynomials and Q is not the zero
polynomial, then the function F = P/Q, which is called a rational function, is
defined at all points of the real line except those where the polynomial Q takes
the values zero. There are at most m such points, where m is the degree of the
polynomial Q (see Theorem ??). According to the last claim of Theorem 8 the
function F is continuous at all points, where it is defined.

Theorem 13 (limit and order). Let c ∈ R∗ and let lim
x→c

f(x) and lim
x→c

g(x) exist.
(i) If

lim
x→c

f(x) > lim
x→c

g(x),

then there exists a δ > 0 such that

∀x ∈ P (c, δ) : f(x) > g(x).

(ii) If there exists some δ > 0 such that

∀x ∈ P (c, δ) : f(x) ≤ g(x),

then
lim
x→c

f(x) ≤ lim
x→c

g(x).

(iii) (squeeze) Let there exist some η > 0 such that

∀x ∈ P (c, η) : f(x) ≤ h(x) ≤ g(x).

If moreover lim
x→c

f(x) = lim
x→c

g(x) = A ∈ R∗, then also lim
x→c

h(x) exists and
equals A.
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Proof. Let us prove claim (iii) for A ∈ R. Try to prove claims (i) and (ii) yourself.
Let us choose ε > 0. To this number there exists some δ1 > 0 such that for all
x ∈ P (c, δ1) it holds that

A− ε < f(x) < A+ ε, A− ε < g(x) < A+ ε.

Now let δ = min{δ1, η}. If x ∈ P (c, δ), then

A− ε < f(x) ≤ h(x) ≤ g(x) < A+ ε,

and therefore h(x) ∈ (A − ε,A + ε). For every ε > 0, therefore, there exists a
δ > 0 such that

∀x ∈ P (c, δ) : h(x) ∈ (A− ε,A+ ε),

and therefore lim
x→c

h(x) = A. �

Remark. If the function f at the point c is continuous and f(c) 6= 0, then there
exists a δ > 0 such that f is non-zero on B(c, δ). Think through how this claim
follows in part from (i) of the previous theorem (instead of g take the zero function).

Remark. In the chapter about sequences we proved variations on the squeeze the-
orem also for infinite limits (Theorem 2.19 and 2.20). It is similar here in the case
of infinite limits of functions too. We include the version for limits equal to +∞.

Theorem. Let there exist an η > 0 such that for all x ∈ P (c, η) we have f(x) ≤
h(x). Further let us assume that lim

x→c
f(x) = +∞. Then also lim

x→c
h(x) exists and

equals +∞.

Example 14. Calculate lim
x→1

(x− 1)2

2 + sin 1
x−1

.

Solution. For every x ∈ R \ {1} it holds that 2 + sin 1
x−1 ≥ 1, and so

0 ≤ (x− 1)2

2 + sin 1
x−1
≤ (x− 1)2.

It holds that lim
x→1

0 = 0 and lim
x→1

(x− 1)2 = 0. So also

lim
x→1

(x− 1)2

2 + sin 1
x−1

= 0

by (iii) from Theorem 13. ♣

Limits are also often calculated by using the following theorem, whose proof
can easily be conducted using claim (iii) from Theorem 13.

Theorem 15. Let c ∈ R∗, lim
x→c

f(x) = 0 and let there be a η > 0 such that g is

bounded on P (c, η). Then lim
x→c

(
f(x)g(x)

)
= 0.
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The next theorem shows the connection between the limit of a function and the
limit of a sequence

Theorem 16 (Heine’s theorem). Let c ∈ R∗,A ∈ R∗ and for the function f assume
that lim

x→c
f(x) = A. If the sequence {xn} satisfies xn ∈ Df , xn 6= c for all n ∈ N

and lim
n→∞

xn = c, then it holds that lim
n→∞

f(xn) = A.

Remark. The name Heine’s theorem for the previous claim is not entirely accurate
because Heine’s theorem is an equivalence and its formulation is more compli-
cated.

It is not hard to formulated Heine’s left-hand (or right-hand) theorem for one-
sided limits. Similarly one can see the connection between continuity and the limit
of sequences. In Chapter ?? we will introduce yet another form of this theorem
(Theorem ??), which we will prove. Using the ideas there one can easily conduct
a proof in this setting so we will not prove the theorem above.

Theorem 16 is often useful for proving that a certain limit does not exist.

Example 17. Let us show that the limit lim
x→0

sin 1
x does not exist.

Solution. Assume that lim
x→0

sin 1
x = A ∈ R∗. Let us take the sequence {xn} =

{ 1
nπ}. For every n ∈ N we have sin 1

xn
= sinnπ = 0, and therefore lim

n→∞
sin 1

xn
=

0. However lim
n→∞

xn = 0 and xn 6= 0 for all n ∈ N. Further let us take the

sequence {yn} =
{

1
π
2
+2nπ

}
. We have sin 1

yn
= sin

(
π
2 + 2nπ

)
= 1 for every

n ∈ N, and therefore lim
n→∞

sin 1
yn

= 1. Simultaneously however lim
n→∞

yn = 0 and

for all n ∈ N it holds that yn 6= 0. By Heine’s theorem we must have lim
n→∞

sin 1
xn

=

lim
n→∞

sin 1
yn

= A. On the other hand however lim
n→∞

sin 1
xn
6= lim

n→∞
sin 1

yn
, and that

is a contradiction. Therefore the limit lim
x→0

sin 1
x does not exist. ♣

Theorem 8 says how the limit of a function behaves with respect to addition,
subtraction, multiplication and division. The following theorem clarifies the rela-
tionship that the limit has with composition of functions.

Theorem 18 (limit of a compound function). Let c,D,A ∈ R∗. Let us have the
functions f and g which satisfy lim

x→c
g(x) = D and lim

y→D
f(y) = A. Let us also

assume that at least one of the following conditions is satisfied:
(P) there exists an η > 0 such that for all x ∈ P (c, η) it holds that g(x) 6= D,
(S) the function f is continuous at the point D.

Then it holds that
lim
x→c

(f ◦ g)(x) = A.
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Proof. Let us assume that condition (P) is satisfied. Choose any ε > 0. To this ε
there is a ψ > 0 such that

∀y ∈ P (D,ψ) : f(y) ∈ B(A, ε),

because lim
y→D

f(y) = A. To this ψ one can find a δ′ > 0 such that

∀x ∈ P (c, δ′) : g(x) ∈ B(D,ψ),

because lim
x→c

g(x) = D. Let us put δ = min{δ′, η}. For every x ∈ P (c, δ) it holds

that g(x) ∈ B(D,ψ)\{D}, because g(x) ∈ P (D,ψ). From here f
(
g(x)

)
∈ B(A, ε).

Thus the proof is complete for the version with condition (P).
Now let us assume that we have condition (S). Take ε > 0. Then there exists

a ψ > 0 such that for all y ∈ P (D,ψ) it holds that f(y) ∈ B(A, ε). Because
the function f is continuous at the point D, we have f(D) = A. Therefore for all
y ∈ B(D,ψ) it holds that f(y) ∈ B(A, ε). to any given number ψ we have a δ > 0
such that for all x ∈ P (c, δ) it holds that g(x) ∈ B(D,ψ). Together we get that for
x ∈ P (c, δ) it holds that f

(
g(x)

)
∈ B(A, ε). And so the proof is completed. �

Remarks. 1. If neither condition (P) nor (S), then the claim of the theorem may
not hold. Consider the case where f = |sgn|, g = 0, c = 0, D = 0, A = 1.
2. If the function g is continuous at the point c ∈ R and the function f is continuous
at the point g(c), then, by the previous theorem, we have that the function f ◦ g is
continuous at the point c.

The theorem on the limit of compound functions also has its version for one
sided limits. The following version is useful.

Theorem 19. Let c,D,A ∈ R∗. Let the functions f and g satisfy lim
x→c−

g(x) = D,

lim
y→D+

f(y) = A and let at least one of the following conditions be satisfied:

(P) there exists an η > 0 such that for all x ∈ P−(c, η) it holds that g(x) >
D,

(S) the function f is right-continuous at the pointD and there exists a number
η > 0 such that for all x ∈ P−(c, η) it holds that g(x) ≥ D.

Then it holds that
lim
x→c−

(f ◦ g)(x) = A.

Example 20. It holds that lim
x→+∞

f(1/x) = lim
y→0+

f(y), if at least one of the limits
exists.

Proof. If we put g(x) = 1/x and use Theorem 19, we get the validity of the ex-
pression in the case that the limit lim

y→0+
f(y) exists. The validity of the relationship

under the assumption of the existence of the first limit is proved similarly. �
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Theorem 21 (limit of a monotone function). Let a, b ∈ R∗, a < b. Let the func-
tion f be monotone on the interval (a, b). Then there exist lim

x→a+
f(x) and lim

x→b−
f(x),

while it holds that:
• If f is non-decreasing on (a, b) then

lim
x→a+

f(x) = inf f
(
(a, b)

)
and lim

x→b−
f(x) = sup f

(
(a, b)

)
.

• If f is non-increasing on (a, b) then

lim
x→a+

f(x) = sup f
(
(a, b)

)
and lim

x→b−
f(x) = inf f

(
(a, b)

)
.

Proof. Let us prove that lim
x→a+

f(x) = inf f
(
(a, b)

)
holds for a non-decreasing

function f bounded from below and for a ∈ R. The proofs of the other cases are
left to the reader. Denote g = inf f

(
(a, b)

)
∈ R. Choose the number ε > 0. >From

the properties of the infima it follows that there exists a y ∈ f
(
(a, b)

)
such that

y < g + ε. >From the definition of the set f
(
(a, b)

)
it can be seen that y = f(x′)

for some x′ ∈ (a, b). Because the function f is non-decreasing we have

∀x ∈ (a, x′) : f(x) ≤ f(x′) < g + ε.

Because g is a lower bound on the set f
(
(a, b)

)
, we have

∀x ∈ (a, b) : g − ε < g ≤ f(x).

Therefore it holds that

∀x ∈ (a, x′) : g − ε < f(x) < g + ε.

Let us put δ = x′ − a. Then

∀x ∈ P+(a, δ) : f(x) ∈ (g − ε, g + ε).

Thus the claim is proven. �

4.2. Continuous functions on an interval

Definition. Let J ⊂ R be a non-degenerate interval (i.e. it contains an infinite
number of points). The function f : J → R is continuous on the interval J , if it
holds that:
• f is continuous at every inner point of J ,
• f is right-continuous at the left end-point of the interval J , if this point be-

longs to J ,
• f is left-continuous at the right end-point of the interval J , if this point be-

longs to J .
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A function continuous on an interval has a number of important properties and
we will include the most important of them.

Theorem 22 (Bolzano theorem on intermediate values). Let the function f be
continuous on the interval [a, b] and let us assume that f(a) < f(b). then for every
C ∈ R satisfying f(a) < C < f(b) there exists an ξ ∈ (a, b) such that f(ξ) = C.

Proof. ChooseC ∈
(
f(a), f(b)

)
and putM = {z ∈ [a, b]; f(z) < C}. The setM

is non-empty (because a ∈M ) and bounded from above (the number b is an upper
bound on the set M ), therefore supM ∈ R. Let us put ξ = supM . Obviously it
holds that ξ ∈ [a, b]. Let us show that f(ξ) = C by eliminating the possibilities
that f(ξ) > C and f(ξ) < C.

If f(ξ) > C, then ξ > a and thanks to the left-continuity of f at ξ we can
find δ > 0 such that for all x ∈ (ξ − δ, ξ] it holds that f(x) > C. This means that
M ⊂ [a, ξ] \ (ξ − δ, ξ] = [a, ξ − δ], which is in contradiction with the definition ξ.

If f(ξ) < C, then ξ < b and thanks to the right-continuity of f at ξ we can
find δ > 0 such that for all x ∈ [ξ, ξ + δ) it holds that f(x) < C. This means that
[ξ, ξ + δ) ⊂M ⊂ [a, ξ], which again is a contradiction. �

Remark. The reader can surely formulate the theorem for the case f(a) > f(b).
Let us mention that the hypothesis of the theorem do not tell us anything about the
number of such points ξ ∈ (a, b), at which f(ξ) = C. Bolzano’s theorem about
intermediate values claims that there must be at least one such point.

Theorem 23 (image of an interval in a continuous function). Let J be an interval.
Let the function f : J → R be continuous on J . Then f(J) is an interval.

Proof. Let us verify that the set f(J) satisfies the assumption from Lemma 1.11.
Choose y1, y2 ∈ f(J) and z ∈ R, y1 < z < y2. Then there exist x1, x2 ∈ J
such that f(x1) = y1 and f(x2) = y2. According to Theorem 22 and the fol-
lowing remark f must take the value z at some point, so z ∈ f(J). According to
Lemma 1.11 we have that f(J) is an interval. �

Definition. LetM ⊂ R, x ∈M and the function f be defined at least on the setM
(i.e. M ⊂ Df ).
• We say that f at x attains its maximum (or minimum) on M , if it holds that

∀y ∈M : f(y) ≤ f(x) (or ∀y ∈M : f(y) ≥ f(x)).

The point x is then called the maximal point (or minimal point) of the function f
on the set M .
• We say that f has a local maximum (or local minimum) at the point x if

there exists a δ > 0 such that

∀y ∈ B(x, δ) : f(y) ≤ f(x) (or ∀y ∈ B(x, δ) : f(y) ≥ f(x)).
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The point x is called the point of local maximum (or point of local minimum) of
the function f .
• We say that f has a sharp local maximum (or sharp local minimum) at the

point x, if there exists a δ > 0 such that

∀y ∈ P (x, δ) : f(y) < f(x) (or ∀y ∈ P (x, δ) : f(y) > f(x)).

We call the point x the point of sharp local maximum (or sharp local minimum)
of the function f .
• The symbol maxM f (or minM f ) denotes the largest (or smallest) value at-

tained by the function f over the set M (if such a value exists).
• The (global) extreme point is a point of maximum or minimum. A local

extreme point is a point of local maximum or local minimum.

Remark. Let us notice that if a function f attains a local extreme at the point x then
it is defined on some neighborhood of x.

On the picture points x and z are local maximal points of the function f and at
the points y and t the function f has a local minimum.

FIGURE 4.

Example 24. 1. The function f(x) = 1/x does not attain an extreme on the inter-
val (0, 1).
2. The function f : [0, 1] → R, given by the formula f(x) = x for x ∈ (0, 1)
and f(0) = f(1) = 1

2 , is bounded on the interval [0, 1] but does not attain an
extreme.

Theorem 25 (existence of extremal points). Let a, b ∈ R, a < b, and f be a con-
tinuous function on the interval [a, b]. Then f attains a maximum and a minimum
on [a, b].

Proof. Let us denote G = sup f
(
[a, b]

)
. By Lemma 2.21 there exists a sequence

{yn} of elements of the set f
(
[a, b]

)
such that lim yn = G. For every n ∈ N we



66 4. FUNCTIONS OF ONE REAL VARIABLE

find xn ∈ [a, b] satisfying f(xn) = yn. According to Theorem 2.30 we choose
a converging subsequence {xnk} from {xn} with the limit x∗. According to The-
orem 2.13 the point x∗ lies in the interval [a, b]. According to the remark after
Theorem 16 it holds that

lim
k→∞

f(xnk) = f(x∗).

Because f(xnk) = ynk , the sequence {f(xnk)}∞k=1 is a subsequence of {yn}∞n=1.
According to Theorem 2.7 it holds that

f(x∗) = lim
k→∞

f(xnk) = lim
n→∞

yn = G.

Therefore f(x∗) = G and x∗ is a maximal point of the function f on the interval
[a, b].

For the proof of the existence of a minimal point let us define the function
g : [a, b] → R with the formula g(x) = −f(x). The function g is continuous on
[a, b] and therefore it must have a maximum on [a, b] by what we have just proven.
Let this be at the point x∗ ∈ [a, b]. Then it holds that g(x) ≤ g(x∗) whenever
x ∈ [a, b]. This means that f(x) ≥ f(x∗) for every x ∈ [a, b], and f attains its
minimum on [a, b] at the point x∗. Thus the theorem is proven. �

Corollary 26. Let f be a continuous function on the interval [a, b]. Then f is
bounded on [a, b].

Proof. By the previous theorem the function f attains a maximum and minimum
on the interval [a, b] and that at the points x∗, x∗ ∈ [a, b]. It therefore holds that
f(x∗) ≤ f(x) ≤ f(x∗) for all x ∈ [a, b], so the set f

(
[a, b]

)
is bounded. �

Remark. Finding the extremes of a function on a set is one of the most impor-
tant mathematical tasks you will meet. Theorem 25 does not tell us how to find
these extreme points, but it does give us useful information that at least one such
maximum (or minimum) exists (given the hypothesis of the theorem).

In the following we will show some simple criteria how to determine that a
function does not have an extreme at a given point. At points where the criteria
is not met there may or may not be an extreme. We often refer to these points as
“candidates for extreme points”. there are generally only a few such points. If we
know (for example by using Theorem 25), that our function attains a maximum (or
a minimum) on a given set, then the maximum (or minimum) will be that candidate
for the extreme point where the function attains the highest (or lowest) value.

At the end of this section we will consider the relationship between continuity
and the inverse mapping. A continuous function on the interval J maps this interval
onto the interval f(J) (Theorem 23). If f is increasing on J (or decreasing), then f
is one-to-one from J onto f(J) and there exists an inverse mapping f−1 : f(J)→
J . This mapping is a function and therefore we will talk about f−1 as the inverse
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function. The following theorem claims that both the type of monotonicity and the
continuity of the function are inherited by its inverse function.

Theorem 27 (continuity of the inverse function). Let f be a continuous and in-
creasing (decreasing) function on the interval J . Then the function f−1 is continu-
ous and increasing (decreasing) on the interval f(J).

Proof. Without loss of generality we may assume that f is increasing otherwise we
would work with the function−f . Then by Theorem 23 the function f−1 is defined
on the interval f(J) and is increasing, which is easy to see. We will now prove the
continuity of the function f−1 on f(J). Let y0 ∈ f(J) not be the right end-point
of the interval f(J). We prove the right-continuity of f−1 at the point y0. Let us
denote x0 = f−1(y0). The point x0 is not the right end-point of J , because f is
increasing on J . Let ε ∈ R, ε > 0. Let us choose x1 ∈ J ∩ (x0, x0 + ε) and put
δ = f(x1)− y0. >From here we see that [y0, y0 + δ] ⊂ f(J). Because it holds that
B+(y0, δ) = [y0, y0 + δ) =

[
f(x0), f(x1)

)
and the function f−1 is increasing on

the interval [f(x0), f(x1)
)
, we get for every y ∈ B+(y0, δ)

f−1(y) ∈ [x0, x1) ⊂ B(x0, ε) = B(f−1(y0), ε).

Similarly we can prove the left-continuity of f−1 at points in f(J), which
are not the left end-point of f(J). >From here the continuity of the functionf−1

on f(J) follows. �

Remark. If n ∈ N is even then the function x 7→ xn is a continuous increasing
function on [0,+∞), and therefore by Theorem 27 the function x 7→ n

√
x is con-

tinuous (and increasing) on [0,+∞). If n ∈ N is odd then the function x 7→ xn is
a continuous increasing function on R, and therefore by Theorem 27 the function
x 7→ n

√
x is continuous (and increasing) on R.

4.3. Elementary functions

This term generally covers those functions which we typically meet most often
in practice while calculating – a kind of basic repertoire of the mathematician. it
is exactly this “commonness” which makes it worthwhile making clear sense of
these elementary functions – define them well, give the properties, which we will
consider basic, and learn the relevant techniques for calculations.

It is somewhat up to us, which functions we consider to be elementary. In
accordance to most users of mathematics we will take them to be polynomials, the
logarithm, the exponential function (which we will also use to define the general
power ab for a > 0, b ∈ R), the trigonometric functions and the cyclometric
functions. Let us start with the logarithm function.
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Theorem 28 (the logarithm). There exists exactly one function (we denote it as
log and call it the natural logarithm), which has these properties:

(i) Dlog = (0,+∞),
(ii) log is increasing on (0,+∞),

(iii) ∀x, y ∈ (0,+∞) : log xy = log x+ log y,
(iv) lim

x→1

log x
x−1 = 1.

Remark. We will leave the proof of this theorem until we have the knowledge
necessary to allow us to conduct a simple proof (see for example chapter ??).

In the theorem the function log is characterized using certain properties, which
we will take to be basic. The theorem states that these properties are not mutu-
ally exclusive (that such a function does exist) and that they determine the defined
object uniquely (that there can only be one such function).

Let us now find further useful properties which are important to help us calcu-
late with the logarithm.
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Properties of the function logarithm.
• log 1 = 0

It holds that log 1 = log(1 · 1) = log 1 + log 1 = 2 · log 1, and from here we
see that log 1 = 0.

• ∀x ∈ (0,+∞) : log(1/x) = − log x
Let us write 0 = log 1 = log

(
x · 1x

)
= log x+ log 1

x , from whence we can see
that the desired relationship follows.

• ∀n ∈ Z ∀x ∈ (0,+∞) : log xn = n log x
Try to prove this relationship yourself using the previous claim and mathemat-

ical induction.

• lim
x→+∞

log x = +∞, lim
x→0+

log x = −∞
Because log is an increasing function on the interval (0,+∞), the existence of

both limits is guaranteed by Theorem 21 about the limit of monotone functions. In
order to prove that both limits are infinite it suffices to prove that the function log
is not bounded on (0,+∞) from above or bellow. to do this it suffices to notice
that the sequence {log 2n} is not bounded from above and the sequence {log 2−n}
is not bounded from below.

• The function log is continuous on its domain.
It holds that

lim
x→1

log x = lim
x→1

(
log x

x− 1
· (x− 1)

)
= 1 · 0 = 0 = log 1,

and so it is proven that the function log is continuous at the point 1. Let us now
show the continuity at any point c ∈ (0,+∞). For x ∈ (0,+∞) we have

log x = log
(
c · x

c

)
= log c+ log

x

c
.

On the basis of the claim about the continuity of the function log at the point 1
which we have already proven and using Theorem 18 on the limit of compound
functions we have lim

x→c
log x

c = 0. From here we get lim
x→c

log x = log c+ 0 = log c,
and so the continuity at the point c is proven.

• Rlog = R
The range of the logarithm is an interval (Theorem 23), which is not bounded

from above or below. Therefore Rlog = R.

The logarithm is one-to-one and maps (0,+∞) onto R, therefore there must
be exactly one number e ∈ (0,+∞) satisfying log e = 1. The number e, which
has great importance and meaning in mathematics, is irrational and approximately
equal to 2.71828.
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FIGURE 5. The graph of the logarithm function

In the following theorem we define the sine function in a similar way to the
logarithm function in Theorem 28.

Theorem 29 (the function sin and the number π). There exists exactly one real
number (we will call it π) and exactly one function sine (we will denote it as sin),
which has the following properties:

(i) Dsin = R,
(ii) sin is increasing on [−π

2 ,
π
2 ],

(iii) sin 0 = 0,
(iv) ∀x, y ∈ R :

sin(x+ y) = sinx · sin
(π

2
− y
)

+ sin
(π

2
− x
)
· sin y, (6)

(v) lim
x→0

sinx
x = 1.

The proof of this theorem is not easy and so we will not do it. The number we
have just introduced π is the well-known number used to calculate the circumfer-
ence of a circle. It is an irrational number and is approximately equal to 3,14159.

Some other functions are defined on the basis of the sine function – the func-
tions cosine tangents and cotangents. We call this collection of functions trigono-
metric functions.

Definition. The function cosine, which we will denote as cos, is defined by the
formula cosx = sin(π2 − x) for x ∈ R.

Notice that property (iv) can be rewritten using the cosine as follows: for all
x, y ∈ R it holds that

sin(x+ y) = sinx · cos y + cosx · sin y, (7)

which is a well known summation rule. Before we define the functions tangents
and cotangents, let us show how one can deduce further properties of the function
sine and cosine from the basic ones.
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Properties of the function sine and cosine.
(SC1) The function cos is decreasing on the interval [0, π].

The claim follows from the definition of the cosine and property (ii).

(SC2) cos π2 = 0

It follows from (iii).

(SC3) cos 0 = sin π
2 = 1

If in the expression (6) we choose x = π
2 and y = 0, we get, by using (iii),

the following equality sin π
2 = sin2(π2 ). >From here, from (iii) and from the strict

monotonicity of sine on the interval [−π
2 ,

π
2 ] it immediately follows that sin π

2 = 1.

(SC4) sinπ = 0

It follows from (7) upon putting x = π
2 and y = π

2 and using (SC2).

(SC5) cosπ = sin(−π
2 ) = −1

We put x = π and y = −π
2 into (6). Using (SC3) and (SC4) we get 1 =

sin2(−π
2 ). Properties (ii) and (iii) then give the required relationship.

(SC6) sin π
4 = cos π4 =

√
2
2

The equality sin π
4 = cos π4 follows from the definition of the function cos. We

put x = y = π
4 into (6) and using (SC3) we get 1 = 2 sin2(π4 ). Properties (ii)

and (iii) then give the required relationship.

(SC7) ∀x ∈ R : sin(x+ π) = − sinx

It suffices in (7) to put y = π and use (SC4) and (SC5).

(SC8) The functions sin and cos are 2π-periodic.
According to (SC7) we get sin(x+ 2π) = − sin(x+ π) = sinx.

(SC9) The function cos is even.
In (7) it suffices to put x = π

2 , the for any y ∈ R we get by using (SC3)
and (SC2) cos(−y) = sin

(
π
2 + y

)
= cos y.

(SC10) The function sin is odd.
By using (SC9) and then (SC7) we get for x ∈ R

sin(−x) = cos
(π

2
+ x
)

= cos
(
−π

2
− x
)

= sin(π + x) = − sinx.

(SC11) ∀x ∈ R : sin2 x+ cos2 x = 1

It suffices to substitute y = π
2 − x into (7) and use (SC3).
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(SC12) ∀x ∈ R : |sinx| ≤ 1, |cosx| ≤ 1

Follows from (SC11).

(SC13) ∀x, y ∈ R : sinx− sin y = 2 sin
(x− y

2

)
· cos

(x+ y

2

)
.

For a, b ∈ R it holds that (by using (SC9) and (SC10))

sin(a− b) = sin a cos(−b) + cos a sin(−b) = sin a cos b− cos a sin b. (8)

If we subtract this equation from sin(a + b) = sin a cos b + cos a sin b, we get
sin(a + b) − sin(a − b) = 2 cos a sin b. For a given x, y ∈ R it suffices to put
a = (x+ y)/2 and b = (x− y)/2 and we get the required relationship.

(SC14) The function sin is continuous on R.
According to (iii) we have sin 0 = 0. Further by (v)

lim
x→0

sinx = lim
x→0

(
x · sinx

x

)
= 0 · 1 = 0.

The function sin is therefore continuous at the point 0.
Choose x0 ∈ R. by using (SC13) we get

lim
x→x0

sinx = lim
x→x0

(
sinx0 + (sinx− sinx0)

)
=

= sinx0 + lim
x→x0

(
2 sin

(x− x0
2

)
· cos

(x+ x0
2

))
=

= sinx0 + 0 = sinx0.

During the calculation of the last limit we used the fact that lim
x→x0

sin
(
x−x0

2

)
= 0

(Theorem 18 and the continuity of sine at 0), the property (SC12) and Theorem 15.
The function sin is therefore continuous at every point of its domain.

(SC15) The function cos is continuous on R.
This follows from (SC14) using Theorem 18 on the limit of compound func-

tions.

(SC16) The sine function is equal to zero at exactly the points {kπ; k ∈ Z}. The
function cosine is equal to zero at exactly the points {π2 + kπ; k ∈ Z}.

The properties (iii), (SC4) and (SC8) give sin kπ = 0 for k ∈ Z. By (ii)
and (iii) the sine function is positive on the interval (0, π2 ]. On the interval [π2 , π)
it is positive by the property (SC9) and the definition of the cosine. >From here
according to property (SC7) we get, on the interval (π, 2π), that sine is negative.
The function sin is therefore non-zero on the set (0, π) ∪ (π, 2π). If x ∈ R \
{kπ; k ∈ Z}, then there exists an l ∈ Z such that x ∈

(
2lπ, (2l + 1)π

)
∪
(
(2l +

1)π, (2l + 2)π
)
, and it holds that sinx = sin(x− 2lπ) 6= 0.
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FIGURE 6. The graphs of the functions sine and cosine

Using the functions sine and cosine which we have just defined we will intro-
duce two more trigonometric functions.

Definition. We define:

• the function tangent (and we denote it as tg) by the formula tg x = sinx
cosx for

every real x, for which the quotient is defined i.e. Dtg = R \ {(2k+ 1)π2 ; k ∈
Z} (compare with (SC16));
• the function cotangent (cotg) by the formula cotg x = cosx

sinx for every real x,
for which the quotient is defined, i.e. Dcotg = R \ {kπ; k ∈ Z} (compare
with (SC16)).

Now we will deduce the basic properties of the functions that we have just
defined.

Properties of the tangent function.
• tg π

4 = 1

This follows from (SC6).

• The function tg is continuous at every point of its domain.
This follows from (SC14) and (SC15) using Theorem 8.

• The function tg is odd.
This follows from (SC10) and (SC9).

• The function tg is periodic with the period π.
If x ∈ Dtg, then also x + π ∈ Dtg and x − π ∈ Dtg. For x ∈ Dtg by (SC7),

(SC10) and (SC9) we have:

tg(x+ π) =
sin(x+ π)

cos(x+ π)
=

− sinx

sin(−π
2 − x)

=
− sinx

− sin(π2 + x)
=

=
sinx

sin(π2 + x)
=

sinx

cos(−x)
=

sinx

cosx
= tg x.
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• The function tg is increasing on (−π
2 ,

π
2 ).

Let −π
2 < y < x < π

2 . Then x − y ∈ (0, π). The function sin is positive on
the interval (0, π) (see the proof of (SC16)). We use the relationship (8) and get

0 < sin(x− y) = sinx cos y − cosx sin y. (9)

The function cos is positive on the interval (−π
2 ,

π
2 ) (because sine is positive on the

interval (0, π)), and therefore by dividing (9) by the expression cosx cos y we get

0 <
sinx

cosx
− sin y

cos y
,

from here the desired claim follows.

• lim
x→π/2−

tg x = +∞

The claim follows from the remark after Theorem 9.

• lim
x→−π/2+

tg x = −∞

The claim follows from the remark after Theorem 9, however one must also
use the Theorem on the arithmetic of limits (Theorem 8).

• Rtg = R
The function tg is continuous on the interval (−π

2 ,
π
2 ) and maps this interval

onto an interval (Theorem 23), which, by the previous two statements is neither
bounded from above no below. Therefore it must be tg

(
(−π

2 ,
π
2 )
)

= R, Thus the
claim is proved.

Properties of the cotangent. During the proof of the following properties we
can use the same approach as was used for the tangent function and therefore we
do not include the reasoning.

• The function cotg is continuous at every point of its domain.

• The function cotg is odd.

• The function cotg is periodic with the period π.

• The function cotg is decreasing on the interval (0, π).

• lim
x→0+

cotg x = +∞

• lim
x→π−

cotg x = −∞

• cotg π
4 = 1

• Rcotg = R



4.3. ELEMENTARY FUNCTIONS 75

OBR. 7. The graph of
the tangent function

OBR. 8. The graph of
the cotangent function

We will define a further elementary function as the inverse of the functions log
and the inverse of the trigonometric functions which we have defined above

Definition. The exponential function is the inverse function to the function log.
We will use the symbol exp to denote it.

Properties of the exponential function.
• Dexp = R
• Rexp = (0,+∞)

• The function exp is increasing on R.
• The function exp is continuous on R.
• exp 0 = 1

All five of these claims follow from the properties of the logarithmic function
and from Theorem 27 on inverse functions.
• ∀x, y ∈ R : exp(x+ y) = expx · exp y

We write log(expx · exp y) = log(expx) + log(exp y) = x+ y. The expres-
sion log(expx · exp y) is therefore equal to x + y, and therefore exp

(
log(expx ·

exp y)
)

= exp(x + y). If we take into consideration that the compound mapping
exp ◦ log is the identity we immediately get the required equality expx · exp y =
exp(x+ y).
• ∀x ∈ R : exp(−x) = 1/ expx

This relationship easily follows from the following equality:

1 = exp 0 = exp(x− x) = exp(x) exp(−x), x ∈ R.
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• ∀n ∈ Z ∀x ∈ R : exp(nx) = (expx)n

This can be proved by mathematical induction and using the previous proper-
ties.
• lim
x→−∞

expx = 0, lim
x→+∞

expx = +∞

The claim follows from the fact that Rexp = (0,+∞) and from Theorem 21
on the limit of monotone functions.

• lim
x→0

exp(x)− 1

x
= 1

The function exp is one-to-one and therefore expx 6= 1 for every x ∈ R\{0}.
By using the version of Theorem 18 with condition (P) and the properties of the
logarithm function we get

lim
x→0

log(expx)

exp(x)− 1
= 1.

>From here, after some algebraic operations, we get

lim
x→0

x

exp(x)− 1
= 1.

The relationship we wish to prove now follows from Theorem 8 on the arithmetic
of limits.

FIGURE 9. The graph of the exponential function

Example 30. For every r ∈ Q and x ∈ R it holds that exp(rx) = (expx)r.

Proof. Let r = p
q , where p ∈ Z, q ∈ N. Then from the basic properties of the

exponential function it follows that(
exp(rx)

)q
=

(
exp
(p
q
x
))q

= exp
(
q
p

q
x
)

= exp(px) = (expx)p,
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and therefore

exp(rx) = q
√

(expx)p = (expx)
p
q = (expx)r.

�

Definition. Let a, b ∈ R, a > 0. The general power ab is defined by the formula

ab = exp(b · log a).

This definition extends the already existing one ab for all real exponents b if the
base a is greater than 0. Until now we had only defined the expression ab, a > 0,
for b rational. According to Example 30 the new definition gives the same result as
the original and therefore is an extension of it. Instead of expx we often write ex,
which is correct by the original definition of the power.

The expression ab is defined in the following cases:
• a ∈ R, a > 0, and b ∈ R arbitrary,
• a ∈ R arbitrary and b ∈ N,
• a ∈ R, a 6= 0, and b ∈ Z, b < 0.

Later in this text we will use the convention that the expression f(x)g(x) will
be understood as exp

(
g(x) log f(x)

)
, if g is a non-constant function.

On the basis of the properties of the functions log and exp it can be proven that
all the usual rules for calculation hold.

Definition. Let a ∈ R, a > 0, a 6= 1. Let us now define the function called the
base a logarithm by the formula

loga x =
log x

log a
for x ∈ (0,+∞).

Remark. The properties of the function loga easily follow from the properties of the
function log. The function log is equal to the function loge. The base a logarithm
of x is the exponent, such that the base a to that exponent gives the number x.

Example 31. Let a ∈ R, a > 0. The function x 7→ xa is continuous on (0,+∞)
and it holds that lim

x→0+
xa = 0, lim

x→+∞
xa = +∞.

Proof. According to our definition it holds that xa = exp(a log x). Our function is
therefore the composition of two continuous functions and therefore is continuous
on the interval (0,+∞).

Further it holds that lim
x→0+

(a log x) = −∞, because a > 0, and lim
y→−∞

exp y =

0. According to the appropriate form of Theorem 19 (P) we get lim
x→0+

xa = 0.

Similarly it holds that lim
x→+∞

a log x = +∞ a lim
y→+∞

exp y = +∞. >From here

we see lim
x→+∞

xa = +∞. �
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Example 32. Let n ∈ N. It holds that lim
x→+∞

n
√
x = +∞. If n is odd then also

lim
x→−∞

n
√
x = −∞.

Proof. The first claim follows from the previous example. If n is odd then the
function x 7→ n

√
x is odd and the second claim follows from the previous by using

Theorem 8. �

Trigonometric functions are not one-to-one on their entire domains and so none
of them have an inverse function. It is however useful to define the so called cy-
clometric functions as the inverse to a certain restriction of the trigonometric func-
tions.

The function sin |[−π
2
,π
2
] is continuous and increasing on its domain. Accord-

ing to Theorem 23 it maps the interval [−π
2 ,

π
2 ] onto the interval [−1, 1]. Therefore,

by Theorem 27, it has an inverse function
(
sin |[−π

2
,π
2
]

)−1 which is defined on the
interval [−1, 1]. This function is continuous and increasing on the interval [−1, 1]

and maps it onto the interval [−π
2 ,

π
2 ]. The function

(
sin |[−π

2
,π
2
]

)−1 is called arc-
sine and therefore we will use the notation arcsin. For a given y ∈ [−1, 1] the
equation y = sinx has infinitely many solutions. The value arcsin y is the unique
solution of this equation that lies in the interval [−π

2 ,
π
2 ].

Similarly if we restrict the function cos onto the interval [0, π], then this func-
tion is decreasing and continuous on its domain [0, π], which it maps onto the inter-
val [−1, 1]. There exists therefore an inverse function to the function

(
cos |[0,π]

)−1
: [−1, 1]→

[0, π], which is decreasing and continuous on [−1, 1]. We call it arcosine and we
will denote it as arccos.

Properties of arcsine and arcosine.

• The function arcsin is odd.

• The following equalities follow from the known properties of the functions sin
and cos.

arcsin(−1) = −π
2
, arccos(−1) = π,

arcsin 1 =
π

2
, arccos 1 = 0,

arcsin 0 = 0, arccos 0 =
π

2
,

arcsin

√
2

2
=
π

4
, arccos

√
2

2
=
π

4
.

• ∀x ∈ [−1, 1] : arcsinx+ arccosx = π
2
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Let us take any x ∈ [−1, 1] and denote y = arcsinx. Then it holds that x =
sin y = cos(π2 − y). Because y ∈ [−π/2, π/2], we have π

2 − y ∈ [0, π], and so
arccosx = π

2 − y = π
2 − arcsinx, from here we have our desired equality.

• lim
x→0

arcsinx
x = 1

The function arcsin is one-to-one and therefore arcsinx 6= 0 for all x ∈
[−1, 1] \ {0}. Using Theorem 18 (P) and the properties of the sine function we
get

lim
x→0

sin(arcsinx)

arcsinx
= 1.

>From here, after some algebraic operations, it follows that

lim
x→0

x

arcsinx
= 1.

The desired relationship follows from Theorem 8 on the arithmetic of limits.

FIGURE 10. The graphs of the functions arcsine and arcosine

The function arctangent is defined as the inverse of the function tg restricted
to the interval (−π

2 ,
π
2 ). We denote it as arctg.

Properties of the arctangent function.
• Darctg = R
• Rarctg = (−π

2 ,
π
2 )

• arctg is continuous increasing and odd on R
• lim
x→+∞

arctg x = π
2 , lim

x→−∞
arctg x = −π

2

• arctg 0 = 0, arctg 1 = π
4 , arctg(−1) = −π

4
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• lim
x→0

arctg x
x = 1

Similarly we define the function arcotangent (arccotg) as the inverse of the
restriction of the function cotg to the interval (0, π).

Properties of the arcotangent function.
• Darccotg = R
• Rarccotg = (0, π)
• arccotg is a continuous and decreasing function on R
• lim
x→+∞

arccotg x = 0, lim
x→−∞

arccotg x = π

• arccotg 0 = π
2 , arccotg 1 = π

4
• ∀x ∈ R : arctg x+ arccotg x = π

2

FIGURE 11. The graphs of the arctangent and arcotangent functions

The collection of functions arcsin, arccos, arctg and arccotg is called the
cyclometric functions.

Example 33. Calculate lim
x→0

cosx+ 1

cosx− 1
.

Solution. The limit of the numerator at the point 0 is 2, the limit of the denomi-
nator at this point is 0. On an appropriate deleted neighborhood of the point 0 the
inequality cosx < 1 holds, and therefore cosx− 1 < 0. According to Theorem 9
this allows us to easily deduce that the limit is equal to −∞. ♣

Example 34. Calculate lim
x→0

sin(x2)

x2
.

Solution. Let us put f(y) = sin y
y and g(x) = x2. Then lim

x→0
g(x) = 0 and lim

y→0
f(y) = 1.

Also put g(x) 6= 0 for x 6= 0, therefore the condition (P) of Theorem 18 is satisfied.
Thus we have lim

x→0

sin(x2)
x2

= 1. ♣

Example 35. Calculate lim
x→−∞

x
(√

x2 + 9−
√
x2 − 9

)
.
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Solution. As with the corresponding limits of sequences we will use the equality
a2 − b2 = (a − b)(a + b) in order to eliminate the difference of two roots. This
difference is unpleasant since it is of the form “+∞− (+∞)”, and therefore one
cannot use the relevant claim of Theorem 8. For x < −3 it holds that

x
(√

x2 + 9−
√
x2 − 9

)
= x

(√
x2 + 9−

√
x2 − 9

)
·
√
x2 + 9 +

√
x2 − 9√

x2 + 9 +
√
x2 − 9

=

=
x(x2 + 9− x2 + 9)√
x2 + 9 +

√
x2 − 9

=
18x√

x2 + 9 +
√
x2 − 9

· x
−1

x−1
=

=
18

√
x2+9
x +

√
x2−9
x

=
18

−
√

1 + 9
x2
−
√

1− 9
x2

.

But beware, for x < 0 we have
√
x2 = |x| = −x. The limit of the expressions

under the roots is equal to 1. Because the square root is continuous at 1 by the
remark on page 67, we can use Theorem 18 (S). The limit is therefore equal to −9
by Theorem 8. ♣

Example 36. Calculate lim
x→+∞

sin

(
π · 4
√
x− 3 3

√
x

2 4
√
x2 + 1

)
.

Solution. We will approach this, again, by using Theorem 18 on the limit of com-
pound functions. Firstly we calculate

lim
x→+∞

π · 4
√
x− 3 3

√
x

2 4
√
x2 + 1

= lim
x→+∞

π ·
4− 3 1

6√x

2 4

√
1 + 1

x2

= 2π.

We used the continuity of the root and Theorem 8 together with Example 32. The
sine function is continuous at 2π and therefore

lim
x→+∞

sin

(
π · 4
√
x− 3 3

√
x

2 4
√
x2 + 1

)
= sin 2π = 0.

♣

Example 37. Calculate lim
x→+∞

log
(√

x2 + 4− x
)

.

Solution. Let us firstly calculate the limit of the inner function
√
x2 + 4− x:

lim
x→+∞

(√
x2 + 4− x

)
·
√
x2 + 4 + x√
x2 + 4 + x

= lim
x→+∞

4√
x2 + 4 + x

= 0.

Let us realize that for all x > 0 we have 4√
x2+4+x

> 0 and lim
y→0+

log y = −∞.

>From here by using Theorem 19 with condition (P) we deduce the result of the
task is −∞. ♣
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Example 38. Calculate lim
x→0

43x − 1

log(x+ 1)
.

Solution. Firstly let us rewrite the limit as follows:

lim
x→0

exp(3x log 4)− 1

log(x+ 1)
.

We know that lim
x→0

exp(x)−1
x = 1, and from the relationship lim

x→1

log x
x−1 = 1 we

can easily deduce, by using Theorem 18, that lim
x→0

log(x+1)
x = 1. Combining these

results we get

lim
x→0

43x − 1

log(x+ 1)
= lim

x→0

exp(3x log 4)− 1

3x log 4
· 3x log 4

x
· x

log(x+ 1)
=

= 1 · 3 log 4 · 1 = 3 log 4.

♣

When calculating limits of the type lim
x→c

f(x)g(x) it tends to be useful to rewrite

the expression f(x)g(x) using the definition of the general power as exp
(
g(x) log f(x)

)
.

In order to calculate the limit lim
x→c

exp
(
g(x) log f(x)

)
let us use Theorem 18,

with the outer function being y 7→ exp(y) and the inner function being x 7→
g(x) log f(x). Let us now notice that if lim

x→c
g(x) log f(x) is a real number then we

can use Theorem 18 with the condition (S). If lim
x→c

g(x) log f(x) is infinite then we
use Theorem 18 with condition (P), which is satisfied automatically in this case,
because the real value g(x) log f(x) is always different from ±∞.

Example 39. Calculate lim
x→+∞

(
x+ 4

x+ 2

)4x−1
.

Solution. We rewrite this limit using the exponential function as

lim
x→+∞

exp

(
(4x− 1) log

x+ 4

x+ 2

)
.

Let us firstly calculate the limit of the exponent and then use the Theorem 18 on
the limit of compound functions:

lim
x→+∞

(4x− 1) log
x+ 4

x+ 2
= lim

x→+∞

(
(4x− 1) ·

log x+4
x+2

x+4
x+2 − 1

·
(
x+ 4

x+ 2
− 1

))
=

= lim
x→+∞

(
log x+4

x+2
x+4
x+2 − 1

· 2(4x− 1)

x+ 2

)
= 1 · 8 = 8,
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and therefore

lim
x→+∞

(
x+ 4

x+ 2

)4x−1
= lim

x→+∞
exp

(
(4x− 1) log

x+ 4

x+ 2

)
= e8. ♣

4.4. Derivatives

Definition. Let f be a real function and a ∈ R. Then the
• derivative of the function f at the point a is the number

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

if this limit exists,
• right-hand derivative of the function f at the point a is the number

f ′+(a) = lim
h→0+

f(a+ h)− f(a)

h
,

if this limit exists,
• the left-hand derivative of the function f at the point a is the number

f ′−(a) = lim
h→0−

f(a+ h)− f(a)

h
,

if this limit exists.

Remark. During the calculation of the derivative of the function f at the point
a ∈ R the following cases may occur:

the derivative at the point a


does not exist,

exists and is

{
real, i.e. is equal to a real number,
infinite, i.e. is equal to +∞ or −∞.

Further remarks. 1. According to the theorem on the limit of compound functions
it holds that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
,

if at least one side of the equation is defined. We will often use this formulation.

2. The existence of f ′(a) (either real or infinite) implies that there exists a neigh-
borhood of the point a, on which the function f is defined.

3. Notice that the derivative of the function f at the point a ∈ R exists if and only
if the right and left-hand derivatives exist at a and are equal.
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Geometrically, the concept of the derivative can be understood as follows.

FIGURE 12.

The quotient f(b)−f(a)
b−a is the gradient of the secant of the graph of the function,

i.e. the line that intersects the points [a, f(a)] a [b, f(b)]. If the point b approaches
the point a, then the line approaches the line which intersects the point [a, f(a)]
with the gradient f ′(a) (if f ′(a) exists and is real). this line is uniquely determined
because the uniqueness of the derivative follows from Theorem 2 on the uniqueness
of the limit. We will call it the tangent to the graph of the function f at the point
[a, f(a)]. The equation of the tangent to the graph of the function f at the point
[a, f(a)] is

y = f(a) + f ′(a) · (x− a).

Example 40. 1. Let c ∈ R and f(x) = c on a certain neighborhood of the point
x0 ∈ R. Then f ′(x0) = 0.
2. Let n ∈ N, f(x) = xn and x0 ∈ R. By simple computation we get

f ′(x0) = lim
x→x0

xn − x0n

x− x0
=

= lim
x→x0

(x− x0) · (xn−1 + xn−2x0 + · · ·+ xn−10 )

x− x0
= n · xn−10 .

3. We can easily calculate

sgn′+(0) = lim
x→0+

1− 0

x
= +∞

and similarly sgn′−(0) = +∞.
The function sgn has one-sided derivatives at the point 0 and the values of the

derivatives coincide. >From here it follows that the derivative of the function sgn
at the point 0 exists and is equal to +∞.
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Example 41. Let us calculate the derivative of the function f(x) = |x|.

Solution. The domainDf is the entire R. On the interval (−∞, 0) we have f(x) =
−x, and therefore f ′(x) = −1 at all points of this interval. On the interval (0,+∞)
we have f(x) = x, and therefore f ′(x) = 1 at every point of this interval. At the
point 0 the derivative of the function |x| does not exist – this is because the (double-
sided) limit lim

x→0

|x|−0
x−0 does not exist. The one-sided limits do exist however and

therefore it holds that f ′+(0) = lim
x→0+

|x| /x = 1 a f ′−(0) = lim
x→0−

|x| /x = −1.

We have that f ′(x) = sgnx pro x ∈ R \ {0}. At the point x = 0 the one-sided
derivatives are f ′+(0) = 1 and f ′−(0) = −1. ♣

Theorem 42 (derivatives and continuity). Let the function f have a real derivative
at the point x0 ∈ R. Then the function f at the point x0 is continuous.

Proof. Using Theorem 8 on the arithmetic of the limit we calculate:

lim
x→x0

(
f(x)− f(x0)

)
= lim

x→x0

f(x)− f(x0)

x− x0
· lim
x→x0

(x− x0) = f ′(x0) · 0 = 0,

that is lim
x→x0

f(x) = f(x0). �

Remark. The opposite implication in the previous theorem does not generally hold,
i.e. the continuity of a function at a point does not imply the existence of the deriva-
tive at that point. For example the function x 7→ |x| is continuous at the point 0,
but does not have a derivative at that point (see Example 41).

An important word in the formulation of Theorem 42 is the word “real” deriva-
tive – the existence of an infinite derivative does not guarantee that the function is
continuous at that point. An example of this is the function sgn, whose derivative
at the point 0 is +∞ but it is not continuous at the point 0.

Our aim now is to learn to calculate the derivative of any function which occurs
from elementary functions using arithmetic operations and composition, and that
at all points that the derivative exists. In order to do this on the one hand we will
need sum, subtraction, multiplication and quotient rules for the derivative, but on
the other we will also need a chain rule for the derivation of compound functions
and a rule for the derivation of inverse functions. Further we need to be able to
differentiate the elementary functions themselves.

Theorem 43 (arithmetic of the derivative). Let α ∈ R, x0 ∈ R and f ′(x0), g′(x0)
be real. Then it holds that:

(i) (f + g)′(x0) = f ′(x0) + g′(x0),
(ii) (α · f)′(x0) = α · f ′(x0),

(iii) (f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0),
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(iv) if g(x0) 6= 0 then

(f/g)′(x0) =
f ′(x0) · g(x0)− f(x0) · g′(x0)

g2(x0)
.

Proof. We will restrict ourselves to proving the last claim. The function g has a
real derivative at the point x0 and so it is continuous at x0. According to the re-
mark after Theorem 13 g is non-zero on a certain neighborhood P (x0,∆). On this
neighborhood we will rewrite the quotient in the limit which we are to calculate as
follows.

(f/g) (x)− (f/g) (x0)

x− x0
=

=
f(x) · g(x0)− f(x0) · g(x)

x− x0
· 1

g(x)g(x0)
=

=

f(x)−f(x0)
x−x0 · g(x0)− f(x0) · g(x)−g(x0)x−x0

g(x)g(x0)
.

(10)

Because g is continuous at the point x0 and because g(x0) 6= 0, the limit of the last
expression in (10) at the point x0 equals

f ′(x0) · g(x0)− f(x0) · g′(x0)
g2(x0)

.

>From the equation (10) we now get the required relationship. �

Later we will also need this stronger version of claim (i) of the previous theo-
rem.

Theorem 44. Let f ′(x0) and g′(x0) exist and the expression f ′(x0) + g′(x0) is
defined. Then (f + g)′(x0) exists and it holds that (f + g)′(x0) = f ′(x0) + g′(x0).

Proof. By the theorem on the arithmetic of the limit (Theorem 8) it holds that

(f + g)′(x0) = lim
x→x0

(
f(x) + g(x)

)
−
(
f(x0) + g(x0)

)
x− x0

=

= lim
x→x0

f(x)− f(x0)

x− x0
+ lim
x→x0

g(x)− g(x0)

x− x0
= f ′(x0) + g′(x0).

�

Theorem 45 (the chain rule or derivative of compound functions). Let the func-
tion f have a real derivative at the point y0 ∈ R, let the function g have a real
derivative at the point x0 ∈ R and y0 = g(x0). Then

(f ◦ g)′(x0) = f ′(y0) · g′(x0).
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Proof. Let us put

F (y) =

{
f(y)−f(y0)

y−y0 for y ∈ Df \ {y0},
f ′(y0) for y = y0.

The function F is continuous at the point y0, because

lim
y→y0

F (y) = lim
y→y0

f(y)− f(y0)

y − y0
= f ′(y0) = F (y0).

The function g has a real derivative at the point x0 so it is continuous at this point
by Theorem 42. According to Theorem 18 on the limit of compound functions with
the condition (S) we get lim

x→x0
F
(
g(x)

)
= F

(
g(x0)

)
= F (y0) = f ′(y0). Now we

can write

f
(
g(x)

)
− f

(
g(x0)

)
x− x0

=
f
(
g(x)

)
− f(y0)

x− x0
= F

(
g(x)

)
· g(x)− g(x0)

x− x0
(11)

on some neighborhood P (x0,∆). This equation can be checked by considering
the cases g(x) 6= g(x0), and g(x) = g(x0) separately. Because the limit of the
right-hand side in (11) for x → x0 is equal to f ′(y0) · g′(x0), this is also the limit
of the left-hand side in (11). This limit is exactly the derivative (f ◦ g)′(x0) by
definition. �

The last result of this section concerns the derivative of inverse functions.

Theorem 46 (derivative of the inverse function). Let the function f defined on
the interval (a, b) be continuous and strictly monotone and have a real, non-zero
derivative at the point x0 ∈ (a, b). The the function f−1 is differentiable at y0 =
f(x0) and the following equality holds

(f−1)′(y0) =
1

f ′(x0)
=

1

f ′
(
f−1(y0)

) .
Proof. Let us define the tentative function h as:

h(x) =
x− x0

f(x)− f(x0)
, x ∈ (a, b) \ {x0}.

The function f has a real derivative at x0 which is non-zero and therefore it holds
that lim

x→x0
h(x) = 1/f ′(x0). According to Theorem 27 the function f−1 is con-

tinuous and strictly monotone on the interval f
(
(a, b)

)
. The function f is strictly

monotone and therefore the point y0 is an interior point of the interval f
(
(a, b)

)
.

Therefore it holds that

lim
y→y0

f−1(y) = f−1(y0) = x0.
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By using Theorem 18 with condition (P) we get

lim
y→y0

(h ◦ f−1)(y) =
1

f ′(x0)
=

1

f ′
(
f−1(y0)

) .
With respect to the fact that for y ∈ f

(
(a, b)

)
\ {y0} it holds that

(h ◦ f−1)(y) =
f−1(y)− f−1(y0)

y − y0
,

we get

(f−1)′(y0) =
1

f ′
(
f−1(y0)

) .
�

Derivative of elementary functions.
• (xn)′ = nxn−1 for x ∈ R, n ∈ N

See Example 40.

• (xn)′ = nxn−1 for x ∈ R \ {0}, n ∈ Z, n < 0
According to Theorem 43 on the derivative of the quotient (and using the fact

that we already know the derivative of x−n) we get

(xn)′ =

(
1

x−n

)′
=

0− 1 · (−n)x−n−1

(x−n)2
= nxn−1.

• log′ x = 1/x for x ∈ (0,+∞)
We will calculate this derivative from the definition. We get

log′ x = lim
h→0

log(x+ h)− log x

h
=

1

x
· lim
h→0

log(1 + h
x)

(1 + h
x)− 1

=
1

x
.

We used the relationship lim
y→1

log y
y−1 = 1 and Theorem 18 on the limit of compound

functions.

• exp′ x = expx pro x ∈ R
According to Theorem 46 on the derivative of the inverse function we can write

exp′ x =
1

log′(expx)
= expx.

• sin′ x = cosx for x ∈ R
We use the properties of the function sin and cos, Theorem 18 on the limit of

compound functions and the equality

lim
x→0

sinx

x
= 1.
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Let us calculate:

sin′ x = lim
h→0

sin(x+ h)− sinx

h
= lim

h→0

2

h
· sin h

2
· cos

(
x+

h

2

)
= cosx.

• cos′ x = − sinx pro x ∈ R
If we use the previous result and Theorem 45 on the derivative of compound

functions we get

cos′ x =
(
sin(π2 − x)

)′
= − cos(π2 − x) = − sinx.

• tg′ x = 1/ cos2 x for x ∈ Dtg

We calculate using Theorem 43 (derivative of the quotient)

tg′ x =

(
sinx

cosx

)′
=

cosx · cosx− sinx · (− sinx)

cos2 x
=

1

cos2 x
.

• cotg′ x = −1/ sin2 x for x ∈ Dcotg

We get the claim in the same way as in the previous case.

• arcsin′ x = 1/
√

1− x2 for x ∈ (−1, 1)
We differentiate the function arcsin at all points of the open interval (−1, 1)

using Theorem 46 on the derivative of the inverse function. If x ∈ (−1, 1), then

arcsin′ x =
1

cos(arcsinx)
.

This expression can be simplified if we consider that

cos(arcsinx) =

√
1− sin2(arcsinx) =

√
1− x2.

The sign at the root is positive because cos(arcsinx) > 0.

• arccos′ x = −1/
√

1− x2 for x ∈ (−1, 1)
The formula follows from the previous claim and the relationship arcsinx +

arccosx = π/2, which holds for x ∈ [−1, 1] (see page 78).

• arctg′ x = 1/(1 + x2) for x ∈ R
It holds that

arctg′ x =
1
1

cos2(arctg x)

= cos2(arctg x).

By using the relationship cos2 y = 1/(1 + tg2 y), which holds for all y ∈ Dtg, we
get the equation we wanted.

• arccotg′ x = −1/(1 + x2) for x ∈ R
The equation follows from the previous claim and from the relationship arctg x+

arccotg x = π/2, which holds for x ∈ R (see page 80).
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• Let a ∈ R, then (xa)′ = axa−1 for x ∈ (0,+∞).
The given function can be differentiated as follows

(xa)′ =
(
exp(a · log x)

)′
= exp(a · log x) · a

x
= a · xa−1.

• Let b ∈ R, b > 0, then (bx)′ = bx log b for x ∈ R.
Here it holds that

(bx)′ =
(
exp(x · log b)

)′
= exp(x · log b) · log b = bx · log b.

Example 47. Compute the derivative of the function f(x) =
1

4
log

x2 − 1

x2 + 1
every-

where it exists.

Solution. Firstly we determineDf . By solving the inequality (x2−1)/(x2+1) > 0
we get Df = (−∞,−1) ∪ (1,+∞).

While computing the derivative of the function f we will use Theorem 45, the
chain rule, the equation log′ y = 1/y and Theorem 43 (derivative of the quotient).
Firstly we find all x, for which the hypothesis of these claims are satisfied. The
function x 7→ x2−1

x2+1
can be differentiated at any point x ∈ R. The equation log′ y =

1/y holds for y ∈ (0,+∞), so the chain rule can be used for x ∈ (−∞,−1) ∪
(1,+∞). We get

f ′(x) =
1

4

1
x2−1
x2+1

· 2x(x2 + 1)− (x2 − 1)2x

(x2 + 1)2

for x ∈ (−∞,−1) ∪ (1,+∞). After alterations we have

f ′(x) =
x

x4 − 1
, x ∈ (−∞,−1) ∪ (1,+∞). (12)

We have calculated the derivative at all points of the domain.
If at some point of the domain of function f the hypothesis of the theorems we

used were not satisfied then this would not necessarily mean that the derivative does
not exist at that point. We would have to use different approaches to investigate the
derivatives at those points (see Example 49).

Notice also that the expression on the right-hand side of (12) is actually defined
for all x z R except for 1 and −1. this does not mean that the function f is differ-
entiable at all points of the set R \ {−1, 1}. Our function cannot be differentiated
at the points of the set [−1, 1], because the elements do not lie in Df . ♣

Remark. In the following examples and exercises we will not particularly empha-
size that the derivative should be calculated “everywhere that it exists”. This will
be taken as automatically meant similarly as the investigation of the existence of
single-sided derivatives at the points of Df , where the double-sided derivatives do
not exist.
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Example 48. Compute the derivative of the function f(x) = n
√
x for n ∈ N odd,

n > 1.

Solution. The domainDf is the entire R. On the interval (0,+∞) we have f(x) =

x
1
n , and therefore f ′(x) = 1

nx
1
n
−1 = 1

n
n
√
x1−n at every point in this interval. On

the interval (−∞, 0) we have f(x) = − n
√
−x, and by the previous calculations we

have

f ′(x) = −
(

1

n
n
√

(−x)1−n
)
· (−1) =

1

n
n
√

(−x)1−n =
1

n

n
√
x1−n

at every point in the interval (−∞, 0). In the final equation we have used the fact
that n− 1 is even. Together we have f ′(x) = 1

n
n
√
x1−n for x ∈ R \ {0}.

At the point 0 we will compute the derivative from the definition. It is

f ′(0) = lim
x→0

n
√
x− n
√

0

x− 0
= lim

x→0

n
√
x

x
= lim

x→0

n

√
1

xn−1
= +∞,

where we have again used the fact that n− 1 is even. ♣

Example 49. Compute the derivative of the function f(x) = (sinx)|cosx|.

Solution. Firstly we will determine the domain. Let us rewrite the function using
the exponential form (this form is also the most suitable for calculating the deriva-
tive):

f(x) = exp
(
|cosx| log(sinx)

)
.

It can be seen that the domain of the function f is determined by the condition
sinx > 0, therefore

Df =
⋃
k∈Z

(
2kπ, (2k + 1)π

)
.

Firstly we will make use of the chain rule. If cosx 6= 0, then the assumptions
of the theorem are satisfied (see Example 41). Then for every x ∈ Df \ {π/2 +
2kπ; k ∈ Z} it holds that

f ′(x) = exp
(
|cosx| log(sinx)

)
·

·
(

sgn(cosx)(− sinx) log(sinx) + |cosx| cosx

sinx

)
,

which, after manipulation, is equal to

f ′(x) = (sinx)|cosx| sgn(cosx)

(
cos2 x

sinx
− sinx log(sinx)

)
.
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We will use the definition to compute the derivative at the point π/2 + 2kπ, k ∈ Z.
We get

lim
x→π/2+2kπ

exp
(
|cosx| log(sinx)

)
− 1

x− π/2− 2kπ
=

= lim
x→π/2+2kπ

exp
(
|cosx| log(sinx)

)
− 1

|cosx| log(sinx)
· |cosx| log(sinx)

x− π/2− 2kπ
=

= lim
x→π/2+2kπ

exp
(
|cosx| log(sinx)

)
− 1

|cosx| log(sinx)
· log(sinx)

sinx− 1
· sinx− 1

x− π/2− 2kπ
|cosx| =

= 1 · 1 · sin′(π/2 + 2kπ) · |cos(π/2 + 2kπ)| =
= cos(π/2 + 2kπ) · |cos(π/2 + 2kπ)| = 0.

We used Theorem 18 twice here both times with the condition (P). Firstly we com-
puted the limit

lim
x→π/2+2kπ

exp
(
|cosx| log(sinx)

)
− 1

|cosx| log(sinx)
.

Here the inner function is x 7→ |cosx| log(sinx), which is non-zero on P (π/2 +
2kπ, π/2) (k ∈ Z) and

lim
x→π/2+2kπ

|cosx| log(sinx) = 0, k ∈ Z.

The outer function is y 7→ ey−1
y , and its limit at the point 0 is 1. Further we com-

puted the limit

lim
x→π/2+2kπ

log(sinx)

sinx− 1
.

Here conduct the reasoning of the use of Theorem 18 yourself.
Because sgn

(
cos(π/2 + 2kπ)

)
= 0, it holds that

f ′(x) = (sinx)|cosx| sgn(cosx)

(
cos2 x

sinx
− sinx log(sinx)

)
, x ∈ Df .

♣

We have already mentioned the importance of the task of finding extremes of
a function. The following theorem is useful when solving that type of task.

Theorem 50 (necessary condition for a local extreme). Let x0 ∈ R be a local-
extreme point of the function f . If f ′(x0) exists then f ′(x0) = 0.

Proof. Let f ′(x0) exist and be non-zero. If f ′(x0) > 0, then by Theorem 13 there
exists a δ > 0 such that for every x ∈ P (x0, δ) we have

f(x)− f(x0)

x− x0
> 0.
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Here, if x ∈ (x0, x0 + δ), then f(x) > f(x0). If x ∈ (x0 − δ, x0), we get f(x) <
f(x0). This means that at the point x0 f does not have a local extreme. The case
f ′(x0) < 0, can similarly be brought to a contradiction. So if f ′(x0) exists it must
be 0. �

Remark. Let f : [a, b] → R and let f attain its maximum over [a, b] at the point
x0 ∈ (a, b). Then x0 is a point of local maximum of the function f . This is obvious
because it holds that f(x) ≤ f(x0) for all x from the interval [a, b], and therefore
holds for all x ∈ (x0 −∆, x0 + ∆), where ∆ is an arbitrary positive number such
that a < x0 −∆ and x0 + ∆ < b.

>From here we see that the candidates for the maximum and minimum points
of f on the interval [a, b] are
• the end points a and b,
• the points x ∈ (a, b), where the derivative of f is zero (Theorem 50),
• the points x ∈ (a, b), where f ′(x) does not exist (Theorem 50).

If we know that f : [a, b] → R attains its extreme on [a, b], which is the case,
for example, for continuous functions f on [a, b], then the previous analysis gives
us an idea of how to find the extremes. Put

M = {a, b} ∪ {x ∈ (a, b); f ′(x) = 0} ∪ {x ∈ (a, b); f ′(x) does not exist}.
According to the above, all extremes of the function f on [a, b] lie in the set M .
Then it suffices to compare the functional values of f(z), where z ∈ M . The
maximum is at the point where the value of f(z) is greatest and the minimum is
where the value f(z) is smallest.

Notice that it suffices to find the set M̃ , which contains M , and compare func-
tional values of f at the points of the set M̃ . Sometimes it is easier to consider and
compare more points than to find the set M exactly. For example at some points
it is easier to calculate the functional value than to determine the existence of the
derivative.

Example 51. Find the extremes of the function f(x) = 3
√

(x2 − 3x)2 on the
closed interval [−1, 4].

Solution. The function f is continuous since it is the composition of continuous
functions. We have to find the extremes of a continuous function on a closed inter-
val. In this case we know that the given function on the given set attains both its
maximum and its minimum (Theorem 25). Candidate points are those where the
derivative is 0, also points where f ′(x) does not exist and finally the end points of
the interval.

Let us calculate the derivative of the function f . According to Example 48 it
holds that

f ′(x) =
2

3
3

√
((x2 − 3x)2)−2(x2 − 3x)(2x− 3)
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for all x ∈ (−∞, 0) ∪ (0, 3) ∪ (3,+∞). We compare the functional at the points
−1, 4 (end-points of the interval [−1, 4]), at the point 3/2 (f ′(3/2) = 0) an the
points 0, 3 (where investigating the derivative is more complicated than evaluating
the function). The functional values at these points are

f(−1) = 2
3
√

2, f(0) = 0, f(3/2) =
3

2
3
√

3/2, f(3) = 0, f(4) = 2
3
√

2.

Comparing the functional values we see that the function f attains its minimum
over [−1, 4] at the points 0 and 3 so we have min[−1,4] f = 0; the maximum is
attained at the points −1 and 4 and it holds that max[−1,4] f = 2 3

√
2. ♣

Example 52. Determine the extremes of the function f(x) = 2
√

1− x2+arctg
x√

1− x2
.

Solution. Firstly let us determine the domain:

Df = {x ∈ R; 1− x2 > 0} = (−1, 1).

The function is continuous on its domain. Let us compute the limit at the end-
points of the domain: lim

x→−1+
f(x) = −π/2, lim

x→1−
f(x) = π/2. Let us now define

the tentative function f̄ : [−1, 1]→ R as:

f̄(x) =


f(x) for x ∈ (−1, 1),
π/2 for x = 1,
−π/2 for x = −1.

The function f̄ is continuous of the interval [−1, 1]. We say that we have assigned
continuous values to the function f at the points −1 and 1. >From Theorem 25 it
follows that the function f̄ attains a maximum and minimum over [−1, 1]. Let us
show that it holds that sup(−1,1) f = max[−1,1] f̄ and inf(−1,1) f = min[−1,1] f̄ .

Let us assume that the function f attains its maximum at the point x0 ∈ [−1, 1].
The inequality sup(−1,1) f ≤ f̄(x0) is obvious. Further there exists a sequence
{xn} of points in (−1, 1), which converge to x0. By Heine’s theorem it holds that
f̄(x0) = lim f̄(xn) = lim f(xn), and therefore sup(−1,1) f = f̄(x0) according to
Lemma 2.21. The relationship for the infimum can be explained similarly.

Let us therefore investigate the extremes of the function f̄ on [−1, 1]. Let us
first compute the derivative of the function f̄ :

f̄ ′(x) = f ′(x) =
1− 2x√
1− x2

, x ∈ (−1, 1).

The derivative is equal to 0 only for x = 1/2. Let us then compare the functional
values of the function f̄ at the points −1, 1/2, 1:

f̄(−1) = −π/2, f̄(1/2) =
√

3 + π/6, f̄(1) = π/2.
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We have max[−1,1] f̄ = f̄(1/2) and min[−1,1] f̄ = f̄(−1). If we realize the
mutual relationship between the functions f̄ and f , then we get max(−1,1) f =

f(1/2) =
√

3 + π/6. The function f̄ is continuous on [−1, 1] and therefore
inf {f(x); x ∈ (−1, 1)} = f̄(−1). >From here it follows that the function f
does not attain a minimum over the interval (−1, 1). ♣

4.5. Deeper theorems about the derivative of a function

Theorem 53 (Rolle’s theorem). Let a, b ∈ R, a < b, and the function f have the
following properties:

(i) it is continuous on the interval [a, b],
(ii) has (real or infinite) derivative at every point of the interval (a, b),

(iii) it holds that f(a) = f(b).
Then there exists an ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof. According to Theorem 25 the function f attains a maximum and a minimum
over [a, b]. Firstly let us assume that the maximum and minimum points lie in the
set {a, b}. Then from (iii) it immediately follows that the function f is constant
on [a, b]. But constant functions have zero derivative at every point of the interval
(a, b), so in this case the point ξ can be taken arbitrarily in the interval (a, b).

Another possible situation is that at least one of the points where the function
attains its extreme lies in the interval (a, b). Let us denote this point as ξ. We already
know that ξ is a point of local extreme for f , and we also know (hypothesis (ii)),
that f ′(ξ) exists. According to Theorem 50 it is necessary that f ′(ξ) = 0 and the
claim of the theorem holds in this case as well. Because there are no other possible
cases, the theorem has been proven. �

Remark. Geometrically Theorem 53 can be interpreted that under assumptions (i)–
(iii) the graph of the function f contains a point [ξ, f(ξ)], in which the tangent to
the graph of the function f is parallel with the x-axis.

FIGURE 13.
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The following theorem which is a corollary of Theorem 53, has a wide range
of applications. It is the so called Lagrange mean value theorem.

Theorem 54 (Lagrange theorem). Let a, b ∈ R, a < b, let the function f be
continuous on the interval [a, b] and have (real or infinite) derivative at every point
of the interval (a, b). Then there exists an ξ ∈ (a, b) satisfying

f ′(ξ) =
f(b)− f(a)

b− a
.

Proof. The function

F (x) = f(x)− f(a)− f(b)− f(a)

b− a
· (x− a)

satisfies the assumptions of Rolle’s theorem on the interval [a, b]. Conditions (i) and (iii)
are easy to check, condition (ii) follows from Theorem 44. There exists an ξ ∈
(a, b) such that F ′(ξ) = 0. Because by Theorem 44 it holds that

F ′(ξ) = f ′(ξ)− f(b)− f(a)

b− a
,

we get the required equality from this immediately. �

Remark. Under the assumptions of Theorem 54 we can express the growth of the
function f over the interval [a, b], which is equal to f(b)− f(a), as:

f(b)− f(a) = f ′(ξ) · (b− a),

that is as a the product of the increase in the variable x and the derivative at the
point ξ, about whom we know only that it belongs in (a, b).

Notice that neither Theorem 53 nor Theorem 54 say anything about the number
of points ξ with the given property. They only say that one such point must exist.

Geometrically Theorem 54 can be interpreted as saying that under the given
assumptions the graph of the function f contains the point [ξ, f(ξ)], where the
tangent to the graph of f is parallel to the line connecting the points [a, f(a)]
and [b, f(b)].
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FIGURE 14.

One of the nice applications of the Lagrange theorem is an elegant proof of the
theorem about the relationship between the monotonicity of a function and the sign
of the derivative.

Theorem 55 (sign of the derivative and monotonicity). Let J ⊂ R be a non-
degenerate interval. Let f be continuous on J and in every interior point of J (we
denote the set of interior points of J as Int J) has a (real or infinite) derivative.
• If f ′(x) > 0 for all x ∈ Int J , then f is increasing on J .
• If f ′(x) < 0 for all x ∈ Int J , then f is decreasing on J .
• If f ′(x) ≥ 0 for all x ∈ Int J , then f is non-decreasing on J .
• If f ′(x) ≤ 0 for all x ∈ Int J , then f is non-increasing on J .

Proof. Let us prove the first claim of the theorem. Chose to points x1, x2 such that
x1, x2 ∈ J , x1 < x2. On the interval [x1, x2] the function f is continuous and
has a derivative at the points of the interval (x1, x2). The function f then satisfies
the assumptions for the Lagrange theorem (Theorem 54) on the interval [x1, x2].
Therefore there exists a ξ ∈ (x1, x2) such that

f(x2)− f(x1)

x2 − x1
= f ′(ξ).

According to the hypothesis, however, f ′(ξ) > 0, and because the denominator in
the quotient in the given inequality is positive then we must have f(x2)− f(x1) >
0.

We have proved that

∀x1, x2 ∈ J, x1 < x2 : f(x1) < f(x2),

or f is increasing on the interval J .
The other claims can be proven similarly. �
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Remark. >From the previous theorem it follows that a continuous function having
zero derivative at every interior point of the interval J is constant on J ; this is
because it is both non-increasing and non-decreasing on J .

The following theorem is useful for calculating single-sided derivatives.

Theorem 56. Let the function f be right-continuous at the point a ∈ R and let
lim
x→a+

f ′(x) exist. Then also f ′+(a) exists and we have

f ′+(a) = lim
x→a+

f ′(x).

Proof. Denote A = lim
x→a+

f ′(x). Choose any ε ∈ R, ε > 0. Then, from that, we

find a δ ∈ R, δ > 0, such that f ′(x) ∈ B(A, ε) for every x ∈ (a, a + δ). The
function f has a real derivative at every point of the interval (a, a+ δ).

Now let us take any point x from the interval (a, a + δ). The function f is
continuous on the interval [a, x] since it is differentiable at all points of the interval
(a, x] and its right-continuity at the point a. On (a, x) f is differentiable. According
to the Lagrange theorem there is a point ξ ∈ (a, x), such that

f ′(ξ) =
f(x)− f(a)

x− a
.

Because ξ ∈ (a, a + δ), we have f(x)−f(a)
x−a = f ′(ξ) ∈ B(A, ε). According to the

definition of right-continuity therefore f ′+(a) = A. �

Remark. The corresponding theorem holds for left-continuity.

Example 57. Using Theorem 56 on the calculation of the single-sided derivative
we can easily find that the the relevant single-sided derivatives of arcsin at the
points 1 and −1 are equal to +∞.

Example 58. Calculate the derivative of the function f(x) =
√

arctg(log2 x)
everywhere it exists.

Solution. The domain of the function f is Df = (0,+∞). It holds that (
√
z)′ =

1
2
√
z

for z ∈ (0,+∞). Firstly let us calculate the derivative at the point where the

condition arctg(log2 x) 6= 0 is satisfied, i.e. at the points of Df \ {1}. At those
points we can compute in a standard way using the chain rule, Theorem 45. For
x ∈ Df \ {1} we have

f ′(x) =
log x

x
√

arctg(log2 x)(1 + log4 x)
.

Because the function f is also defined at the point 1, we ask whether the deriva-
tive exists, or at least a single-sided derivative. We have two possibilities how we
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can make the computation: use the definition or Theorem 56 on the computation of
single-sided derivatives. Using the definition is a universal approach but sometimes
can be difficult to calculate the limit in question. In order to use the theorem we
have to:

(i) verify the one-sided continuity of the function,
(ii) verify the existence of the one-sided limit of the function f ′ and compute it.

The function we are investigating is continuous on all of Df , therefore also at
the point 1. Further

lim
x→1+

f ′(x) = lim
x→1+

log x

x
√

arctg(log2 x)(1 + log4 x)
=

= lim
x→1+

1

x
·

√
log2 x

arctg(log2 x)
· 1

1 + log4 x
= 1,

lim
x→1−

f ′(x) = lim
x→1−

−1

x
·

√
log2 x

arctg(log2 x)
· 1

1 + log4 x
= −1.

We used lim
x→0

arctg x
x = 1. According to Theorem 56 on the computation of single-

sided derivatives we have

f ′+(1) = lim
x→1+

f ′(x) = 1,

f ′−(1) = lim
x→1−

f ′(x) = −1.

The left and right derivatives of the function f at the point 1 do not agree, hence
f ′(1) does not exist. ♣

Let us give also the so called l’Hopital’s rule, which we will not prove. It al-
lows us to compute limits in situations which we will describe as “0

0 type” and
“typ ∞∞ type”, that is in those cases where the claim of the quotient rule in Theo-
rem 8 cannot be used. We include l’Hoptial’s rule here because its proof rests in a
certain generalization of Theorem 54.

Theorem 59 (l’Hospital’s rule). Let the functions fand g have real derivatives on
a certain deleted neighborhood of the point a ∈ R∗.

(i) If lim
x→a

f(x) = lim
x→a

g(x) = 0 and there exists lim
x→a

f ′(x)
g′(x) , then also lim

x→a
f(x)
g(x)

exists and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.
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(ii) If lim
x→a
|g(x)| = +∞ and lim

x→a
f ′(x)
g′(x) exists, then also lim

x→a
f(x)
g(x) exists and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Example 60. Compute lim
x→+∞

(π − 2 arctg x) log x.

Solution. The product rule cannot be directly applied because the limit of the ex-
pression in the brackets is 0 and the limit of the other factor is +∞. This a so called
“indeterminate expression of the type 0 · (+∞)”.

In order to use l’Hospital’s rule we have to modify the expression somewhat.
We will calculate

lim
x→+∞

π − 2 arctg x
1

log x

, (13)

which is an “indeterminate expression of the type 0
0”.

We differentiate the numerator and the denominator in the quotient (13) and
calculate

lim
x→+∞

− 2
1+x2

− 1
log2 x

· 1x
= lim

x→+∞

2x log2 x

1 + x2
.

Now we have got an “indeterminate expression of the type +∞
+∞” and again we try

to use l’Hospital’s rule. We will use it several times yet (at every step check that
the hypothesis for its use are satisfied). We get:

lim
x→+∞

2 log2 x+ 4 log x

2x
, (14)

lim
x→+∞

4 log x · 1x + 4
x

2
= lim

x→+∞

2 log x+ 2

x
, (15)

lim
x→+∞

2

x
.

With the final usage of l’Hospital’s rule we got to a function who’s limit can
easily be calculated and it is equal to 0. By l’Hospital’s rule it follows that all the
limits in (15), (14) and (13) are equal to 0. Therefore in the end we get

lim
x→+∞

(π − 2 arctg x) log x = 0.

Let us remark that the original limit could also have been modified to take the
form

lim
x→+∞

log x
1

π−2 arctg x
,

then we would have calculated a limit of the type “+∞
+∞”.

♣
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Example 61. Compute lim
x→0

x2 sin 1
x

sinx
.

Solution. Because lim
x→0

x2 sin 1
x = 0 a lim

x→0
sinx = 0, we will try to use l’Hospital’s

rule to compute

lim
x→0

2x sin 1
x + x2 cos 1

x · (−
1
x2

)

cosx
= lim

x→0

2x sin 1
x − cos 1

x

cosx
.

This limit does not exist however. This does not mean that the original limit
does not exist, only that one cannot use l’Hospital’s rule because the limit of the
quotient of derivatives does not exist.

Let us rewrite our function as:

x2 sin 1
x

sinx
=

x

sinx
· x sin

1

x
.

Now we easily see (by using lim
x→0

sinx
x = 1, lim

x→0
x sin 1

x = 0 and the product rule),

that

lim
x→0

x2 sin 1
x

sinx
= 0.

♣

Example 62. Let a, β, γ ∈ (0,+∞). Then

lim
x→+∞

logβ x

xγ
= 0, lim

x→+∞

xγ

ax
= 0.

Solution. Let us firstly compute the limit lim
x→+∞

log x
xγ using l’Hospital’s rule:

lim
x→+∞

log x

xγ
= lim

x→+∞

1
x

γxγ−1
= lim

x→+∞

1

γxγ
= 0.

By using this result we get

lim
x→+∞

logβ x

xγ
= lim

x→+∞

(
log x

xγ/β

)β
= 0,

We calculated the final limit using the theorem on composite functions, and the
fact that the function y 7→ yβ is right continuous at the point 0 (see Example 31).

The second limit can be computed similarly. ♣

Example 63. Compute lim
y→0+

y log y.

Solution. According to Example 20 it suffices to compute the limit lim
x→+∞

− log x
x ,

which is equal to 0 by Example 62. ♣
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4.6. Convex and concave functions

In the following section we will accustom ourselves with the following terms,
which are useful in analyzing a function.

Definition. Let I be an interval and f : I → R. We say that the function f is
• convex on the interval I , if

∀x1, x2 ∈ I ∀λ ∈ [0, 1] : f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),

• strictly convex on the interval I , if

∀x1, x2 ∈ I, x1 6= x2 ∀λ ∈ (0, 1) : f(λx1 +(1−λ)x2) < λf(x1)+(1−λ)f(x2),

• concave on the interval I , if

∀x1, x2 ∈ I ∀λ ∈ [0, 1] : f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2),

• strictly concave on the interval I , if

∀x1, x2 ∈ I, x1 6= x2 ∀λ ∈ (0, 1) : f(λx1 +(1−λ)x2) > λf(x1)+(1−λ)f(x2).

Remark. The following claim can be seen to hold immediately from the definition.
The function f is concave on I , if and only if the function −f is convex on I . The
function f is strictly concave on I , if and only if the function −f is strictly convex
on I .

Remark. The geometrical implication of the inequalities in the definition of a con-
vex function are the following. The function f is convex on I is such that whenever
we take the line that intersects a pair of points [x1, f(x1)], [x2, f(x2)], x1, x2 ∈ I ,
x1 < x2, then all the points of the set {[x, f(x)] ∈ R2; x ∈ [x1, x2]} are under the
line or on the line.

FIGURE 15.
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In the following lemma we will describe convexity somewhat differently than
in the previous definition.

Lemma 64. The function f is convex onI , if and only if, for every three points
x1, x, x2 ∈ I , x1 < x < x2, it holds that

f(x)− f(x1)

x− x1
≤ f(x2)− f(x)

x2 − x
. (16)

The following picture illustrated the claim of the lemma because the gradient of
a line passing through the points [x1, f(x1)] and [x, f(x)], respectively the points
[x, f(x)] and [x2, f(x2)], is equal to f(x)−f(x1)

x−x1 , respectively f(x2)−f(x)
x2−x .

FIGURE 16.

Proof. Let us assume that firstly f is convex on I . We take the points x1, x, x2 ∈ I
such that x1 < x < x2. If we put

λ =
x2 − x
x2 − x1

,

then we have λ ∈ (0, 1) a x = λx1 + (1− λ)x2. Therefore we can write

f(x) = f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) =

=
x2 − x
x2 − x1

f(x1) +
x− x1
x2 − x1

f(x2).

Upon making the necessary modifications we get (16).
Now let us prove the opposite implication. Let us take x1, x2 ∈ I and λ ∈

[0, 1]. If x1 = x2 or λ = 0 or λ = 1, then the inequality in the definition of a convex
function surely holds. Without loss of generality we may assume that x1 < x2
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and λ ∈ (0, 1). Let us put x = λx1 + (1− λ)x2. Then we have x1 < x < x2 and
according to the hypothesis it holds that

f(x)− f(x1)

x− x1
≤ f(x2)− f(x)

x2 − x
.

Now we substitute the expression λx1 + (1− λ)x2 instead of x and upon modifi-
cations we get the inequality f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). �

Definition. Let the function f have a real derivative on a neighborhood of a ∈ R.
The second derivative of the function f at the point a is

f ′′(a) = lim
h→0

f ′(a+ h)− f ′(a)

h
,

if this limit exists.
Let n ∈ N and the function f have a real n-th derivative on a neighborhood of

the point a ∈ R (we will denote it as f (n)). Then the (n+ 1)-th derivative of the
function f at the point a is

f (n+1)(a) = lim
h→0

f (n)(a+ h)− f (n)(a)

h
,

if the limit exists.
In this context we take the first derivative as defined above.

Remark. Let us notice the inductive nature of the previous definition. Firstly we
define the concept of the first derivative and then, assuming that the n-th derivative
has already been defined , we define the (n+ 1)-th derivative.

The relationship between convexity and the sign of the second derivative is the
subject of the following theorem.

Theorem 65 (second derivative and convexity). Let the function f have non-
negative second derivative at all points of the open interval I . Then f is convex
on I .

Proof. It follows from the hypothesis and from Theorem 42 that the function f ′ is
continuous on I . Using the non-negativity of f ′′ in Theorem 55, we get that the
function f ′ is non-decreasing on I .

Now take x1 < x < x2 three points from the interval I . By the Lagrange
theorem, applied to the function f on the intervals [x1, x], [x, x2], there exist two
numbers ξ and η such that x1 < ξ < x < η < x2 and

f ′(ξ) =
f(x)− f(x1)

x− x1
, f ′(η) =

f(x2)− f(x)

x2 − x
.

Because ξ < η and f ′ is non-decreasing we get
f(x)− f(x1)

x− x1
≤ f(x2)− f(x)

x2 − x
.
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>From here using Lemma 64 we prove our claim. �

Remark. Similarly it can be proven that if the function f has a positive real second
derivative on I (respectively non-positive or negative), then f is strictly convex
(respectively concave or strictly concave) on I .

Example 66. The function log has a negative second derivative at all points of x ∈
(0,+∞) because log′′ x = − 1

x2
. According to the previous remark, the function

log is (0,+∞) strictly concave. Similarly the function exp is strictly convex on its
domain.

Let us have the function f , which has a real derivative at the point x0 ∈ R. Let
us denote

Tx0 = {[x, y] ∈ R2; x ∈ R, y = f(x0) + f ′(x0)(x− x0)}.

As we know, the set Tx0 is the tangent to the graph of the function f at the point
[x0, f(x0)].

Definition. Let the function f have a real derivative at the point x0 ∈ R and x ∈
Df . Let us say that

• the point [x, f(x)] lies under the tangent Tx0 , if

f(x) < f(x0) + f ′(x0)(x− x0),

• the point [x, f(x)] lies above the tangent Tx0 , if

f(x) > f(x0) + f ′(x0)(x− x0).

>From the point of view of the analysis of functions the points, where the
function “goes from being under the tangent to above it” or the opposite are of
particular interest. Let us describe the situation exactly.

Definition. Let the function f have a real derivative at the point x0 ∈ R. Let us
say that x0 is an inflection point for the function f , if there exists a ∆ > 0 such
that

• ∀x ∈ (x0 −∆, x0) : [x, f(x)] lies under the tangent Tx0 ,
• ∀x ∈ (x0, x0 + ∆): [x, f(x)] lies above the tangent Tx0 ,

or

• ∀x ∈ (x0 −∆, x0) : [x, f(x)] lies above the tangent Tx0 ,
• ∀x ∈ (x0, x0 + ∆): [x, f(x)] lies under the tangent Tx0 .

The following picture illustrates the concept that we have just defined of an
inflection point.
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FIGURE 17.

Theorem 67 (necessary condition for inflection). Let x0 ∈ R be an inflection point
of the function f . Then f ′′(x0) = 0, or f ′′(x0) does not exist.

Proof. Let us assume firstly that f ′′(x0) > 0. Then from the definition of the
second derivative at the point x0 it follows that there exists a ∆ > 0 such that
f ′(x) is real for all x ∈ (x0 −∆, x0 + ∆) and it holds that
• ∀x ∈ (x0 −∆, x0) : f ′(x) < f ′(x0),
• ∀x ∈ (x0, x0 + ∆): f ′(x0) < f ′(x).

We get the continuity of f from the existence of the real derivative on (x0−∆, x0+
∆).

Let x ∈ (x0 −∆, x0). The function f is continuous on [x, x0] and is differen-
tiable on (x, x0). Therefore the assumptions of the Lagrange theorem are satisfied
and there exists a point ξ1 ∈ (x, x0) such that f(x0) − f(x) = f ′(ξ1)(x0 − x).
It holds that f ′(ξ1) < f ′(x0), and therefore f(x0) − f(x) < f ′(x0)(x0 − x).
We have proven that for any x in the interval (x0 − ∆, x0) we have f(x) >
f(x0) + f ′(x0)(x− x0), because the point [x, f(x)] lies above the tangent Tx0 .

Let x ∈ (x0, x0 + ∆). According to the Lagrange theorem there exists a point
ξ2 ∈ (x0, x) such that f(x)−f(x0) = f ′(ξ2)(x−x0). Because, however f ′(ξ2) >
f ′(x0), we have f(x) − f(x0) > f ′(x0)(x − x0). In this case it holds, for any x
from the interval (x0, x0 + ∆), that f(x) > f(x0) + f ′(x0)(x− x0), because the
point [x, f(x)] lies above the tangent Tx0 .

This means that the point x0 is not an inflection point of the function f . Sim-
ilarly we can prove that the assumption f ′′(x0) < 0 implies that x0 is not an
inflection point of the function f . From here we retrieve the claim. �
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Remark. The fact that f ′′(x0) is zero is only a necessary (not a sufficient) condition
for x0 to be an inflection point of f . The function f : x 7→ x4, proves this at the
point 0 where its second derivative is equal 0, but every point [x, x4], x 6= 0, lies
above the tangent T0 = {[x, y] ∈ R2; y = 0} to the graph of the function f at the
point [0, 0].

Theorem 68 (sufficient condition for inflection). Let the function f have a contin-
uous first derivative on the interval (a, b) and x0 ∈ (a, b). Let it hold that:

∀x ∈ (a, x0) : f ′′(x) > 0 and ∀x ∈ (x0, b) : f ′′(x) < 0.

Then x0 is an inflection point of the function f .

Proof. According to Theorem 55 the function f ′ is increasing on the interval (a, x0]
and decreasing on the interval [x0, b). Therefore we have

• ∀x ∈ (a, x0) : f ′(x) < f ′(x0),
• ∀x ∈ (x0, b) : f ′(x) < f ′(x0).



108 4. FUNCTIONS OF ONE REAL VARIABLE

Take x ∈ (x0, b). The assumptions of the Lagrange theorem (Theorem 54) are
satisfied by f on the interval [x0, x]. Therefore there exists a ξ ∈ (x0, x) such that

f(x)− f(x0)

x− x0
= f ′(ξ) < f ′(x0).

>From here f(x) < f(x0) + f ′(x0)(x − x0), because [x, f(x)] lies under the
tangent Tx0 .

For x ∈ (a, x0) we reason similarly. Therefore there exists a number η ∈
(x, x0) such that

f(x0)− f(x)

x0 − x
= f ′(η) < f ′(x0).

>From here we see that f(x) > f(x0) + f ′(x0)(x − x0), because [x, f(x)] lies
above the tangent Tx0 . This proves that x0 is an inflection point of the function f .

�

Remark. The claim of the theorem holds also, of course, in the case where both of
the inequalities in the previous theorem are interchanged.

At the end of this section we will use the concavity and monotonicity of log
to prove an inequality between the arithmetic and geometric means. Firstly let us
realize that the following property is the result of convexity.

Lemma 69. Let the function f be convex on the interval I . Then it holds that
∀m ∈ N ∀x1, . . . , xm ∈ I ∀λ1 ≥ 0, . . . , λm ≥ 0, λ1 + · · ·+ λm = 1:

f(λ1x1 + · · ·+ λmxm) ≤ λ1f(x1) + · · ·+ λmf(xm).
(17)

Proof. Let us use mathematical induction. For m = 1 the claim is obvious.
Let the claim (17) hold for m = n. We will prove that it is also true for

m = n + 1. Let us have x1, . . . , xn, xn+1 ∈ I and the non-negative numbers
λ1, . . . , λn, λn+1, whose sum is equal to 1. If all numbers λ1, . . . , λn are null then
λn+1 = 1 and the inequality in (17) is satisfied.

If at least one of the numbers λ1, . . . , λn is non-zero then the sum λ1+· · ·+λn
is a positive number. Let us denote the value of this sum as µ, and also denote

y =
λ1
µ
x1 + · · ·+ λn

µ
xn.

The point y lies in I , because min{x1, . . . , xn} ≤ y ≤ max{x1, . . . , xn}, and also
µ+ λn+1 = 1. >From the convexity of the function f it immediately follows that

f(µy + λn+1xn+1) ≤ µf(y) + λn+1f(xn+1). (18)

Now we will use the induction hypothesis in order to estimate f(y). We get

f(y) = f

(
λ1
µ
x1 + · · ·+ λn

µ
xn

)
≤ λ1

µ
f(x1) + · · ·+ λn

µ
f(xn). (19)
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>From the inequalities (18) and (19) we immediately get the inequality that we
want to prove (17). �

Example 70. Let m ∈ N and x1, . . . , xm ∈ R be non-negative numbers. Then it
holds that

x1 + x2 + · · ·+ xm
m

≥ m
√
x1x2 · · ·xm,

which is a well known inequality between arithmetic and geometric means.

Proof. If at least on of the numbers x1, . . . , xm is equal to zero then the inequality
is obvious. Then let x1, . . . , xm be positive numbers. Let us put λi = 1

m , i =
1, . . . ,m. Because the function − log is convex on the interval (0,+∞), we have,
by the previous lemma, that

− log
(x1
m

+
x2
m

+ · · ·+ xm
m

)
≤ − 1

m
(log x1 + log x2 + · · ·+ log xm) =

= − 1

m
log(x1x2 · · ·xm) = − log m

√
x1x2 · · ·xm.

Because − log is decreasing on (0,+∞) the required inequality follows immedi-
ately. �

4.7. Investigating a function

The material we have covered until now will often help us get an idea about
what a given function “does”. Let us also mention the useful concept of asymptotes
of a function which sometimes enable us to sketch the graph of a function more
precisely.

Definition. The line, which is the graph of the affine function x 7→ kx+q, is called
the asymptote of the function f at +∞, respectively at−∞, if

lim
x→+∞

(
f(x)− (kx+ q)

)
= 0, respectively lim

x→−∞

(
f(x)− (kx+ q)

)
= 0.

Determining the asymptotes is usually done using the following theorem.

Theorem 71. The function f has the asymptote at +∞ described by the affine
function x 7→ kx+ q if and only if

lim
x→+∞

f(x)

x
= k ∈ R and lim

x→+∞

(
f(x)− kx

)
= q ∈ R.
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Proof. Let us assume that the asymptote of the function f at +∞ is given by the
affine function x 7→ kx+ q. Then it hods that

lim
x→+∞

f(x)

x
= lim

x→+∞

(
f(x)− kx− q

x
+
kx+ q

x

)
= k,

lim
x→+∞

(f(x)− kx) = lim
x→+∞

(f(x)− kx− q + q) = q

according to Theorem 8. The opposite implication follows immediately from the
relationship for q. �

Remarks. 1. Similar conditions hold for the existence of the asymptotes at −∞.
2. If lim

x→+∞
f(x) = A ∈ R, then obviously the asymptote of the function f v +∞

is a line parallel to the x-axis having the equation y = A.

Investigating a function.
1. Determine the domain and discuss the continuity of the function.
2. Determine the symmetry of the function: odd, even, periodic.
3. Compute the limits at the “edges of the domain”.
4. Investigate the first derivative, determine intervals of monotonicity and find

global and local extremes.
5. Investigate the second derivative and determine the intervals where the function
f is convex or concave. Determine inflection points.

6. Determine the asymptotes of the function if the exist.
7. Sketch the graph of the function.

Example 72. Investigate the function f(x) = 3
√

(x4 − 1)2.

Solution. 1. In our case Df = R and the function is continuous on its entire do-
main.
2. The function is even, which will aid us in sketching its graph.
3. At the “end” points of the domain we compute

lim
x→+∞

f(x) = lim
x→−∞

f(x) = +∞.

4. We compute the first derivative of the function:

f ′(x) =
8

3
3

√
((x4 − 1)2)−2(x4 − 1)x3 =

8

3

x3

3
√
x4 − 1

, x ∈ R \ {−1, 1}.

Using Theorem 56 on the computation of single-sided derivatives we get f ′+(1) =
+∞ and f ′−(1) = −∞. The function f is even and therefore for all x ∈ Df

we have the equation f ′+(x) = −f ′−(−x), if at least one of the derivatives exists.
>From here f ′+(−1) = +∞ and f ′−(−1) = −∞. The derivative of the function
is 0 only for x = 0. For x ∈ (0, 1) we have f ′(x) < 0, and therefore the function f
is decreasing here; for x ∈ (1,+∞) we have f ′(x) > 0 and the function f is
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increasing on this interval. >From the symmetry of f we get that f is decreasing
on (−∞,−1) and increasing on (−1, 0). >From here it also follows that f has a
local maximum at the point 0 and a local minimum at the points 1 and −1.

The function f attains it minimum over Df at the points±1 (the value is equal
to 0), and f does not have a maximum onDf because it is not bounded from above.

5. Now let us investigate the convexity and concavity of the function using the
second derivative:

f ′′(x) =
8

9
· x

2(5x4 − 9)
3
√

(x4 − 1)4
, x ∈ R \ {−1, 1}.

Therefore f ′′(x) = 0 if and only if x = 0 or x =
√

3/
√

5 or x = −
√

3/
√

5. For
x ∈ (−1, 1) we have f ′′(x) ≤ 0 and the function is concave on this interval; for

x ∈
(

1,
√

3/
√

5

)
we have f ′′(x) < 0 and the function is strictly concave on this

interval; similarly we get that f is strictly convex on the interval
(√

3/
√

5,+∞
)

.

The points ±
√

3/
√

5 are inflection points of the function f .

6. It holds that

lim
x→+∞

f(x)

x
= +∞ and lim

x→−∞

f(x)

x
= −∞,

therefore the function f does not have an asymptote at +∞ nor at −∞.

7. Here is the graph of the function f .
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FIGURE 18.

♣

Example 73. Investigate the function f(x) = |x| exp(− |x− 1|).

Solution. The domain of the function f is the entire R. The function is continuous
on R; it is not even, odd or periodic. Using Example 62 we can easily compute the
following limit:

lim
x→+∞

|x| exp(− |x− 1|) = lim
x→+∞

x

exp(x− 1)
=

= lim
x→+∞

ex

expx
= 0.

Similarly lim
x→−∞

|x| exp(− |x− 1|) = 0.

For all x ∈ R \ {0, 1} we calculate the derivative

f ′(x) = sgnx · exp(− |x− 1|)− |x| exp(− |x− 1|) sgn(x− 1) =

= exp(− |x− 1|) (sgnx− |x| sgn(x− 1)) .

According to Theorem 56 on the computation of single-sided derivatives we get
f ′−(0) = −1/e, f ′+(0) = 1/e also f ′−(1) = 2, f ′+(1) = 0. The derivative f ′ is
equal to 0 only for x = −1.

For x ∈ (−∞,−1) we have f ′(x) > 0 and the function f is increasing on this
interval. For x ∈ (−1, 0) we have f ′(x) < 0 and the function is decreasing on this
interval. Similarly we find that the function f is increasing on the interval (0, 1)
and decreasing on the interval (1,+∞).
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>From here we see that the function f has local maximums at the points
−1 and 1 and f has a local minimum at the point 0. By computing the values
of f at the local extreme points and by comparing with the limits at the points
+∞ and −∞ we finally get, that the function f attains its minimum over R at the
point 0 and its maximum at the point 1.

Now let us calculate the second derivative:

f ′′(x) =


−(x+ 2) exp(x− 1) for x ∈ (−∞, 0),
(x+ 2) exp(x− 1) for x ∈ (0, 1),
(x− 2) exp(−x+ 1) for x ∈ (1,+∞).

The second derivative is zero at the points x = −2 a x = 2. >From the sign of
the second derivative we see that the function f is convex on each of the inter-
vals (−∞,−2), (0, 1) and (2,+∞) and concave on each of the intervals (−2, 0)
and (1, 2). The points 2 and−2 are inflection points. The point 0 is not an inflection
point because we do not have a real derivative f ′(0).

FIGURE 19.

♣

We will proceed more quickly in the following example. We leave it to the
reader to justify the computations considering each claim carefully.

Example 74. Investigate the function f(x) = |x− 2| − 2 arctg x.

Solution. The function is continuous on its domainDf = R, it is not even, odd nor
periodic, lim

x→∞
f(x) = lim

x→−∞
f(x) = +∞. It holds that:

f ′(x) = sgn(x− 2)− 2

1 + x2
, x ∈ R \ {2}.
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According to Theorem 56 on the computation of single-sided derivatives we get
f ′+(2) = 3/5, f ′−(2) = −7/5. At no point of the domain therefore does the func-
tion f have derivative equal to 0.

>From the sign of the first derivative we get that the function f is decreasing
on the interval (−∞, 2) and increasing on the interval (2,+∞). At the point 2 the
function f attains its minimum over R.

For the second derivative it holds that

f ′′(x) =
4x

(1 + x2)2
, x ∈ R \ {2}.

>From here it follows that f is concave on (−∞, 0) and convex on each of the
intervals (0, 2) and (2,+∞). At the point 0 the function has an inflection point.

Calculating the asymptote at +∞:

lim
x→+∞

f(x)

x
= 1,

lim
x→+∞

(f(x)− 1 · x) = −2− π.

The asymptote at +∞ therefore exists and it is the line given by the equation
y = x − 2 − π. Similarly the asymptote at −∞ is the line given by the equation
y = −x+ 2 + π.

We finish the investigation by supplementing with the computation f(0) = 2,
f ′(0) = −3, f(2) = −2 arctg 2 and the graph of the function and its asymptotes.

FIGURE 20.

♣
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4.8. Exercises

Compute the following limits if they exist.

1. lim
x→9

2x− 6
√
x

x2 − 8x− 9
2. lim

x→+∞
x
(√

x2 + 1− x
)

3. lim
x→1

2x3 − 5x2 + x+ 2

x2 − 1
4. lim

x→3

x+ 1

(x− 3)2

5. lim
x→0

tg x− sinx

sin2 x
6. lim

x→0

sinx+ 1

sinx

7. lim
x→π/2

tg x

x− π/2
8. lim

x→16

√
4−
√
x

64−
√
x3

9. lim
x→0

exp

(
3
√

1− x2 − 1

5x2

)
10. lim

x→−∞

log(1 + ex)

x

11. lim
x→∞

√
cosx+ 2

x2 + x
12. lim

x→0
exp

(
cotg x

log(1− x)

)
13. lim

x→+∞
x(21/x − 1) 14. lim

x→0

log(1 + x2)

log(1− x2)

15. lim
x→3

arcsin(x− 3)

x2 − 3x
16. lim

x→−∞

arccotg x

x

17. lim
x→2

(
arctg

(
1

2− x

))2

18. lim
x→+∞

(
3x+ 2

2x+ 3

)2x−1

19. lim
x→0

(1 + 4x)1/3x 20. lim
x→+∞

(
x2 + 3

x2 + 7

)x
21. lim

x→0
(cos 3x)1/x

2
22. lim

x→0
(cosx)cotg

2 x

23. lim
x→0

(
2x + 8x

2

)1/x

24. lim
x→π/2

(
tg x+

1

x− π/2

)
25. lim

x→0

exp(−1/x2)

x
26. lim

x→0
(tg2 x)sin

2 x
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In the following tasks you are to compute the derivative of the function f .

27.
∣∣∣∣ x− 1

1− 2x

∣∣∣∣ 28.
(log x)x

xlog x

29. 3

√
(1− exp(1− x2))2 30.

√
1− e−x2

31. arcsin

∣∣∣∣5x+ 2

3x− 6

∣∣∣∣ 32.
√

sinx cosx

In the following tasks you are to determine the extremes of the function f on
Df .

33. x
√

2− x2 34. sin3 x+ cos3 x

35. arccos

(
−x2 − x+ 2

4

)
36.

∣∣∣∣ x

1 + x2

∣∣∣∣
In the following tasks investigate the given function f .

37. |x− 1| exp

(
− 1

(x− 1)2

)
38.

x4 − 1

x3 + 1

39. arccos

∣∣∣∣ 1− x
1− 2x

∣∣∣∣ 40. (x+ 2) exp(1/x)

41.
cosx

2 + sinx
42. arcsin

(
2x

1 + x2

)
− 2 arctg x

43. fn(x) = ex(x+ 1)n, where n ∈ N

Solutions

1. 1/10 2. 1/2 3. −3/2 4. +∞ 5. 0 6. neexistuje 7. −∞
8. 1/(4

√
3) 9. exp(−1/15) 10. 0 11. 0 12. 0 13. log 2

14. −1 15. 1/3 16. 0 17. π2/4 18. +∞ 19. exp(4/3) 20. 1
21. exp(−9/2) 22. exp(−1/2) 23. 4 24. 0 25. 0 26. 1

27. Df = (−∞, 1/2) ∪ (1/2,+∞);

f ′(x) = sgn

(
x− 1

1− 2x

)
· −1

(1− 2x)2
, x ∈ Df \ {1};

f ′+(1) = 1, f ′−(1) = −1
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28. Df = (1,+∞);

f ′(x) =
(log x)x

xlog x

(
log(log x) +

1

log x
− 2

x
log x

)
, x ∈ Df = (1,+∞)

29. Df = R;

f ′(x) =
4

3

((
1− exp(1− x2)

)2)−2/3 (
1− exp(1− x2)

)
exp(1− x2)x,

x ∈ Df \ {−1, 1}; f ′+(1) = +∞, f ′−(1) = −∞, f ′+(−1) = +∞, f ′−(−1) = −∞
30. Df = R;

f(x) =
xe−x

2√
1− e−x2

, x ∈ R \ {0};

f ′+(0) = 1, f ′−(0) = −1

31. Df = [−4, 1/2];

f ′(x) =
−6 sgn(5x+ 2)

(x− 2)
√

2(x+ 4)(1− 2x)
, x ∈ Df \ {−4,−2/5, 1/2};

f ′+(−4) = −∞, f ′−(−2/5) = −25/36, f ′+(−2/5) = 25/36, f ′−(1/2) = +∞
32. Df =

⋃
k∈Z[kπ, π/2 + kπ];

f ′(x) =
cos2 x− sin2 x

2
√

sinx cosx
, x ∈

⋃
k∈Z

(kπ, π/2 + kπ);

f ′+(2kπ) = +∞, f ′−(π/2 + 2kπ) = −∞,
f ′+(π + 2kπ) = +∞, f ′−(3π/2 + 2kπ) = −∞, k ∈ Z

33. Df = [−
√

2,
√

2]; min
[−
√
2,
√
2]
f = f(−1) = −1, max

[−
√
2,
√
2]
f = f(1) = 1

34. This function attains its maximum at every point x = 2kπ and x = π/2+2kπ,
k ∈ Z. Its value is equal to 1. The minimum of the function is the value −1, which
is attained at the points x = π+ 2kπ and 3π/2 + 2kπ, k ∈ Z. Further at the points
π/4 + 2kπ, k ∈ Z, the function attains a local minimum, and a local maximum at
the points5π/4 + 2kπ, k ∈ Z.

35. Df = [−3, 2]; min
[−3,2]

f = f(−1/2), max
[−3,2]

f = f(−3) = f(2) = π

36. Df = R; lim
x→+∞

f(x) = lim
x→−∞

f(x) = 0, min
R
f = f(0) = 0, max

R
f =

f(1) = f(−1) = 1/2

37. Df = R \ {1}; lim
x→±∞

f(x) = +∞, lim
x→1

f(x) = 0; therefore we can assign a

continuous value to the function f at the point 1 with its limit (put f(1) = 0); this
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extended function (we will continue to call it f ) then hasDf = R and is continuous
on the entire R;2

f ′(x) = exp

(
− 1

(x− 1)2

)
sgn(x− 1)

(
1 +

2

(x− 1)2

)
, x ∈ R \ {1};

the derivative of the function f at 1 can easily be calculated using Theorem 56 on
single-sided derivatives; it is lim

x→1±
f ′(x) = 0, and so f ′(1) = 0; the function f

is decreasing on (−∞, 1) and increasing on (1,+∞), at the point 1 it attains its
minimum over Df ;

f ′′(x) = 2 exp

(
− 1

(x− 1)2

)
sgn(x− 1)

−x2 + 2x+ 1

(x− 1)5
, x ∈ R \ {1};

f ′′(0) = 0, f is concave on (−∞, 1−
√

2), convex on (1−
√

2, 1+
√

2) and concave
on (1+

√
2,+∞); the points 1±

√
2 are inflection points of f ; the asymptote at−∞

is the line given by the equation y = −x+ 1, at +∞ it is the line y = x− 1

38.Df = R\{−1}; lim
x→−∞

f(x) = −∞, lim
x→+∞

f(x) = +∞, lim
x→−1

f(x) = −4/3;

therefore the function can be continuously defined as−4/3 at the point−1 and then
it is continuous on the entire R;

f ′(x) =
x2(x2 − 2x+ 3)

(x2 − x+ 1)2
, x ∈ R;

f is increasing on Df ;

f ′′(x) =
6x(1− x)

(x2 − x+ 1)3
, x ∈ R;

f is concave on (−∞, 0), convex on (0, 1), concave on (1,+∞); inflection points:
0, 1; f(0) = −1, f ′(0) = 0, f(1) = 0, f ′(1) = 2; the common asymptote of f
at ±∞ is the line given by the equation y = x

39. Df = (−∞, 0] ∪ [2/3,+∞); lim
x→±∞

f(x) = π/3; f(0) = f(2/3) = 0;

f ′(x) = − sgn(1− x)

(1− 2x)
√
x(3x− 2)

, x ∈ Df \ {0, 2/3, 1};

f ′−(0) = −∞, f ′+(2/3) = +∞, f ′−(1) = 1, f ′+(1) = −1; f is decreasing on
(−∞, 0) and on (1,+∞); f is increasing on (2/3, 1), f attains its maximum over

2Assigning the continuous value at 1 may seem unnatural. Our goal is to sketch the graph of
the function f a well as possible and so this approach is very useful because it allows us to better
investigate the behavior of the original function close to the point 1.



SOLUTIONS 119

Df at the point 1 (maxDf f = π/2), its minimum over Df at the points 0 and 2/3
(minDf f = 0);

f ′′(x) =
(−12x2 + 9x− 1) sgn(1− x)

x(1− 2x)2(3x− 2)
√
x(3x− 2)

, x ∈ Df \ {0, 2/3, 1};

f is concave on (−∞, 0), f is concave on (2/3, 1), f is convex on (1,+∞); the
asymptote of the function at the points ±∞ is the line given by the equation y =
π/3

40. Df = (−∞, 0) ∪ (0,+∞);
lim

x→−∞
f(x) = −∞, lim

x→0−
f(x) = 0, lim

x→0+
f(x) = +∞, lim

x→+∞
f(x) = +∞;

f ′(x) =
(x+ 1)(x− 2)

x2
exp(1/x), x ∈ Df ;

f is increasing on (−∞,−1), decreasing on (−1, 0), decreasing on (0, 2) and in-
creasing on (2,+∞); the function f has a local maximum at the point −1, a local
minimum at the point 2, on Df the function does not attain its maximum or mini-
mum;

f ′′(x) =
5x+ 2

x4
exp(1/x), x ∈ Df ;

f is concave on (−∞,−2/5), convex on (−2/5, 0) and on (0,+∞), the point
−2/5 is an inflection point of the function f ; the asymptote at±∞ is the line given
by the equation y = x+ 3; the function f can be defined at 0 by its left-hand limit,
i.e. by putting f(0) = 0, and thus defined the function is now defined on the entire
R and at the point 0 it is continuous from the left, then f ′−(0) = lim

x→0−
f ′(x) = 0

41. Df = R; the function f is continuous on the entire Df ;

f ′(x) = − 1 + 2 sinx

(2 + sinx)2
, x ∈ R;

the function f is decreasing on (−π,−5π/6), increasing on (−5π/6,−π/6), de-
creasing on (−π/6, π); the function f attains a local maximum at the point −π/6
(and further at each of the points −π/6 + 2kπ, k ∈ Z), a local minimum at the
point−5π/6 (and at each of the points−5π/6+2kπ, k ∈ Z); at all local minimum
points the function f attains its minimum over R, at all points of local maximum
the function attains its greatest value over the entire R;

f ′′(x) =
2 cosx(sinx− 1)

(2 + sinx)3
, x ∈ R;

the function f is convex on (−π,−π/2), concave on (−π/2, π/2), convex on
(π/2, π), the points −π/2 and π/2 are inflection points
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42. Df = R; lim
x→−∞

f(x) = π, lim
x→+∞

f(x) = −π;

f ′(x) =
2(1− x2)

|1− x2| (1 + x2)
− 2

1 + x2
, x ∈ R \ {1,−1};

f ′−(−1) = −2, f ′+(−1) = 0, f ′−(1) = 0, f ′+(1) = −2; the function f is decreas-
ing on (−∞,−1), constant on (−1, 1) (f(x) = 0 for x ∈ (−1, 1)), decreasing
on (1,+∞), and so f is non-increasing on Df , f does not attain a maximum or
minimum on Df ;

f ′′(x) =
8x

(1 + x2)2
, x ∈ (−∞,−1) ∪ (1,+∞);

the function f is concave on(−∞, 1), and convex on (1,+∞); the asymptote
at −∞ is the line given by the equation y = π, the asymptote at +∞ is the line
given by the equation y = −π

43. We have to investigate the function fn, whose formula depends on the param-
eter n ∈ N.

For every n ∈ N it holds thatDfn = R, lim
x→−∞

fn(x) = 0, lim
x→+∞

fn(x) = +∞,
fn(−1) = 0 a fn(0) = 1. Further

f ′n(x) = ex(x+ 1)n−1(x+ 1 + n), n ∈ N, x ∈ R.

We easily see that it is necessary to discern three different cases, which are
n = 1, n odd and larger than 1 and finally n even.

1. For n = 1 the function f1 is decreasing on (−∞,−2), increasing on (−2,+∞);
f1 and attains its minimum on Df1 at the point −2;

f ′′1 (x) = ex(x+ 3), x ∈ Df1 ;

f1 is concave on (−∞,−3), convex on (−3,+∞), and −3 is an inflection point.
2. For odd n ∈ N, n > 1, we have fn decreasing on (−∞,−n−1), increasing

on (−n− 1,+∞); and attains a minimum over Dfn at the point −(n+ 1);

f ′′n(x) = ex(x+ 1)n−2(x+ n+ 1 +
√
n)(x+ n+ 1−

√
n), x ∈ Dfn ;

fn is concave on (−∞,−n− 1−
√
n), convex on (−n− 1−

√
n,−n− 1 +

√
n),

concave on (−n− 1 +
√
n,−1), convex on (−1,+∞), the points −n− 1−

√
n,

−n− 1 +
√
n, −1 are inflection points.

3. For even n ∈ N the function fn is increasing on (−∞,−n− 1), decreasing
on (−n − 1,−1) and increasing on (−1,+∞); fn it has a local maximum at the
point−(n+1), and its minimum overDfn is at the point−1; the second derivative
has the same form as before; fn is convex on (−∞,−n − 1 −

√
n), concave on

(−n−1−
√
n,−n−1+

√
n), convex on (−n−1+

√
n,+∞), and−n−1−

√
n,

−n− 1 +
√
n are inflection points.
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In all cases the asymptote of the function fn at −∞ is the x-axis. The asymp-
tote at +∞ doesn’t exist.
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