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We ‘take out the biggest term’ in the numerator and denominator
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To simplify the denominator of the original limit, we can see that limn→∞
n
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justified below). So, ‘taking out the biggest term’ of the denominator we get
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Together, we have
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We justify limn→∞
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Grading. Numerator 4 pts (2 pts — difference of square roots trick, 2 pts — taking out the
biggest term), denominator 5 pts (1 pt — lim n

√
. . ., 2 pts — taking out the biggest term, 2 pts —

sandwich theorem).
Further: each secondary school error −0.5 pts, partial limit −2 pts, further partial limits −1 pt
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