
Midterm — sample test
Mathematics I, WS2017/18

Compute the limit
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Solution. We ‘take out the biggest terms’ in the numerator and denominator to get
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In the n-th root, we again ‘take out the biggest term’ and we obtain
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Together we have
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We have used lim
n→∞
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n = 1 and ‘comparison of growths’
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and the sandwich theorem to show that lim
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where n
√

1/2→ 1.

Grading. 7 points for computations and the result, 3 points for justifications (mainly of the limit
of the n-th root).
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