
I. Introduction

I.1. Sets
We take a set to be a collection of definite and distinguishable objects into a coherent whole.

• x ∈ A . . .x is an element (or member) of the set A

• x /∈ A . . .x is not a member of the set A

• A ⊂ B . . . the set A is a subset of the set B (inclusion)

• A = B . . . the sets A and B have the same elements; the following holds: A ⊂ B and B ⊂ A

• ∅ . . . an empty set

• A ∪B . . . the union of the sets A and B

• A ∩B . . . the intersection of the sets A and B

• disjoint sets . . .A and B are disjoint if A ∩B = ∅

• A \B = {x ∈ A; x /∈ B} . . . a difference of the sets A and B

• A1 × · · · ×Am = {[a1, . . . , am]; a1 ∈ A1, . . . , am ∈ Am} . . . the Cartesian product

Let I be a non-empty set of indices and suppose we have a system of sets Aα, where the indices α run over I .

•
⋃
α∈I

Aα . . . the set of all elements belonging to at least one of the sets Aα

•
⋂
α∈I

Aα . . . the set of all elements belonging to every Aα

Example.

A1 ∪A2 ∪A3 is equivalent to
3⋃
i=1

Ai, and also to
⋃

i∈{1,2,3}
Ai.

Infinitely many sets: A1 ∪A2 ∪A3 ∪ . . . is equivalent to
∞⋃
i=1

Ai, and also to
⋃
i∈N

Ai.

I.2. Logic, methods of proofs
A statement (or proposition) is a sentence which can be declared to be either true or false.

• ¬, also non . . . negation

• & (also ∧) . . . conjunction, logical “and”

• ∨ . . . disjuction (alternative), logical “or”

• ⇒ . . . implication

• ⇔ . . . equivalence; “if and only if”

A predicate (or propositional function) is an expression or sentence involving variables which becomes a statement once we
substitute certain elements of a given set for the variables.

General form:
V (x), x ∈M

V (x1, . . . , xn), x1 ∈M1, . . . , xn ∈Mn

If A(x), x ∈M is a predicate, then the statement “A(x) holds for every x from M .” is shortened to

∀x ∈M : A(x).

The statement “There exists x in M such that A(x) holds.” is shortened to

∃x ∈M : A(x).
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The statement “There is only one x in M such that A(x) holds.” is shortened to

∃!x ∈M : A(x).

If A(x), x ∈M and B(x), x ∈M are predicates, then

∀x ∈M,B(x) : A(x) means ∀x ∈M : (B(x)⇒ A(x)),

∃x ∈M,B(x) : A(x) means ∃x ∈M : (A(x) & B(x)).

Negations of the statements with quantifiers:

¬(∀x ∈M : A(x)) is the same as ∃x ∈M : ¬A(x),

¬(∃x ∈M : A(x)) is the same as ∀x ∈M : ¬A(x).

Methods of proofs

• direct proof

• indirect proof

• proof by contradiction

• mathematical induction

Theorem 1 (de Morgan rules). Let S, Aα, α ∈ I , where I 6= ∅, be sets. Then

S \
⋃
α∈I

Aα =
⋂
α∈I

(S \Aα) and S \
⋂
α∈I

Aα =
⋃
α∈I

(S \Aα).

Example (irrationality of
√

2). If a real number x solves the equation x2 = 2, then x is not rational.

I.3. Number sets
Rational numbers

• The set of natural numbers
N = {1, 2, 3, 4, . . . }

• The set of integers
Z = N ∪ {0} ∪ {−n; n ∈ N} = {. . . ,−2,−1, 0, 1, 2, . . . }

• The set of rational numbers

Q =

{
p

q
; p ∈ Z, q ∈ N

}
,

where p1
q1

= p2
q2

if and only if p1 · q2 = p2 · q1.

Real numbers
By the set of real numbers R we will understand a set on which there are operations of addition and multiplication (denoted

by + and ·), and a relation of ordering (denoted by ≤), such that it has the following three groups of properties.

I. The properties of addition and multiplication and their relationships.

II. The relationships of the ordering and the operations of addition and multiplication.

III. The infimum axiom.

The properties of addition and multiplication and their relationships:

• ∀x, y ∈ R : x+ y = y + x (commutativity of addition),

• ∀x, y, z ∈ R : x+ (y + z) = (x+ y) + z (associativity),

• There is an element in R (denoted by 0 and called a zero element), such that x+ 0 = x for every x ∈ R,
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• ∀x ∈ R ∃y ∈ R : x+ y = 0 (y is called the negative of x, such y is only one, denoted by −x),

• ∀x, y ∈ R : x · y = y · x (commutativity),

• ∀x, y, z ∈ R : x · (y · z) = (x · y) · z (associativity),

• There is a non-zero element in R (called identity, denoted by 1), such that 1 · x = x for every x ∈ R,

• ∀x ∈ R \ {0} ∃y ∈ R : x · y = 1 (such y is only one, denoted by x−1 or 1
x ),

• ∀x, y, z ∈ R : (x+ y) · z = x · z + y · z (distributivity).

The relationships of the ordering and the operations of addition and multiplication:

• ∀x, y, z ∈ R : (x ≤ y & y ≤ z)⇒ x ≤ z (transitivity),

• ∀x, y ∈ R : (x ≤ y & y ≤ x)⇒ x = y (weak antisymmetry),

• ∀x, y ∈ R : x ≤ y ∨ y ≤ x,

• ∀x, y, z ∈ R : x ≤ y ⇒ x+ z ≤ y + z,

• ∀x, y ∈ R : (0 ≤ x & 0 ≤ y)⇒ 0 ≤ x · y.

Definition. We say that the set M ⊂ R is bounded from below if there exists a number a ∈ R such that for each x ∈M we have
x ≥ a. Such a number a is called a lower bound of the set M . Analogously we define the notions of a set bounded from above
and an upper bound. We say that a set M ⊂ R is bounded if it is bounded from above and below.

The infimum axiom:
Let M be a non-empty set bounded from below. Then there exists a unique number g ∈ R such that

(i) ∀x ∈M : x ≥ g,

(ii) ∀g′ ∈ R, g′ > g ∃x ∈M : x < g′.

The number g is denoted by inf M and is called the infimum of the set M .
Remark.

• The infimum axiom says that every non-empty set bounded from below has infimum.

• The infimum of the set M is its greatest lower bound.

• The real numbers exist and are uniquely determined by the properties I–III.

The following hold:

(i) ∀x ∈ R : x · 0 = 0 · x = 0,

(ii) ∀x ∈ R : − x = (−1) · x,

(iii) ∀x, y ∈ R : xy = 0⇒ (x = 0 ∨ y = 0),

(iv) ∀x ∈ R ∀n ∈ N : x−n = (x−1)n,

(v) ∀x, y ∈ R : (x > 0 ∧ y > 0)⇒ xy > 0,

(vi) ∀x ∈ R, x ≥ 0 ∀y ∈ R, y ≥ 0 ∀n ∈ N : x < y ⇔ xn < yn.

Let a, b ∈ R, a ≤ b. We denote:

• An open interval (a, b) = {x ∈ R; a < x < b},

• A closed interval [a, b] = {x ∈ R; a ≤ x ≤ b},

• A half-open interval [a, b) = {x ∈ R; a ≤ x < b},

• A half-open interval (a, b] = {x ∈ R; a < x ≤ b}.

The point a is called the left endpoint of the interval, The point b is called the right endpoint of the interval. A point in the interval
which is not an endpoint is called an inner point of the interval.

Unbounded intervals:
(a,+∞) = {x ∈ R; a < x}, (−∞, a) = {x ∈ R; x < a},

analogically (−∞, a], [a,+∞) and (−∞,+∞). We have N ⊂ Z ⊂ Q ⊂ R. If we transfer the addition and multiplication
from R to the above sets, we obtain the usual operations on these sets.

A real number that is not rational is called irrational. The set R \Q is called the set of irrational numbers.
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Consequences of the infimum axiom

Definition. Let M ⊂ R. A number G ∈ R satisfying

(i) ∀x ∈M : x ≤ G,

(ii) ∀G′ ∈ R, G′ < G ∃x ∈M : x > G′,

is called a supremum of the set M .

Theorem 2 (Supremum theorem). Let M ⊂ R be a non-empty set bounded from above. Then there exists a unique supremum of
the set M .

The supremum of the set M is denoted by supM .
The following holds: supM = − inf(−M).

Definition. Let M ⊂ R. We say that a is a maximum of the set M (denoted by maxM ) if a is an upper bound of M and a ∈M .
Analogously we define a minimum of M , denoted by minM .

Theorem 3 (Archimedean property). For every x ∈ R there exists n ∈ N satisfying n > x.

Theorem 4 (existence of an integer part). For every r ∈ R there exists an integer part of r, i.e. a number k ∈ Z satisfying
k ≤ r < k + 1. The integer part of r is determined uniquely and it is denoted by [r].

Theorem 5 (nth root). For every x ∈ [0,+∞) and every n ∈ N there exists a unique y ∈ [0,+∞) satisfying yn = x.

Theorem 6 (density of Q and R \Q). Let a, b ∈ R, a < b. Then there exist r ∈ Q satisfying a < r < b and s ∈ R \Q satisfying
a < s < b.

II. Limit of a sequence

II.1. Introduction
Definition. Suppose that to each natural number n ∈ N we assign a real number an. Then we say that {an}∞n=1 is a sequence of
real numbers. The number an is called the nth member of this sequence.

A sequence {an}∞n=1 is equal to a sequence {bn}∞n=1 if an = bn holds for every n ∈ N.
By the set of all members of the sequence {an}∞n=1 we understand the set

{x ∈ R; ∃n ∈ N : an = x}.

Definition. We say that a sequence {an} is

• bounded from above if the set of all members of this sequence is bounded from above,

• bounded from below if the set of all members of this sequence is bounded from below,

• bounded if the set of all members of this sequence is bounded.

Definition. We say that a sequence {an} is

• increasing if an < an+1 for every n ∈ N,

• decreasing if an > an+1 for every n ∈ N,

• non-decreasing if an ≤ an+1 for every n ∈ N,

• non-increasing if an ≥ an+1 for every n ∈ N.

A sequence {an} is monotone if it satisfies one of the conditions above. A sequence {an} is strictly monotone if it is increasing
or decreasing.

Definition. Let {an} and {bn} be sequences of real numbers.

• By the sum of sequences {an} and {bn} we understand a sequence {an + bn}.

• Analogously we define a difference and a product of sequences.

• Suppose all the members of the sequence {bn} are non-zero. Then by the quotient of sequences {an} and {bn} we under-
stand a sequence {anbn }.

• If λ ∈ R, then by the λ-multiple of the sequence {an} we understand a sequence {λan}.
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II.2. Convergence of sequences
Definition. We say that a sequence {an} has a limit which equals to a number A ∈ R if to every positive real number ε there
exists a natural number n0 such that for every index n ≥ n0 we have |an −A| < ε, i.e.

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an −A| < ε.

We say that a sequence {an} is convergent if there exists A ∈ R which is a limit of {an}.

Theorem 7 (uniqueness of a limit). Every sequence has at most one limit.

We use the notation lim
n→∞

an = A or simply lim an = A.

Remark. Let {an} be a sequence of real numbers and A ∈ R. Then

lim an = A⇔ lim(an −A) = 0⇔ lim |an −A| = 0.

Theorem 8. Every convergent sequence is bounded.

Definition. Let {an}∞n=1 be a sequence of real numbers. We say that a sequence {bk}∞k=1 is a subsequence of {an}∞n=1 if there
is an increasing sequence {nk}∞k=1 of natural numbers such that bk = ank for every k ∈ N.

Theorem 9 (limit of a subsequence). Let {bk}∞k=1 be a subsequence of {an}∞n=1. If limn→∞ an = A ∈ R, then also limk→∞ bk =
A.

Remark. Let {an}∞n=1 be a sequence of real numbers, A ∈ R, K ∈ R, K > 0. If

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : |an −A| < Kε,

then lim an = A.

Theorem 10 (arithmetics of limits). Suppose that lim an = A ∈ R and lim bn = B ∈ R. Then

(i) lim(an + bn) = A+B,

(ii) lim(an · bn) = A ·B,

(iii) if B 6= 0 and bn 6= 0 for all n ∈ N, then lim(an/bn) = A/B.

Theorem 11 (limits and ordering). Let lim an = A ∈ R and lim bn = B ∈ R.

(i) Suppose that there is n0 ∈ N such that an ≥ bn for every n ≥ n0. Then A ≥ B.

(ii) Suppose that A < B. Then there is n0 ∈ N such that an < bn for every n ≥ n0.

Theorem 12 (two policemen/sandwich theorem). Let {an}, {bn} be convergent sequences and let {cn} be a sequence such that

(i) ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an ≤ cn ≤ bn,

(ii) lim an = lim bn.

Then lim cn exists and lim cn = lim an.

Corollary 13. Suppose that lim an = 0 and the sequence {bn} is bounded. Then lim anbn = 0.

Lemma 14 (convergence criterion). Let {an} be a sequence and an > 0 for all n ∈ N. If lim an+1

an
< 1, then lim an = 0.

Lemma 15 (k−th root of a sequence). Let {an} be a sequence, an > 0 for all n ∈ N. Let k ∈ N. If lim an = A, then
lim k
√
an = k

√
A.

II.3. Infinite limits of sequences
Definition. We say that a sequence {an} has a limit +∞ (plus infinity) if

∀L ∈ R ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an > L.

We say that a sequence {an} has a limit −∞ (minus infinity) if

∀K ∈ R ∃n0 ∈ N ∀n ∈ N, n ≥ n0 : an < K.
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Theorem 7 on the uniqueness of a limit holds also for the limits +∞ and−∞. If lim an = +∞, then we say that the sequence
{an} diverges to +∞, similarly for −∞. If lim an ∈ R, then we say that the limit is finite, if lim an = +∞ or lim an = −∞,
then we say that the limit is infinite.

Theorem 8 does not hold for infinite limits. But:

Theorem 8’.

• Suppose that lim an = +∞. Then the sequence {an} is not bounded from above, but is bounded from below.

• Suppose that lim an = −∞. Then the sequence {an} is not bounded from below, but is bounded from above.

Theorem 9 (limit of a subsequence) holds also for infinite limits.

Definition. We define the extended real line by setting R∗ = R ∪ {+∞,−∞} with the following extension of operations and
ordering from R:

• a < +∞ and −∞ < a for a ∈ R, −∞ < +∞,

• a+ (+∞) = (+∞) + a = +∞ for a ∈ R∗ \ {−∞},

• a+ (−∞) = (−∞) + a = −∞ for a ∈ R∗ \ {+∞},

• a · (±∞) = (±∞) · a = ±∞ for a ∈ R∗, a > 0,

• a · (±∞) = (±∞) · a = ∓∞ for a ∈ R∗, a < 0,

• a
±∞ = 0 pro a ∈ R.

The following operations are not defined:

• (−∞) + (+∞), (+∞) + (−∞), (+∞)− (+∞), (−∞)− (−∞),

• (+∞) · 0, 0 · (+∞), (−∞) · 0, 0 · (−∞),

• +∞
+∞ , +∞

−∞ , −∞−∞ , −∞+∞ , a0 for a ∈ R∗.

Theorem 10’ (arithmetics of limits). Suppose that lim an = A ∈ R∗ and lim bn = B ∈ R∗. Then

(i) lim(an ± bn) = A±B if the right-hand side is defined,

(ii) lim(an · bn) = A ·B if the right-hand side is defined,

(iii) lim an/bn = A/B if the right-hand side is defined.

Theorem 16. Suppose that lim an = A ∈ R∗, A > 0, lim bn = 0 and there is n0 ∈ N such that we have bn > 0 for every
n ∈ N, n ≥ n0. Then lim an/bn = +∞.

Theorem 11 (limits and ordering) and Theorem 12 (sandwich theorem) hold also for infinite limits. Even the following
modification holds:

Theorem 12’ (one policeman). Let {an} and {bn} be two sequences.

• If lim an = +∞ and there is n0 ∈ N such that bn ≥ an for every n ∈ N, n ≥ n0, then lim bn = +∞.

• If lim an = −∞ and there is n0 ∈ N such that bn ≤ an for every n ∈ N, n ≥ n0, then lim bn = −∞.

Definition. Let A ⊂ R be non-empty. If A is not bounded from above, then we define supA = +∞. If A is not bounded from
below, then we define inf A = −∞.

Lemma 17. Let M ⊂ R be non-empty and G ∈ R∗. Then the following statements are equivalent:

(1) G = supM .

(2) The number G is an upper bound of M and there exists a sequence {xn}∞n=1 of members of M such that limxn = G.

II.4. Deeper theorems on limits of sequences
Theorem 18 (limit of a monotone sequence). Every monotone sequence has a limit. If {an} is non-decreasing, then lim an =
sup{an; n ∈ N}. If {an} is non-increasing, then lim an = inf{an; n ∈ N}.

Theorem 19 (Bolzano-Weierstraß). Every bounded sequence contains a convergent subsequence.
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III. Mappings

Definition. Let A and B be sets. A mapping f from A to B is a rule which assigns to each member x of the set A a unique
member y of the set B. This element y is denoted by the symbol f(x). The element y is called an image of x and the element x
is called a pre-image of y.

• By f : A→ B we denote the fact that f is a mapping from A to B.

• By f : x 7→ f(x) we denote the fact that the mapping f assigns f(x) to an element x.

• The set A from the definition of the mapping f is called the domain of f and it is denoted by Df .

Definition. Let f : A→ B be a mapping.

• The subset Gf = {[x, y] ∈ A×B; x ∈ A, y = f(x)} of the Cartesian product A×B is called the graph of the mapping
f .

• The image of the set M ⊂ A under the mapping f is the set

f(M) = {y ∈ B; ∃x ∈M : f(x) = y} (= {f(x); x ∈M}).

• The set f(A) is called the range of the mapping f , it is denoted by Rf .

• The pre-image of the set W ⊂ B under the mapping f is the set

f−1(W ) = {x ∈ A; f(x) ∈W}.

Remark. Let f : A→ B, X,Y ⊂ A, U, V ⊂ B. Then

• f−1(U ∪ V ) = f−1(U) ∪ f−1(V ),

• f−1(U ∩ V ) = f−1(U) ∩ f−1(V ),

• f(X ∪ Y ) = f(X) ∪ f(Y ),

• f(X ∩ Y ) ⊂ f(X) ∩ f(Y ).

Definition. Let A, B, C be sets, C ⊂ A and f : A → B. The mapping f̃ : C → B given by the formula f̃(x) = f(x) for each
x ∈ C is called the restriction of the mapping f to the set C. It is denoted by f |C .

Definition. Let f : A→ B and g : B → C be two mappings. The symbol g ◦ f denotes a mapping from A to C defined by

(g ◦ f)(x) = g(f(x)).

This mapping is called a compound mapping or a composition of the mapping f and the mapping g.

Definition. We say that a mapping f : A→ B

• maps the set A onto the set B if f(A) = B, i.e. if to each y ∈ B there exist x ∈ A such that f(x) = y;

• is one-to-one (or injective) if images of different elements differ, i.e.

∀x1, x2 ∈ A : x1 6= x2 ⇒ f(x1) 6= f(x2),

• is a bijection of A onto B (or a bijective mapping), if it is at the same time one-to-one and maps A onto B.

Definition. Let f : A → B be bijective (i.e. one-to-one and onto). An inverse mapping f−1 : B → A is a mapping that to each
y ∈ B assigns a (uniquely determined) element x ∈ A satisfying f(x) = y.
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IV. Functions of one real variable

IV.1. Basic notions
Definition. A function f of one real variable (or a function for short) is a mapping f : M → R, where M is a subset of real
numbers.

Definition. A function f : J → R is increasing on an interval J , if for each pair x1, x2 ∈ J , x1 < x2 the inequality f(x1) <
f(x2) holds. Analogously we define a function decreasing (non-decreasing, non-increasing) on an interval J .

Definition. A monotone function on an interval J is a function which is non-decreasing or non-increasing on J . A strictly
monotone function on an interval J is a function which is increasing or decreasing on J .

Definition. Let f be a function and M ⊂ Df . We say that f is

• bounded from above on M if there is K ∈ R such that f(x) ≤ K for all x ∈M ,

• bounded from below on M if there is K ∈ R such that f(x) ≥ K for all x ∈M ,

• bounded on M if there is K ∈ R such that |f(x)| ≤ K for all x ∈M ,

• odd if for each x ∈ Df we have −x ∈ Df and f(−x) = −f(x),

• even if for each x ∈ Df we have −x ∈ Df and f(−x) = f(x),

• periodic with a period a, where a ∈ R, a > 0, if for each x ∈ Df we have x + a ∈ Df , x − a ∈ Df and f(x + a) =
f(x− a) = f(x).

IV.2. Limit of a function
Definition. Let c ∈ R and ε > 0. We define

• a neighbourhood of a point c with radius ε by B(c, ε) = (c− ε, c+ ε),

• a punctured neighbourhood of a point c with radius ε by P (c, ε) = (c− ε, c+ ε) \ {c}.

Definition. We say that A ∈ R is a limit of a function f at a point c ∈ R if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P (c, δ) : f(x) ∈ B(A, ε).

Theorem 20 (uniqueness of a limit). Let f be a function and c ∈ R. Then f has a most one limit A ∈ R at c.

The fact that f has a limit A ∈ R at c ∈ R is denoted by lim
x→c

f(x) = A.

Definition. We say that a function f is continuous at a point c ∈ R if

lim
x→c

f(x) = f(c).

Remark. A function f is continuous at a point c if and only if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ B(c, δ) : f(x) ∈ B(f(c), ε).

Definition. Let ε > 0. A neighbourhood and a punctured neighbourhood of +∞ (resp. −∞) is defined as follows:

P (+∞, ε) = B(+∞, ε) = (1/ε,+∞),

P (−∞, ε) = B(−∞, ε) = (−∞,−1/ε).

Definition. We say that A ∈ R∗ is a limit of a function f at c ∈ R∗ if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P (c, δ) : f(x) ∈ B(A, ε).

Theorem 20 holds also for c ∈ R∗, A ∈ R∗, so we can again use the notation limx→c f(x) = A.

Definition. Let c ∈ R and ε > 0. We define

• a right neighbourhood of c by B+(c, ε) = [c, c+ ε),

• a left neighbourhood of c by B−(c, ε) = (c− ε, c],
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• a right punctured neighbourhood of c by P+(c, ε) = (c, c+ ε),

• a left punctured neighbourhood of c by P−(c, ε) = (c− ε, c),

• a left neighbourhood and left punctured neighbourhood of +∞ by B−(+∞, ε) = P−(+∞, ε) = (1/ε,+∞),

• a right neighbourhood and right punctured neighbourhood of −∞ by B+(−∞, ε) = P+(−∞, ε) = (−∞,−1/ε).

Definition. Let A ∈ R∗, c ∈ R ∪ {−∞}. We say that a function f has a limit from the right at c equal to A ∈ R∗ (denoted by
lim
x→c+

f(x) = A) if

∀ε ∈ R, ε > 0 ∃δ ∈ R, δ > 0 ∀x ∈ P+(c, δ) : f(x) ∈ B(A, ε).

Analogously we define the notion of limit from the left at c ∈ R ∪ {+∞} and we use the notation lim
x→c−

f(x).

Remark. Let c ∈ R, A ∈ R∗. Then

lim
x→c

f(x) = A⇔
(

lim
x→c+

f(x) = A & lim
x→c−

f(x) = A

)
.

Definition. Let c ∈ R. We say that a function f is continuous at c from the right (from the left, resp.) if limx→c+ f(x) = f(c)
(limx→c− f(x) = f(c), resp.).

Theorem 21. Let f has a finite limit at c ∈ R∗. Then there exists δ > 0 such that f is bounded on P (c, δ).

Theorem 22 (arithmetics of limits). Let c ∈ R∗, limx→c f(x) = A ∈ R∗ and limx→c g(x) = B ∈ R∗. Then

(i) limx→c(f(x) + g(x)) = A+B if the expression A+B is defined,

(ii) limx→c f(x)g(x) = AB if the expression AB is defined,

(iii) limx→c f(x)/g(x) = A/B if the expression A/B is defined.

Corollary. Suppose that the functions f and g are continuous at c ∈ R. Then also the functions f + g and fg are continuous at
c. If moreover g(c) 6= 0, then also the function f/g is continuous at c.

Theorem 23. Let c ∈ R∗, limx→c g(x) = 0, limx→c f(x) = A ∈ R∗ and A > 0. If there exists η > 0 such that the function g is
positive on P (c, η), then limx→c

(
f(x)/g(x)

)
= +∞.

Theorem 24 (limits and inequalities). Suppose that c ∈ R∗ and limx→c f(x), limx→c g(x) exist.
(i) If limx→c f(x) > limx→c g(x), then there exists δ > 0 such that

∀x ∈ P (c, δ) : f(x) > g(x).

(ii) If there exists δ > 0 such that ∀x ∈ P (c, δ) : f(x) ≤ g(x), then
lim
x→c

f(x) ≤ lim
x→c

g(x).

(iii) (two policemen/sandwich theorem) Suppose that there exists η > 0 such that
∀x ∈ P (c, η) : f(x) ≤ h(x) ≤ g(x).

If moreover limx→c f(x) = limx→c g(x) = A ∈ R∗, then the limit limx→c h(x) also exists and equals A.

Corollary. Let c ∈ R∗, limx→c f(x) = 0 and suppose there exists η > 0 such that g is bounded onP (c, η). Then limx→c
(
f(x)g(x)

)
=

0.

Theorem 25 (limit of a composition). Let c, A,B ∈ R∗, limx→c g(x) = A, limy→A f(y) = B and at least one of the following
conditions is satisfied:

(I) ∃η ∈ R, η > 0 ∀x ∈ P (c, η) : g(x) 6= A,

(C) the function f is continuous at A.

Then
lim
x→c

f
(
g(x)

)
= B.

Corollary. Suppose that the function g is continuous at c ∈ R and the function f is continuous at g(c). Then the function f ◦ g
is continuous at c.

Theorem 26 (Heine). Let c ∈ R∗, A ∈ R∗ and the function f satisfies limx→c f(x) = A. If the sequence {xn} satisfies
xn ∈ Df , xn 6= c for all n ∈ N and limn→∞ xn = c, then limn→∞ f(xn) = A.

Theorem 27 (limit of a monotone function). Let a, b ∈ R∗, a < b. Suppose that f is a function monotone on an interval (a, b).
Then the limits limx→a+ f(x) and limx→b− f(x) exist. Moreover,

• if f is non-decreasing on (a, b), then limx→a+ f(x) = inf f
(
(a, b)

)
and limx→b− f(x) = sup f

(
(a, b)

)
;

• if f is non-increasing on (a, b), then limx→a+ f(x) = sup f
(
(a, b)

)
and limx→b− f(x) = inf f

(
(a, b)

)
.
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IV.3. Elementary functions
Definition. A polynomial is a function P of the form

P (x) = a0 + a1x+ · · ·+ anx
n, x ∈ R,

where n ∈ N ∪ {0} and a0, a1, . . . , an ∈ R. The numbers a0, . . . , an are called the coefficients of the polynomial P .

Remark. Let n,m ∈ N ∪ {0} and

P (x) = a0 + a1x+ · · ·+ anx
n, x ∈ R,

Q(x) = b0 + b1x+ · · ·+ bmx
m, x ∈ R,

where a0, a1, . . . , an ∈ R, an 6= 0, b0, b1, . . . , bm ∈ R, bm 6= 0. If the polynomials P and Q are equal (i.e. P (x) = Q(x) for
each x ∈ R), then n = m and a0 = b0, . . . , an = bn.

Definition. Let P be a polynomial of the form

P (x) = a0 + a1x+ · · ·+ anx
n, x ∈ R.

We say that P is a polynomial of degree n if an 6= 0. The degree of a zero polynomial (i.e. a constant zero function defined on R)
is defined as −1.

Definition. Let {an}∞n=0 be a sequence. If limn→∞(a0 + a1 + · · ·+ an) exists, we denote it by

∞∑
k=0

ak or a1 + a2 + a3 + . . .

Definition. The exponential function (denoted by exp) is defined by

exp(x) =

∞∑
k=0

xk

k!
= 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 + . . .

for every x ∈ R. The number exp(1) is denoted by e (and it is called Euler’s number).

Theorem 28 (existence of the exponential). For every x ∈ R the limit lim
n→∞

∑n
k=0

xk

k! exists and is finite.

Properties of the exponential function

• Dexp = R, Rexp = (0,+∞),

• the function exp is continuous and increasing on R,

• exp 0 = 1, exp 1 = e,

• ∀x, y ∈ R : exp(x+ y) = exp(x) exp(y),

• ∀x ∈ R : exp(−x) = 1/ expx,

• ∀n ∈ Z ∀x ∈ R : exp(nx) = (expx)n,

• lim
x→+∞

expx = +∞, lim
x→−∞

expx = 0,

• lim
x→0

exp(x)−1
x = 1,

• ∀r ∈ Q : exp r = er.

Definition. The natural logarithm (denoted by log) is defined as the inverse function to the function exp.

Properties of the logarithm

• Dlog = (0,+∞), Rlog = R,

• log is continuous and increasing on (0,+∞),

• log 1 = 0, log e = 1,

• ∀x, y ∈ (0,+∞) : log(xy) = log(x) + log(y),
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• ∀x ∈ (0,+∞) : log(1/x) = − log x,

• ∀n ∈ Z ∀x ∈ (0,+∞) : log xn = n log x,

• lim
x→+∞

log x = +∞, lim
x→0+

log x = −∞,

• lim
x→1

log x
x−1 = 1.

Definition. Let a, b ∈ R, a > 0. The general power ab is defined by

ab = exp(b log a).

Definition. Let a, b ∈ (0,+∞), a 6= 1. The general logarithm to base a is defined by

loga b =
log b

log a
.

Definition. The sine and cosine functions (denoted by sin and cos) are defined by

sinx =

∞∑
k=0

x2k+1

(2k + 1)!
, cosx =

∞∑
k=0

x2k

(2k)!

for every x ∈ R.

Theorem 29 (existence of sine and cosine functions). For every x ∈ R the limits lim
n→∞

∑n
k=0

x2k+1

(2k+1)! , lim
n→∞

∑n
k=0

x2k

(2k)! exist
and they are finite.

Properties of the sine and cosine

• Dsin = Dcos = R, Rsin = Rcos = [−1, 1].

• The functions sin and cos are continuous on R.

•
x 0 π

6
π
4

π
3

π
2

2π
3

3π
4

5π
6

π

sinx 0 1
2

√
2

2

√
3
2

1
√
3

2

√
2

2
1
2

0

cosx 1
√
3

2

√
2

2
1
2

0 − 1
2

−
√
2

2
−

√
3

2
−1

• The function cos is even, the function sin is odd.

• The functions sin and cos are 2π-periodic.

• ∀x ∈ R : sin(x+ π) = − sinx, cos(x+ π) = − cosx.

• ∀x ∈ R : sin(x) = cos(π2 − x), cos(x) = sin(π2 − x).

• ∀x ∈ R : sin2 x+ cos2 x = 1.

• ∀x, y ∈ R : sin(x± y) = sinx cos y ± cosx sin y, cos(x± y) = cosx cos y ∓ sinx sin y.

• ∀x, y ∈ R : sinx− sin y = 2 sin
(
x−y
2

)
cos
(
x+y
2

)
.

• lim
x→0

sin x
x = 1.

Definition. The function tangent is denoted by tg and defined by

tg x =
sinx

cosx

for every x ∈ R for which the fraction is defined, i.e.

Dtg = {x ∈ R; x 6= π/2 + kπ, k ∈ Z}.

The function cotangent is denoted by cotg and defined on a set Dcotg = {x ∈ R; x 6= kπ, k ∈ Z} by

cotg x =
cosx

sinx
.

Properties of the tangent and cotangent
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• tg π
4 = cotg π

4 = 1

• The functions tg and cotg are continuous at every point of their domains.

• The functions tg and cotg are odd.

• The functions tg and cotg are π-periodic.

• The function tg is increasing on (−π/2, π/2), the function cotg is decreasing on (0, π).

• lim
x→π

2−
tg x = +∞, lim

x→−π2 +
tg x = −∞, lim

x→0+
cotg x = +∞, lim

x→π−
cotg x = −∞

• Rtg = Rcotg = R

Definition.

• The function arcsine (denoted by arcsin) is an inverse function to the function sin |[−π2 ,π2 ].

• The function arccosine (denoted by arccos) is an inverse function to the function cos |[0,π].

• The function arctangent (denoted by arctg) is an inverse function to the function tg |(−π2 ,π2 ).

• The function arccotangent (denoted by arccotg) is an inverse function to the function cotg |(0,π).

Properties of inverse trigonometric functions

• Darcsin = Darccos = [−1, 1], Darctg = Darccotg = R

• The functions arcsin and arctg are odd.

• The functions arcsin and arctg are increasing, the functions arccos and arccotg are decreasing (on their domains).

• arctg 0 = 0, arctg 1 = π
4 , arccotg 0 = π

2

• lim
x→0

arcsin x
x = lim

x→0

arctg x
x = 1

• ∀x ∈ [−1, 1] : arcsinx+ arccosx = π
2 , ∀x ∈ R : arctg x+ arccotg x = π

2

• lim
x→+∞

arctg x = π
2 , lim

x→−∞
arctg x = −π2 lim

x→+∞
arccotg x = 0, lim

x→−∞
arccotg x = π

IV.4. Functions continuous on an interval
Definition. Let J ⊂ R be a non-degenerate interval (i.e. it contains infinitely many points). A function f : J → R is continuous
on the interval J if

• f is continuous at every inner point J ,

• f is continuous from the right at the left endpoint of J if this point belongs to J ,

• f is continuous from the left at the right endpoint of J if this point belongs to J .

Theorem 30 (continuity of the compound function on an interval). Let I and J be intervals, g : I → J , f : J → R, let g be
continuous on I and let f be continuous on J . Then the function f ◦ g is continuous on I .

Theorem 31 (Bolzano, intermediate value theorem). Let f be a function continuous on an interval [a, b] and suppose that
f(a) < f(b). Then for each C ∈ (f(a), f(b)) there exists ξ ∈ (a, b) satisfying f(ξ) = C.

Theorem 32 (an image of an interval under a continuous function). Let J be an interval and let f : J → R be a function
continuous on J . Then f(J) is an interval.

Definition. Let M ⊂ R, x ∈ M and a function f is defined at least on M (i.e. M ⊂ Df ). We say that f attains its maximum
(resp. minimum) on M at x ∈M if

∀y ∈M : f(y) ≤ f(x) (resp. ∀y ∈M : f(y) ≥ f(x)).

The point x is called the point of maximum (resp. minimum) of the function f on M . The symbol maxM f (resp. minM f )
denotes the maximal (resp. minimal) value of f on M (if such a value exists). The points of maxima or minima are collectively
called the points of extrema.

Definition. Let M ⊂ R, x ∈M and a function f is defined at least on M (i.e. M ⊂ Df ). We say that the function f has at x
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• a local maximum with respect to M if there exists δ > 0 such that ∀y ∈ B(x, δ) ∩M : f(y) ≤ f(x),

• a local minimum with respect to M if there exists δ > 0 such that ∀y ∈ B(x, δ) ∩M : f(y) ≥ f(x),

• a strict local maximum with respect to M if there exists δ > 0 such that ∀y ∈ P (x, δ) ∩M : f(y) < f(x),

• a strict local minimum with respect to M if there exists δ > 0 such that ∀y ∈ P (x, δ) ∩M : f(y) > f(x).

The points of local maxima or minima are collectively called the points of local extrema.

Theorem 33 (Heine theorem for continuity on an interval). Let f be a function continuous on an interval J and c ∈ J . Then
lim f(xn) = f(c) for each sequence {xn}∞n=1 of points in the interval J satisfying limxn = c.

Theorem 34 (extrema of continuous functions). Let f be a function continuous on an interval [a, b]. Then f attains its maximum
and minimum on [a, b].

Corollary 35 (boundedness of a continuous function). Let f be a function continuous on an interval [a, b]. Then f is bounded
on [a, b].

Theorem 36 (continuity of an inverse function). Let f be a continuous function that is increasing (resp. decreasing) on an
interval J . Then the function f−1 is continuous and increasing (resp. decreasing) on the interval f(J).

Corollary 37. Functions nth root, exponential, general power, arcsin, arccos, arctg, arccotg are continuous on their domains.

IV.5. Derivatives
Definition. Let f be a function and a ∈ R. Then

• the derivative of the function f at the point a is defined by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

• the derivative of f at a from the right is defined by

f ′+(a) = lim
h→0+

f(a+ h)− f(a)

h
,

• the derivative of f at a from the left is defined by

f ′−(a) = lim
h→0−

f(a+ h)− f(a)

h
,

if the respective limits exist.

Definition. Suppose that the function f has a finite derivative at a point a ∈ R. The line

Ta =
{

[x, y] ∈ R2; y = f(a) + f ′(a)(x− a)
}
.

is called the tangent to the graph of f at the point [a, f(a)].

Theorem 38. Suppose that the function f has a finite derivative at a point a ∈ R. Then f is continuous at a.

Theorem 39 (arithmetics of derivatives). Suppose that the functions f and g have finite derivatives at a ∈ R and let α ∈ R.
Then

(i) (f + g)′(a) = f ′(a) + g′(a),

(ii) (αf)′(a) = α · f ′(a),

(iii) (fg)′(a) = f ′(a)g(a) + f(a)g′(a),

(iv) if g(a) 6= 0, then (
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Theorem 40 (derivative of a compound function). Suppose that the function f has a finite derivative at y0 ∈ R, the function g
has a finite derivative at x0 ∈ R, and y0 = g(x0). Then

(f ◦ g)′(x0) = f ′(y0) · g′(x0).
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Theorem 41 (derivative of an inverse function). Let f be a function continuous and strictly monotone on an interval (a, b) and
suppose that it has a finite and non-zero derivative f ′(x0) at x0 ∈ (a, b). Then the function f−1 has a derivative at y0 = f(x0)
and

(f−1)′(y0) =
1

f ′(x0)
=

1

f ′(f−1(y0))
.

Derivatives of elementary functions

• (const.)′ = 0,

• (xn)′ = nxn−1, x ∈ R, n ∈ N; x ∈ R \ {0}, n ∈ Z, n < 0,

• (log x)′ = 1
x for x ∈ (0,+∞),

• (expx)′ = expx for x ∈ R,

• (xa)′ = axa−1 for x ∈ (0,+∞), a ∈ R,

• (ax)′ = ax log a for x ∈ R, a ∈ R, a > 0,

• (sinx)′ = cosx for x ∈ R,

• (cosx)′ = − sinx for x ∈ R,

• (tg x)′ = 1
cos2 x for x ∈ Dtg,

• (cotg x)′ = − 1
sin2 x

for x ∈ Dcotg,

• (arcsinx)′ = 1√
1−x2

for x ∈ (−1, 1),

• (arccosx)′ = − 1√
1−x2

for x ∈ (−1, 1),

• (arctg x)′ = 1
1+x2 for x ∈ R,

• (arccotg x)′ = − 1
1+x2 for x ∈ R.

Theorem 42 (necessary condition for a local extremum). Suppose that a function f has a local extremum at x0 ∈ R. If f ′(x0)
exists, then f ′(x0) = 0.

IV.6. Deeper theorems on derivatives
Theorem 43 (Rolle). Suppose that a, b ∈ R, a < b, and a function f has the following properties:

(i) it is continuous on the interval [a, b],

(ii) it has a derivative (finite or infinite) at every point of the open interval (a, b),

(iii) f(a) = f(b).

Then there exists ξ ∈ (a, b) satisfying f ′(ξ) = 0.

Theorem 44 (Lagrange, mean value theorem). Suppose that a, b ∈ R, a < b, a function f is continuous on an interval [a, b] and
has a derivative (finite or infinite) at every point of the interval (a, b). Then there is ξ ∈ (a, b) satisfying

f ′(ξ) =
f(b)− f(a)

b− a
.

Theorem 45 (sign of the derivative and monotonicity). Let J ⊂ R be a non-degenerate interval. Suppose that a function f is
continuous on J and it has a derivative at every inner point of J (the set of all inner points of J is denoted by Int J).

(i) If f ′(x) > 0 for all x ∈ Int J , then f is increasing on J .

(ii) If f ′(x) < 0 for all x ∈ Int J , then f is decreasing on J .

(iii) If f ′(x) ≥ 0 for all x ∈ Int J , then f in non-decreasing on J .

(iv) If f ′(x) ≤ 0 for all x ∈ Int J , then f is non-increasing on J .
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Theorem 46 (computation of a one-sided derivative). Suppose that a function f is continuous from the right at a ∈ R and the
limit lim

x→a+
f ′(x) exists. Then the derivative f ′+(a) exists and

f ′+(a) = lim
x→a+

f ′(x).

Theorem 47 (l’Hospital’s rule). Suppose that functions f and g have finite derivatives on some punctured neighbourhood of
a ∈ R∗ and the limit lim

x→a
f ′(x)
g′(x) exist. Suppose further that one of the following conditions hold:

(i) lim
x→a

f(x) = lim
x→a

g(x) = 0,

(ii) lim
x→a
|g(x)| = +∞.

Then the limit lim
x→a

f(x)
g(x) exists and

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
.

IV.7. Convex and concave functions

Definition. We say that a function f is

• convex on an interval I if
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2),

for each x1, x2 ∈ I and each λ ∈ [0, 1];

• concave on an interval I if
f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2),

for each x1, x2 ∈ I and each λ ∈ [0, 1];

• strictly convex on an interval I if

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2),

for each x1, x2 ∈ I , x1 6= x2 and each λ ∈ (0, 1);

• strictly concave on an interval I if

f(λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2).

for each x1, x2 ∈ I , x1 6= x2 and each λ ∈ (0, 1).

Lemma 48. A function f is convex on an interval I if and only if

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2

for each three points x1, x2, x3 ∈ I , x1 < x2 < x3.

Definition. Suppose that a function f has a finite derivative on some neighbourhood of a ∈ R. The second derivative of f at a
is defined by

f ′′(a) = lim
h→0

f ′(a+ h)− f ′(a)

h

if the limit exists.
Let n ∈ N and suppose that f has a finite nth derivative (denoted by f (n)) on some neighbourhood of a ∈ R. Then the

(n+ 1)th derivative of f at a is defined by

f (n+1)(a) = lim
h→0

f (n)(a+ h)− f (n)(a)

h

if the limit exists.

Theorem 49 (second derivative and convexity). Let a, b ∈ R∗, a < b, and suppose that a function f has a finite second derivative
on the interval (a, b).

(i) If f ′′(x) > 0 for each x ∈ (a, b), then f is strictly convex on (a, b).
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(ii) If f ′′(x) < 0 for each x ∈ (a, b), then f is strictly concave on (a, b).

(iii) If f ′′(x) ≥ 0 for each x ∈ (a, b), then f is convex on (a, b).

(iv) If f ′′(x) ≤ 0 for each x ∈ (a, b), then f is concave on (a, b).

Definition. Suppose that a function f has a finite derivative at a ∈ R and let Ta denote the tangent to the graph of f at [a, f(a)].
We say that the point [x, f(x)] lies below the tangent Ta if

f(x) < f(a) + f ′(a) · (x− a).

We say that the point [x, f(x)] lies above the tangent Ta if the opposite inequality holds.

Definition. Suppose that a function f has a finite derivative at a ∈ R and let Ta denote the tangent to the graph of f at [a, f(a)].
We say that a is an inflection point of f if there is ∆ > 0 such that

(i) ∀x ∈ (a−∆, a) : [x, f(x)] lies below the tangent Ta,

(ii) ∀x ∈ (a, a+ ∆): [x, f(x)] lies above the tangent Ta,

or

(i) ∀x ∈ (a−∆, a) : [x, f(x)] lies above the tangent Ta,

(ii) ∀x ∈ (a, a+ ∆): [x, f(x)] lies below the tangent Ta.

Theorem 50 (necessary condition for inflection). Let a ∈ R be an inflection point of a function f . Then f ′′(a) either does not
exist or equals zero.

Theorem 51 (sufficient condition for inflection). Suppose that a function f has a continuous first derivative on an interval (a, b)
and z ∈ (a, b). Suppose further that

• ∀x ∈ (a, z) : f ′′(x) > 0,

• ∀x ∈ (z, b) : f ′′(x) < 0.

Then z is an inflection point of f .

IV.8. Investigation of functions
Definition. The line which is a graph of an affine function x 7→ kx + q, k, q ∈ R, is called an asymptote of the function f at
+∞ (resp. v −∞) if

lim
x→+∞

(f(x)− kx− q) = 0, (resp. lim
x→−∞

(f(x)− kx− q) = 0).

Proposition 52. A function f has an asymptote at +∞ given by the affine function x 7→ kx+ q if and only if

lim
x→+∞

f(x)

x
= k ∈ R and lim

x→+∞
(f(x)− kx) = q ∈ R.

Investigation of a function

1. Determine the domain and discuss the continuity of the function.

2. Find out symmetries: oddness, evenness, periodicity.

3. Find the limits at the “endpoints of the domain”.

4. Investigate the first derivative, find the intervals of monotonicity and local and global extrema. Determine the range.

5. Find the second derivative and determine the intervals where the function is concave or convex. Find the inflection points.

6. Find the asymptotes of the function.

7. Draw the graph of the function.
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