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This contribution presents and explores methods of construction and esti-
mation of models based on mixtures of hazard rates, and tries to demonstrate
their usefulness and applicability.
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Mixture of distributions (densities, distr. functions) – a standard
tool of modeling:

f(x) = p1 · f1(x) + p2 · f2(x). (1)

Interpretation:

with probability p1 an item belongs to first group having density f1, with
p2 to the second group (compare with cluster analysis).

It is also the way how data representing mixture (1) could be generated.

- - - - -

Probability densities are used also as components for construction of regres-
sion models, in the same way as regression splines.

For instance a linear combination (now it need not be convex) of gaus-
sians (in this context called also ”radial basis functions”) is used to
create a curve or surface.
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Example 1 – distribution of unemployment duration:

Figure 1: Example of mixture of 2 densities representing ”movers”, f1, and
”stayers”, f2, resulting f = (f1 + f2)/2 (thick curve).

f1 is of Weibull distribution with α1 = 50, β1 = 1.5,

f2 ∼ Weibull with α2 = 150, β2 = 3
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Figure 2: Example 2: Hazard rate of ”bath-tube” shape.

Mixture of decreasing h.r., Weibull with α1 = 1, β1 = 0.5, constant h.r.,
i.e. of exponential distribution, α2 = 30, β2 = 1, and increasing h.r. of
Weibull with α3 = 150, β3 = 5.

h = p1 h1 + p2 h2 + p3 h3 with p1 = 0.2, p2 = 0.5, p3 = 0.3.
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A special property of Weibull distribution:

When its hazard rate is multiplied by a constant c > 0, we obtain the
hazard rate of another Weibull distribution.

Weibull cumulated (integrated) hazard rate is

H(x) = a xβ or H(x) =

(
x

α

)β
.

Hence

cH(x) = c a xβ = a∗ xβ or H(x) =

(
x

α∗

)β
, α∗ = α/c1/β.

Any mixture of Weibull h. rates is equivalent to simple sum of other Weibull
h. rates, parameters of would-be combination are not identifiable.

For instance, in Figure 2, the model is equivalent to

h = h∗1 + h∗2 + h∗3, with α∗
1 = 25, α∗

2 = 60, α∗
3 = 190.8, β-s the same.
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Other distribution types have not such property, hence it has a sense to
consider a model - linear combination of hazard rates.

Interpretation?

– sum of hazard rates h =
∑
hj corresponds to the hazard rate of a serial

system composed from independent items with hj,

survival time of the system then to minimum of survival times of com-
ponents, S =

∏
Sj.

Multiplication h∗ = c · h corresponds to proportional change of hazard rate
(it is actually the first step to ’proportional hazard regression model’ or
to frailty models), then S∗ = (S)c.
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Each approach to mixtures has its specific tools and methods,

often based on iterative optimization of certain criterion, e.g. the ML,
Bayes (connected with MCMC),

or on some other distance (KS, CvM, AD, ...).

One traditional method of Weibull distribution fitting uses the (weighted)
least squares:

Let CHR be H(t) = a ·tβ, data Ti, i = 1, ..., N,, estimated C.H.R. Ĥ(Ti).
Then

ln Ĥ(Ti) ∼ ln(a) + β · ln(Ti).

Or, in case of additive hazard rate composed from two Weibull hazard
rates, we can use that

Ĥ(Ti) ∼ a1 T
β1
i + a2 T

β2
i , (2)

linear at least w.r. to aj-s.
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Artificial data example

Data Xi, i = 1, .., N, N = 500, were generated from the ”bath-tube” model
from above.

Hence, it was expected that its h.r. is given by the sum of two Weibull and
one exponential components.

MLE:

– It is possible, for given parameters, to evaluate both the log-likelihood
and its derivatives,

– while values maximizing the log-likelihood were found by a random
search (more effective than an iterative way to solution).

α1 α2 α3 β1 β3
MLE 18.0308 78.1834 197.4708 0.5047 3.6122
90% 10.8970 42.4971 148.4805 0.4549 2.2910

CI 25.1646 113.8697 246.4611 0.5545 4.9334

Table 1: ML Estimates
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Figure 3: Stepwise: empirical cumulated h.r. and survival function, dotted are
kernel-smoothed estimates, dashed curves are based on the MLE.
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Real data example

The data are taken from Ruhi, S. (2015), Application of mixture models
for analyzing reliability data: A case study.

They concern to damage of windshield of aircrafts, time is in 1000 hours.

153 observations: 88 times to failure, 65 are randomly right censored.

Hence the P.L.E. (Product Limit Estimator) of Kaplan and Meier will be
used as nonparametric estimator of survival function,

cumulated hazard rate will be estimated by the Nelson-Aalen estimator
(N.A.E.).
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Figure 4: The N.A.E. with 95% CI-s, smoothed estimate of h.r., then the P.L.E.
with 95% CI-s, smoothed estimate of density, data of Ruhi (2015).
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Figure 5: The P.L.E. from data and survival functions (dashed) of several
parametric distributions with parameters obtained by the MLE. None of them
covers the data sufficiently.

12



Ruhi (2015) and others tried to model the data by mixture of two distribu-
tion densities.

Success was checked by several criteria, e.g. likelihood or Kolmogorov-
Smirnov distance of model survival function from nonparametric P.L.E.

His best KS result was 0.0374 obtained by mixture of Weibull and Nor-
mal distributions.

I used sum of two Weibull hazard rates.

Again, MLE was used, the best solution approached by a random search.

α1 α2 β1 β3
MLE 5.5984 4.0581 1.7433 3.4518
90% 3.3633 2.2963 1.1495 2.6683

CI 7.8335 5.8199 2.3371 4.2353

Table 2: ML Estimates, KS distance = 0.0795.
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Figure 6: C.H.R. above, with stepwise N.A.E., survival functions are below,
with stepwise P.L.E. Dashed curves correspond to mixed hazard rates model
obtained by the MLE.

Figure 6 shows that the fit should be improved:

Other distributions? more components?
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Change-point models for hazard rates

Change point detection - standard statistical techniques,

there are results dealing with changes of hazard rates, too.

Simplest approach: detecting when the residuals (i.e. reasonably defined
deviation of data from actual model) are crossing a given border,

(e.g. statistical process control).

The problem could be viewed also as an incremental construction of a signal
model.
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”Two change-points incremental” model for Ruhi data:

1-st Weibull hazard rate starting from t = 0, two Weibull hazard rates added
at two times of change, Tchj.

Then h(t) = h1(t) + h2(t− Tch1) · I[t > Tch1] + h3(t− Tch2) · I[t > Tch2]

notation Hj(t) = aj · tβj was used.

Parameters βj, j = 1, 2, 3 and change points were proposed randomly, pa-
rameters aj were obtained by the least squares method weighted by
asymptotic variance of the N.A.E. Ĥ (see relation (2) from Introduc-
tion).

Param.: a1 a2 a3 β1 β2 β3 Tch1 Tch2
Estim.: 0.0400 0.1825 1.4095 2.0210 1.2731 1.4176 1.3941 4.0767

Table 3: Estimates of incremental model parameters and 2 change-points, KS
distance =0.0310, re-computed α-s: 4.9145, 3.8047, 0.7849, from the relation
α = 1/a1/β.
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Figure 7: C.H.R. above, with stepwise N.A.E., survival functions are below,
with stepwise P.L.E. Dashed curves correspond to change-point model.

No confidence intervals were computed. A variant – random search with
the MCMC and Bayes framework, yielding Bayes credibility intervals.
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Other attempts

The problem of construction of hazard rate from sum of components can
be also interpreted as the problem of a regression model fitting the non-
parametric (Nelson–Aalen) estimate of C.H.R.

To keep some interpretation, the model should be constructed from a small
set of given parametric function.

A natural choice could be a polynomial model (without intercept),

again, it corresponds to a sum of Weibull cumulated hazard rates.

Ĥ(Ti) ∼
K∑
j=1

aj · T ji .
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The best polynomial model fitted to Ruhi data,

using weighted least squares.

Regression diagnostics led to full model with K = 5:

Estimated parameters aj and 95% CI

a1 = 0.1299 (0.0264, 0.2334)

a2 = −0.3212 (−0.4811, −0.1613)

a3 = 0.2988 (0.2115, 0.3862)

a4 = −0.0863 (−0.1063, −0.0663)

a5 = 0.0087 (0.0071, 0.0103)

Residual variance = 0.0021, BIC = -5.7892, min KS dist. = 0.0381.
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Figure 8: The N.A.E.,P.L.E. (dots) and the best polynomial fit.
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Examle – ”Strike Data”

In 1967, a strike at a Quebec aluminium smelter resulted in the uncon-
trolled shutdown of electrolytic cells. The company claimed that the
shutdown caused the shorter operating lives of cells operating at the
time. The case led to a legal action and initialized a need of a deep sta-
tistical analysis of the data, in order to confirm expected higher failure
rate after the intervention (shutdown) and to estimate statistically the
losses caused by this (eventual) higher rate.

The more details about the case, as well as the complete data were
published in “Case Studies in Data Analysis” (CS, 1982), a section of
Canadian Journal of Statistics, V. 10 (1982).

Together 572 cell, of 34 types, some passed this shut-down, some not.
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Choice of the model for the hazard rate of failure of i-th cell

( reference time t is the age of cell, in days)

hi(t) = h0(t) · exp {b(t− Ui) · 1[t > Ui] + c(xi)} , t ∈ [0, Ti],

where Ti is the survival time of i-th cell,

Ui is the age of i-th cell at the moment of intervention,

function b describes the intervention influence, b(s) = 0 for s < 0.

xi is the type of cell i, from 1 to 34.

Cox model with a non-parametric regression function b(s).
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Results: The progress of iteration was controlled and its convergence
observed from the changes of estimated parameters c(m). Originally,
function b(s) was estimated at equidistant points, at each 10 (days).
The full domain of s was from 0 to 1 837, so that we obtained 183 val-
ues. Then the estimate was secondary smoothed, i.e. the values were
averaged (in a weighted way) in a moving window. The graphs of esti-
mated functions b and c are displayed in Figures 1a, 1b.

After we decided to stop the iterations (when changes of values of c(m)
were less than 0.1%), we computed the estimate of cumulative baseline
hazard function H0(t). From it, by a kernel smoothing of its increments,
we obtained a graph of estimate of h0(t) in Figure 1c.

Estimated number of lost days - its expectation was about 64 000 days,
more details of its distribution can be obtained by random generation
from the model, keeping function b ≡ 0.
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Figure 1: Estimates of functions b(s), c(m) and baseline hazard rate h0(t) smoothed from
estimated H0(t).
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Testing the goodness–of–fit
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Figure 2: Graphical goodness-of-fit tests. Plots of ÂS(Tk) for: a) thick - cell types 21− 30,
thin - types 1 − 4; b) thin - types 11 − 20, thick - types 31 − 34; c) thick - cells without
intervention, thin - cells which passed intervention
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Figure 2a shows the plots for cell types 1–4 (121 cells, high survival,
mostly without intervention) and cell types 21–30 (104 cells, lower sur-
vival, mostly with intervention). Then, in Figure 2b there are the plots
for cells of types 11–20 (121 cells with rather high survival, in spite of the
intervention) and cells 31–34 (73 experimental cells with low survival,
without intervention). It is possible to say that the model fits well for
all types of cells.
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Figure 2c compares cells which passed or not the intervention. There was
a high positive correlation between the survival of a cell and the event
that this cell passed the intervention. In other words, the cells which
had higher survival (caused only by a random fluctuations) were more
likely to survive to (and to pass) the moment of intervention. We tested
this connection with the help of 2× 2 contingency table (Table 1), with
resulting chi-squared test highly significant (i. e. rejecting the hypothesis
of independence).

T ≤ 1 300 T > 1 300 Totals

Int. 114 235 349

No int. 184 39 223

Totals 298 274 572

TABLE 1. Resulting value of test statistics χ2
(1) is 135.46.
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Conclusion?

The case studied here was simplified just to sums of Weibull hazard
rates. A next problem to explore is to use mixtures (of hazard rates) of
other distributions and to study whether it is possible to estimate both
parameters of distributions and coefficients of mixture and whether this
task is unambiguous....
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