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Motivation

one criterion (expected wealth maximization) is not
enough
we do care about risk of the decision (investment)
we want our decision to be better than some given
decision (benchmark)
the outcomes of decisions are random - how to compare
random variables?

expected values - too weak
several characteristics - better, but still too weak
all realizations - too strong
compromise - STOCHASTIC DOMINANCE (SD)
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Basic definitions

Let:
FX (x) be CDF of random variable X.
F (2)

X (y) =
∫ y
−∞ FX (x)dx

F (3)
X (t) =

∫ t
−∞ F (2)

X (y)dx

Definition

Random variable X dominates random variable Y with respect
to:

FIRST ORDER SD if FX (x) ≤ FY (x) for all x ∈ R and
∃x0 ∈ R: FX (x0) < FY (x0)

SECOND ORDER SD if F (2)
X (y) ≤ F (2)

Y (y) for all y ∈ R
and ∃y0 ∈ R: F (2)

X (y0) < F (2)
Y (y0)

THIRD ORDER SD if EX ≥ EY and F (3)
X (t) ≤ F (3)

Y (t)

for all t ∈ R and ∃t0 ∈ R: F (3)
X (t0) < F (3)

Y (t0).
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Summary

Optimization method for building portfolios that dominate
a benchmark by the third order stochastic dominance
(TSD).
Relies on the properties of semivariance, ‘super-convex’
dominance and QCP.
Applied to stock market data using an industry
momentum strategy.
Important performance improvements compared with MV
dominance and SSD.
Average out-of-sample outperformance ≈ 7% p.a. with
less downside risk, quarterly rebalancing and no short
selling.



Portfolio
optimization

with
Stochastic
Dominance
constraints

Thierry Post
and

Miloš Kopa,
Charles

University,
Faculty of

Mathematics
and Physics
Sokolovská
83, 186 75
Praha 8

Stochastic
Dominance

SD Portfolio
analysis

TSD
optimization

Industry
momentum
strategy

Conclusions

Contents

1 Stochastic Dominance

2 SD Portfolio analysis

3 TSD optimization

4 Industry momentum strategy

5 Conclusions



Portfolio
optimization

with
Stochastic
Dominance
constraints

Thierry Post
and

Miloš Kopa,
Charles

University,
Faculty of

Mathematics
and Physics
Sokolovská
83, 186 75
Praha 8

Stochastic
Dominance

SD Portfolio
analysis

TSD
optimization

Industry
momentum
strategy

Conclusions

Stochastic Dominance

Model-free decision rules for DMuR
Based on general regularity conditions about risk
preferences
Related to majorization in mathematical order theory
Under Gaussianity, similar to M-V analysis
Applies more generally for any probability distribution
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Genealogy

Crit. Reference Distr Utility Risk
MV Mark52 JF Normal x + bx2 E[(x − µ)2]

FSD QuiSap62 RES Any u′ ≥ 0 P[x ≤ z ]

SSD
HadRus69 AER

Any u′′ ≤ 0 E[(z − x)I(x ≤ z)]HanLev69 RES
RusSeo70 JET

TSD
Whit70 AER

Any u′′′ ≥ 0 E[(z − x)2I(x ≤ z)]
Mark59 Ch.IX
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Numerical example

τ = 1 τ = 2 τ = 3 µ σ sk
ν1 0.90 1.10 1.30 1.10 0.16 0.00
ν2 0.97 1.10 1.41 1.16 0.18 1.11
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Numerical example

τ = 1 τ = 2 τ = 3 µ σ sk
ν1 0.90 1.10 1.30 1.10 0.16 0.00
ν2 0.97 1.04 1.41 1.14 0.19 1.56
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Numerical example

τ = 1 τ = 2 τ = 3 µ σ sk
ν1 0.90 1.10 1.30 1.10 0.16 0.00
ν2 0.97 1.00 1.40 1.12 0.20 1.70
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FSD portfolio analysis

Kuosmanen (2001, 2004) formulates FSD optimization as
a large MILP problem
Subsequent OR studies by Ruszczynski c.s. analyze various
algorithms and approximations
The combinatorial optimization problem is
computationally expensive
Solved for numerical examples and choice experiments but
not for realistic data dimensions
Presumably, FSD is also too weak to detect many risk
arbitrage opportunties
Kopa and Post (2009) distinguish between admissibility
and optimality
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First order stochastic dominance (FSD) - notation

r... random vector of assets’ returns
λ... portfolio weights
r′λ... random return of portfolio λ
Fr′λ(x)... cumulative probability distribution function of returns
of portfolio λ.

Definition

Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the first-order
stochastic dominance (r′λ �FSD r′τ ) if

Fr′λ(x) ≤ Fr′τ (x) ∀x ∈ R.
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First order stochastic dominance (FSD) -
interpretation

Other equivalent definitions: r′λ �FSD r′τ if
Eu(r′λ) ≥ Eu(r′τ ) for all utility functions.
No non-satiable decision maker prefers portfolio τ to
portfolio λ.
F−1

r′λ(y) ≥ F−1
r′τ (y) ∀y ∈ [0, 1].

VaRα(−r′λ) ≤ VaRα(−r′τ ) ∀α ∈ [0, 1].
In general, FSD relation is expressed by infinitely many
inequalities. However, under assumption of equiprobable
scenarios, the number of inequalities is equal to the number of
scenarios. FSD can be verified even easier for some other
distributions. (normal, uniform, log-normal, exponential...)
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First order stochastic dominance (FSD) - discrete
distribution

Let X be a matrix of scenarios of asset returns. Then Xλ
are returns of portfolio λ and Xτ of portfolio τ

Let a1 ≤ a2 ≤ ... ≤ aN be the returns of portfolio λ and
b1 ≤ b2 ≤ ... ≤ bN be the returns of portfolio τ . Then
r′λ �FSD r′τ iff ai ≥ bi , i = 1, ...,N.
equivalently Xλ ≥ PXτ for at least one permutation
matrix P , that is, binary matrix with all row sums and all
column sums equal 1, under assumption of equiprobable
scenarios.
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First order stochastic dominance (FSD) -
continuous distributions

Assume that returns of portfolio λ, τ have a gaussian
(normal) distribution N(µλ, σλ), N(µτ , στ ), respecively.
Then r′λ �FSD r′τ iff µλ ≥ µτ and σλ = στ

Assume that returns of portfolio λ, τ have a uniform
distribution on interval 〈aλ, bλ〉, 〈aτ , bτ 〉, respectively.
Then r′λ �FSD r′τ iff aλ ≥ aτ and bλ ≥ bτ .
Assume that returns of portfolio λ, τ have an exponential
distribution with mean value mλ, mτ , respectively. Then
r′λ �FSD r′τ iff mλ ≥ mτ .



Portfolio
optimization

with
Stochastic
Dominance
constraints

Thierry Post
and

Miloš Kopa,
Charles

University,
Faculty of

Mathematics
and Physics
Sokolovská
83, 186 75
Praha 8

Stochastic
Dominance

SD Portfolio
analysis

TSD
optimization

Industry
momentum
strategy

Conclusions

SSD portfolio analysis

Kuosmanen (2001, 2004) and Dencheva and Ruszczynski
(2003, 2004) formulate SSD optimization as a large LP
problem
Subsequent OR studies analyze various generalizations,
problem reductions and algorithms; Fabian, Mitra, Roman
and Zverovich (2011), Roman, Mitra, Zverovich (2013),....
The LP problem is nowadays easy to solve for realistic
data dimensions
A recent application is Hodder, Jackwerth and Kolokolova
(2015)
SSD optimization seems superior to FSD optimization and
MV optimization
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Second order stochastic dominance – definitions

Let Fr′λ(x) denote the cumulative probability distribution
function of returns of portfolio λ. The twice cumulative
probability distribution function of returns of portfolio λ is
defined as

F (2)
r′λ(y) =

∫ y

−∞
Fr′λ(x)dx . (1)

Definition

Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the second-order
stochastic dominance (r′λ �SSD r′τ ) if and only if

F (2)
r′λ(y) ≤ F (2)

r′τ (y) ∀y ∈ R.
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Second order stochastic dominance – interpretation

Other equivalent definitions of SSD relation: r′λ �SSD r′τ if
Eu(r′λ) ≥ Eu(r′τ ) for all concave utility functions.
No non-satiable and risk averse decision maker prefers
portfolio τ to portfolio λ.
F−2

r′λ(y) ≤ F−2
r′τ (y) ∀y ∈ [0, 1], where F−2

r′λ is a cumulated
quantile function.
CVaRα(−r′λ) ≤ CVaRα(−r′τ ) ∀α ∈ [0, 1], where

CVaRα(−r′λ) = min
v∈R,zt∈R+

v +
1

(1− α)T

T∑
t=1

zt

s.t. zt ≥ −xtλ− v , t = 1, 2, ...,T

In general, also SSD relation is expressed by infinitely many
inequalities. However, again, one can simplify it for particular
distributions (discrete, normal, uniform, exponential,
log-normal,...)
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Second order stochastic dominance (SSD) - discrete
distribution

Let X be a matrix of scenarios of asset returns. Then Xλ
are returns of portfolio λ and Xτ of portfolio τ

Let a1 ≤ a2 ≤ ... ≤ aN be the returns of portfolio λ and
b1 ≤ b2 ≤ ... ≤ bN be the returns of portfolio τ . Then
r′λ �SSD r′τ iff

∑i
j=1aj ≥

∑i
j=1bj , i = 1, ...,N.

equivalently Xλ ≥WXτ for at least one double
stochastic matrix W , that is, non-negative matrix with all
row sums and all column sums equal 1, under assumption
of equiprobable scenarios.
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Second order stochastic dominance (SSD) -
continuous distributions

Assume that returns of portfolio λ, τ have a gaussian
(normal) distribution N(µλ, σλ), N(µτ , στ ), respecively.
Then r′λ �SSD r′τ iff µλ ≥ µτ and σλ ≤ στ

Assume that returns of portfolio λ, τ have a uniform
distribution on interval 〈aλ, bλ〉, 〈aτ , bτ 〉, respectively.
Then r′λ �SSD r′τ iff aλ ≥ aτ and aλ − aτ ≥ −bλ + bτ .
Assume that returns of portfolio λ, τ have an exponential
distribution with mean value mλ, mτ , respectively. Then
r′λ �SSD r′τ iff mλ ≥ mτ .
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TSD portfolio analysis

1970s literature on algorithms for pairwise analysis
Bawa c.s. (1985) develop an LP problem for comparison
with a discrete choice set
Gotoh and Konno (2000) develop a mean-risk model
Post and Versijp (2007) develop a GMM test to detect
incremental improvement possibilities
Armbruster and Delage (2015) develop an XXL LP
problem to approximate TSD optimization
A tractable approach for realistic data dimensions and
applications do not exist
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Problem definition

Let S2
λ(z) := E[(z − xTλ)2I(xTλ ≤ z)] for portfolio

λ ∈ Λ and threshold z ∈ [a, b]

Definition 2.2: Portfolio λ ∈ Λ dominates the benchmark
τ ∈ Λ by third-degree stochastic dominance (TSD), or
λ �TSD τ , if

S2
λ(z) ≤ S2

τ (z), ∀z ∈ [a, b]; (2)

E[xTλ] ≥ E[xTτ ].

Analytical challenges:

Infinitely many threshold levels z ∈ [a, b] - unlike in SSD
Truncation at the threshold requires binary 0-1 variables
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Our solution in 5 steps

1 Discrete state-dependent distribution
2 ’Super-convexity’ conditions
3 Quadratic problem for S2

λ(z) given λ and z
4 One large convex QCP problem
5 Problem reduction by fixing the values of most 0-1

variables
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Step 1: Discrete distribution

To obtain a tractable problem of finite dimensions, we
assume a discrete state-dependent distribution
Scenarios with realizations X t := (X1,t · · ·XK ,t)T and
probabilities pt : =P[x = X t ], t = 1, · · · ,T
Probs can be estimated using historical freqs, GMM/GEL
implies probs or Bayes posterior probs
Flexibility to include realistic multivariate scenarios of
market sell-offs and momentum crashes
Continuous distributions can be approximated using a
finite number of random draws (MC sim)
SV becomes a non-decreasing, convex, piece-wise
quadratic function:
S2

λ(x):=
∑T

t=1 pt(x − XT
t λ)2I(XT

t λ ≤ x)
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Step 2: Super-convexity

BBRS (1985): ’super-convex’ TSD if the SV restrictions
hold with sufficient slack at grid points:
(1 + ε)S2

λ(zs) ≤ S2
τ (zs), s = 1, · · · ,T , with ε > 0 such

that (1 + ε)S2
τ (zs) ≥ S2

τ (zs+1), s = 1, ...,T − 1,.
We refine this condition to
(1 + εs)S2

λ(zs) ≤ S2
τ (zs), s = 1, · · · , S , with

εs = f (S2
τ (zs−1),S2

τ (zs), Eτ (zs−1))

This amounts to using a piece-wise linear convex lower
envelope for the SV function
The approximation achieves machine precision for
relatively rough partitions
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Step 2: Super-convexity - simple example

s = 1 s = 2 s = 3 µ σ sk
P [s] 1

3
1
3

1
3

Y 0.90 1.10 1.30 1.10 0.16 0.00
Z 0.97 1.00 1.40 1.12 0.20 1.70

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 

S_Y 

Approx_Y 

S_Z 
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Step 2: Formalization

Definition: Portfolio λ ∈ Λ dominates the benchmark
τ ∈ Λ by super-convex third-degree stochastic dominance
(SCTSD), or λ �SCTSD τ , if

S2
λ(y s) ≤ S

2
τ (y s)

(1 + εs)
, s = 1, · · · ,T ;

T∑
t=1

ptXT
t λ ≥

T∑
t=1

pty t .

Proposition:If portfolio λ ∈ Λ dominates portfolio τ ∈ Λ
by SCTSD, then λ also dominates τ by TSD:
(λ �SCTSD τ )⇒ (λ �TSD τ ) .
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Step 3: Quadratic form SV

Rockafellar and Uryasev (2000) derive an LP problem for
expected shortfall of a given portfolio and threshold
Similarly, we can formulate the restriction
(1 + εs)S2

λ(ys) ≤ S2
τ (ys), for given λ ∈ Λ and

s = 1, · · · ,T , by the following convex quadratic system:

(1 + εs)
T∑

t=1

ptθ
2
t ≤ S2

τ (ys); (3)

θt ≥ ys − XT
t λ, t = 1, · · · ,T ; (4)

θt ≥ 0, t = 1, · · · ,T . (5)

This formulation avoids binary variables and is linear in λ
which appears as the RHS of linear constraints
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Step 4: QCP problem

We apply the system for every ys , s = 1, · · · ,T , and
endogenize the portfolio weights:

(1 + εs)
T∑

t=1

ptθ
2
s,t ≤ S2

τ (ys), s = 1, · · · ,T ; (6)

−θs,t − XT
t λ ≤ −ys , s, t = 1, · · · ,T ;

−
T∑

t=1

ptXT
t λ ≤ −

T∑
t=1

ptyt ;

1T
Kλ = 1;

θs,t ≥ 0, s, t = 1, · · · ,T ;

λk ≥ 0, k = 1, · · · ,K .

Maximizing g(λ) := E[xTλ]−
∑T

s=1 wsS2
λ(ys), ws ≥ 0,

s = 1, · · · ,T , s.t. this system is a QCP problem
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Step 5: Problem reduction

In MV analysis, #var and #constr are O(K ); in our case,
O(T 2)

The large size stems from relaxation of all binary vars
I(XT

t λ ≤ y s), t = 1, · · · ,T ; s = 1, · · · ,T
A preliminary analysis can determine the value of most
binary vars I(XT

t λ ≤ y s), t = 1, · · · ,T ; s = 1, · · · ,T
Our optimal portfolio must be an element the polytope
Ω :=

{
λ∈Λ :

(∑T
t=1 ptXT

t λ
)
≥
(∑T

t=1 pty t

)
; XT

1 λ ≥ y1

}
For every scenario s = 1, · · · ,T , , we compute the min
and max return for portfolios λ ∈ Ω

This allows us to fix most binary vars and eliminate the
corresponding vars and constrs
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Step 5: Problem size

In our application (K = 49,T > 250), the original problem
has >62,500 vars and >62,500 constrs
The reduced problem typically has <15,625 vars and
<15,625 constrs
We solved it on a desktop PC (Intel i7; 2.93 GHz; 16GB)
with the IPOPT 3.12.3 solver in GAMS
The median run time (using the reduction) was about two
minutes
Further reductions obtained through lessening the partition
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Step 5: Problem size

Relative Computer
error time(s)

S=1000 0% 475
S=800 0.001% 420
S=600 0.002% 280
S=400 0.004% 182
S=200 0.020% 102
S=100 0.080% 63
S=50 0.323% 28
S=25 1.165% 14
SSD 3.140% 85

Table: Numerical results using GAMS software with solver IPOPT
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Motivation

Stock price momentum was documented first by
Jegadeesh and Titman (1993)
It appears also for industries; Moskowitz and Grinblatt
(1999)
Typical momentum strategies rely on heuristics such as
buy D10 and sell D01
It seems interesting to use decision theory and
optimization to improve on such heuristics
Hodder, Jackwerth and Kolokolova (2015) use SSD
enhancement
Concentration in winner industries creates positive
skewness
To exploit skew, we apply TSD enhancement
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Data

Benchmark = CRSP all-share index
Base assets = 49 vw industry portfolios from Ken French’
library
No concentration in individual stocks & no short positions
Daily excess returns 1927-2014
Same data as Hodder, Jackwerth and Kolokolova (2015)
Other data sets are work in progress (IND10, 5MEx5BtM)
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Enhanced portfolios

We compare 4 alternative enhanced portfolios:

Top-15 = EWA of 15 recent winner industries
3 optimized portfolios maximize the mean s.t. benchmark
risk restrictions:

1 MV (variance)
2 SSD (expected shortfall)
3 SCTSD (semi-variance)

Formation period = a 12-month trailing window of daily
returns (T > 250)
Portfolios are held for 3 months and then rebalanced (Jan
- Apr - Jul - Oct)
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Performance Evaluation

We illustrate the features of the method using in-sample
performance
Out-of-sample performance is evaluated on an annual
basis (N = 87 Jan - Dec returns)
We focus on the raw outperformance (X − XBench) of
annual returns
We do not report alphas of factor models:

The market betas of the portfolios are smaller than 1
The SMB and HML loadings are limited (dynamic &
diversified)
Even MOM explains only part of the outperformance
(industry-level & no short)
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Performance Evaluation

We decompose the outperformance (XSCTSD − XBench) in
components of

1 (XTop15 − XBench)
2 (XMV − XTop15)
3 (XSSD − XMV )
4 (XSCTSD − XSSD)

We report t-stats for statistical significance
We report also certainty equivalents (using logarithmic
utility function)
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Performance Summary 1/3

In-sample
Daily Remarks

X
(
X̄
)

(sX ) (skX )

XBench − XBond 0.028 0.943 -0.325 Downs correl
XTop15 − XBond 0.091 0.981 -0.434 Excess risk
XMV − XBond 0.128 0.923 -0.253 Max Sharpe
XSSD − XBond 0.131 0.965 -0.019 σ 6=risk

XSCTSD − XBond 0.134 0.984 0.032 Upside pot
XTop15 − XBench 0.063 0.352 -0.059 Form&Hold
XMV − XTop15 0.038 0.553 0.150 Risk constr
XSSD − XMV 0.003 0.213 0.353 Downs risk

XSCTSD − XSSD 0.003 0.080 0.183 Skewness
XSCTSD − XBench 0.106 0.662 0.400 Hindsight
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Performance Summary 2/3

In-sample
Annual Remarks

X X̄ tX CE
XBench − XBond 8.16 3.70 6.19
XTop15 − XBond 29.17 8.41 25.90
XMV − XBond 41.54 15.21 39.51
XSSD − XBond 42.69 15.12 40.50

XSCTSD − XBond 43.73 15.17 41.45
XTop15 − XBench 21.00 10.03 19.70 Form&Hold
XMV − XTop15 12.37 7.13 13.62 Risk constr
XSSD − XMV 1.15 2.22 0.99 Downs risk

XSCTSD − XSSD 1.04 6.40 0.95 Skewness
XSCTSD − XBench 35.56 18.63 35.26 Hindsight
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Performance Summary 3/3

Out-of-sample
Annual Remarks

X X̄ tX CE
XBench − XBond 8.16 3.70 6.19
XTop15 − XBond 12.66 4.84 10.10
XMV − XBond 14.55 6.33 12.62
XSSD − XBond 14.79 6.18 12.71

XSCTSD − XBond 14.98 6.19 12.86
XTop15 − XBench 4.50 4.58 3.91 Form&Hold
XMV − XTop15 1.88 1.65 2.53 Risk constr
XSSD − XMV 0.24 0.42 0.09 Downs risk

XSCTSD − XSSD 0.19 0.88 0.15 Skewness
XSCTSD − XBench 6.81 6.58 6.67 No short, Hold = 3
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Close-up of 2013 in-sample results

We formed 21 benchmark portfolios:
Market portfolio
10 convex combinations of global minimal variance
portfolio and market portfolio
10 convex combinations of global maximal mean portfolio
and market portfolio

We found MV, SSD and TSD solution portfolios for each
benchmark
We present the results in mean-st.dev. figure
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Close-up of 2013 in-sample results
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Conclusions

Our contributions:

1 Refinement of SCTSD
2 QP for SV
3 CQP for SCTSD enhancement
4 Outperformance of Bench, Top15, MV and SSD in

application

Follow-up ideas:

1 Better estimates:

1 Conditioning on business cycle and market conditions
2 GMM/GEL implied probabilities
3 Bayesian posterior distribution

2 More data sets (IND30, 5MEx5BtM)
3 Consider only decreasing absolute risk aversion utility

functions
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DARA SD

Arrow-Pratt coefficient of absolute risk aversion:
r(x) = −u′′(x)

u′(x)

r(x) is typically decreasing (non-increasing)
A recent analysis of DARA SD in Post, Fang, Kopa (2015)
TSD implies DARA SD
DARA SD enhancement - mean maximization over larger
set of portfolios (more portfolios dominates the
benchmark)
DARA SD outperforms TSD mainly for the benchmarks
with relatively low returns
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Close-up of 2013 in-sample results + DARA
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Thank you

Post, T., and Kopa, M.: Portfolio Choice based on
Third-degree Stochastic Dominance. Forthcoming in
Management Science.
http://dx.doi.org/10.1287/mnsc.2016.2506
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