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Nápad pǒrádat konferenci v Pǎŕıži se dustojně řad́ı k nápadu
pǒrádat mistrovstv́ı světa v Kataru nebo letńı olympiádu
v Letňanech. . . .



It is deep inside = it has high depth
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It is deep inside = it has high depth
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It is deep inside = it has high depth
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Trees far from the center



It is deep inside = it has high depth



Outliers in R1
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Outliers in R2 – any idea?



1st idea – Mahalanobist distance



1st idea – Mahalanobist distance – non-elliptical case



1st idea – Mahalanobist distance – non-elliptical case



Halfspace depth in R1

D(x) = min {P(X ≤ x),P(X ≥ x)}

Example: univariate normal distribution N(µ, σ2)
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Halfspace depth in Rd

projection pursuit approach

D(x) = inf
u:‖u‖=1

D(uTx).
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The halfspace depth of a point x ∈ Rd with respect to
a probability measure P on Rd is defined as the minimum
probability mass carried by any closed halfspace containing
x , that is

D(x ;P) = inf {P(H) : H a closed halfspace, x ∈ H}

I The depth provides so called central-outward ordering of data

I The deepest point extends the notion of median into a higher
dimensions.



Problem of classification

The Bayes classifier

class(x) = arg max
i

fi (x)πi .

produces smallest possible number of misclassified points
(total over all groups)



When Bayes misclassifies the centre of the distribution...

P1 = N(0, 1),P2 = N(1, 1)

π1 = 0.7, π2 = 0.3
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Hey, Bayes, be fair to x2!
lognormal distribution from N(0, 1)
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f(x2)

f(x1)
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quantile0.05 = x1, f (x1) = 0.53

quantile0.95 = x2, f (x2) = 0.02



Basics in decision theory

I Distributions Pi defined on Rd , with densities fi and prior
probabilities πi , i = 1, . . . ,K .

I A classifier divides the space Rd into K disjoint parts
Ai , i = 1, . . . ,K ,

⋃K
i=1 Ai = Rd such that any x ∈ Rd is assigned to

Pi iff x ∈ Ai .

I Cost function

cij(x) =

{
ci (x) if j 6= i ,

0 if j = i .

I Total cost

min
K∑
i=1

∑
j 6=i

∫
Aj

ci (x)fi (x)πidx .

I Optimal classifier

class(x) = arg max
i

ci (x)fi (x)πi .



Bayes classifier and its 2 new competitors

class(x) = arg max
i

ci (x)fi (x)πi .

1. Bayes classifier: ci (x) = 1

classB(x) = arg max
i

fi (x)πi

2. Depth-weighted classifier: ci (x) = D(x ;Pi )

classD(x) = arg max
i

D(x ;Pi )fi (x)πi

3. Rank-weighted classifier: ci (x) = Fi (D(x ;Pi )),
where Fi is CDF of D(X ;Pi ),X ∼ Pi

classR(x) = arg max
i

Fi (D(x ;Pi ))fi (x)πi



Toy example

I P1 = Unif [0, 100], π1 = 0.5,
P2 = Unif [50, 250], π2 = 0.5.

I Classification on the overlapping part of supports:
Bayes classifier:

classB(x) = 1 for x ∈ [50, 100]

Depth-weighted classifier:

classD(x) =

{
1 for x ∈ [50, 90),

2 for x ∈ (90, 100].



 



The first question (or two)

I To what extent do the new (depth-weighted) classifiers differ
from the Bayes classifier?

I How large might the corresponding difference in the average
misclassification rate be?



Difference in the case of elliptical symmetry
Let us assume:

I (P1): fi (x) = kig(Mi (x)), where g is a strictly decreasing function,

ki > 0 are constants, and Mi (x) =
(
(x− αi )

′B−1i (x− αi )
) 1

2 with Bi

positive definite, αi ∈ Rd , denotes the generalized distance of the
point x from the center of the distribution Pi .

I (P2) D(x) is an affine invariant depth. Then, given (P1),
Di (x) = D(x;Pi ) is a fixed decreasing function of generalized
distance, that can be expressed as Di (x) = h(Mi (x)), where h is a
strictly decreasing function.

Denote

I G (x) = k1g(M1(x))
k2g(M2(x))

as likelihood ratio,

I H(x) = h(M1(x))
h(M2(x))

as depth ratio,

I π = π2

π1
as inverse prior ratio

Then

I The Bayes classifier assigns x to P1 if G (x) > π,

I The depth-weighted classifier assigns x to P1 if H(x)G (x) > π.



Difference in the case of elliptical symmetry

G(x)H(x)G(x)
π

G(x) H(x)G(x)

x: M (x)<M (x)

π

x: M (x)>M (x)1 2

1 2

k1

2k
_

k1

2k
_

0

0

The classifiers differ when π is between G (x) and H(x)G (x).
For the fixed π, the region where the classifiers differ is

RD(π) =
{

x ∈ Rd : H(x)G (x) < π < G (x) or G (x) < π < H(x)G (x)
}
.

Let (P1) and (P2) hold for P1 and P2. Then

P(classB(X ) 6= classD(X )) = 0⇔ π1k1 = π2k2.



Difference in the case of elliptical symmetry – example

P1 = N(−1, 1),P2 = N(1, 1)
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Next question

I To what extent does the performance of the new classifiers
depend on the choice of depth function?

I Which depth function results in the smallest (biggest)
differences from the Bayes classifier?



Difference between the depth-based classifiers using
halfspace and projection depths

P1 = Unif [0, 100], π1 = 0.5,
P2 = Unif [50, 250], π2 = 0.5.
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Rank-weighted classifier

I Depth-weighted classifier: ci (x) = D(x ;Pi )

classD(x) = arg max
i

D(x ;Pi )fi (x)πi

I Rank-weighted classifier: ci (x) = Fi (D(x ;Pi )),
where Fi is CDF of D(X ;Pi ),X ∼ Pi

classR(x) = arg max
i

Fi (D(x ;Pi ))fi (x)πi

Let (P1) and (P2) hold for P1 and P2 and any two depth functions
D(·) and D∗(·). Then classR(x) is the same for both D(·) and D∗(·)
with probability one.



Robustness of the newly proposed classifiers
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I (1− α)π1 for P1,

I απ1 for the contamination of P1

I π2 for the non-contaminated P2.

Assume z0 = z , π2 < απ1.

I f2(x)π2 < f1(x)π1 for all x ∈ (2z , 4z).
Misclass. rate for group 2 is 1.

I D2(x)f2(x)π2 > D1(x)f1(x)π1 for x > 2z +
√

2π2z
Misclass. rate for group 2 is π2
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Simulation study – settings

Group 1 Group 2
Ex. Distribution Parameters Distribution Parameters
1 Normal 0, Σ0 Normal 1, Σ0
2 Normal 0, Σ0 Normal 1, 4Σ0
3 Cauchy 0, Σ0 Cauchy 1, Σ0
4 Cauchy 0, Σ0 Cauchy 1, 4Σ0
5 Bivar. exponen. 1, 1 Shifted bivar. expon. (+1) 1, 1
6 Bivar. exponen. 1, 1/2 Shifted bivar. expon. (+1) 1/2, 1
7 Normal 0, I Bivar. exponential 1, 1

8 Skewed normal
(
1
2

)
,
(
1 0
0 7

)
,
(

−2
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)
Skewed normal

(
0
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,
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1 0
0 5
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5
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Where Σ0 =

(
1 1
1 4

)
.



Percentage of points classified differently than by the
Bayes classifier

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8
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Increase of AMR versus percentage of points classified
differently than by the Bayes classifier
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● depth−optimal class. rank−optimal class.
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Conclusion

I We suggest to weight misclassification cost according to the
centrality of a misclassified point measured either by its depth
w.r.t. the distribution from which it comes (depth-weighted
classifier) or by its rank w.r.t. the distribution from which it
comes (rank-weighted classifier).

I In particular cases, the new classifiers does not differ from the
Bayes classifier. Simulation study showed that increase in
AMR is much smaller than percentage of points classified
differently.

I Both classifiers depend on the depth function which they are
using. In particular cases rank-weighted classifier does not
depend on the used depth function.

I Presence of the depth term in the depth-based classifiers may
substantially increase robustness of the procedure.
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Happy end


