

Analýza funkcionálních dat záznamů vyvolaných potenciálů ve sluchové dráze

Ondřej Pokora, Jan Koláček

pokora@math.muni.cz, kolacek@math.muni.cz

Ústav matematiky a statistiky, Přírodovědecká fakulta, Masarykova univerzita, Brno

ROBUST, Rybník 21.-26. ledna 2018

Spoluautoři, motivace, data

- Tzai-Wen Chiu (Dept. of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan)
- Paul W. F. Poon
- Původní motivace: model tinnitu (šelestu v uších) u krys. Tinnitus uměle vyvolán aplikací salicylátu.
- Nahrávají se vyvolané potenciály (Auditory Evoked Potentials) v auditorním kortexu.

Data – typické AEP

- Síla vyvolaných potenciálů je charakterizována ve smyslu integrálu AEP přes definované časové okno jako tzv. *Evoked Potential Integral*, y_{ik}, v jednotkách μV ms.
- Schéma exprimentu: 6 dní kontrolní měření, následovně podávána dávka salicylátu a měření prováděna 8 dní. 79 průchodů každý den.
- zvuky: tóny 10, 16 kHz (10 ms) a širokospektrální signál (klik, klepnutí 0,01 ms)
- ▶ postupně se měnící intenzita zvuku, *t_k*, od −15 do 75 dB SPL.

Data – typické AEP

Data – typické AEP

Data (detail)

Vyhlazovací splajny

Báze: B-splajny $B_j(t)$

Reprezentace EPI:

$$x_i(t) = \sum_{j=1}^N c_{ij} B_j(t), \qquad i = 1, ..., n$$

Penalizovaná chyba:

$$\sum_{i=1}^{n}\sum_{k=1}^{K}\left[y_{ik}-x_{i}(t_{k})\right]^{2}+\lambda\int_{t_{0}}^{t_{K}}\left[\frac{d^{2}}{dt^{2}}x_{i}(t)\right]^{2}dt\longrightarrow\min_{c_{ij}}$$

GCV:

$$\sum_{i=1}^{n}\sum_{k=1}^{K}\left[y_{ik}-x_{i}(t_{k},\lambda,-k)\right]^{2}\longrightarrow\min_{\lambda}$$

Analogicky, reprezentace derivace EPI:

$$x'_{i}(t) = \sum_{j=1}^{N} c'_{ij} B_{j}(t), \qquad i = 1, ..., n.$$

Báze

Vyhlazená data (detail)

Vzdálenost mezi dvěma splajny x₁, x₂:

$$d_0(x_1, x_2) = \sqrt{\int_{t_0}^{t_K} [x_1(t) - x_2(t)]^2 dt}$$
$$d_1(x_1, x_2) = \sqrt{\int_{t_0}^{t_K} [x_1'(t) - x_2'(t)]^2 dt}$$

▶ Medián {x₁,...,x_m} je takový splajn, minimalizující součet ∑_{j=1}^m d_{*}(x_k,x_j), k = 1,...,m, pro zvolenou vzdálenost d_{*} = d₀,d₁.

Vzdálenosti d₀, d₁ mezi mediány (relativní škála)

13/28

Rozdělení vzdáleností d_0 , d_1 od kontrolních (> 20 dB SPL)

Vyhlazená data derivace EPI (detail)

Funkcionální PCA (fPCA)

$$x_{i}(t) = \bar{x}(t) + \sum_{j=1}^{N} s_{ij}\xi_{j}(t)$$
$$x_{i}'(t) = \bar{x}'(t) + \sum_{j=1}^{N} s_{ij}'\eta_{j}(t),$$

j=1

Střední funkce: $\bar{x}(t) = \frac{1}{n} \sum_{i=1}^{n} x_i(t)$, resp. $\bar{x}'(t) = \frac{1}{n} \sum_{i=1}^{n} x'_i(t)$ Hlavní komponenty: $\xi_j(t)$, resp. $\eta_j(t)$ Skóry: s_{ij} , resp. s'_{ij}

fPCA – podíl vysvětleného rozptylu

$x_{i}(t) \approx \bar{x}(t) + s_{i1}\xi_{1}(t) + s_{i2}\xi_{2}(t)$ $x_{i}'(t) \approx \bar{x}'(t) + s_{i1}'\eta_{1}(t) + s_{i2}'\eta_{2}(t)$

fPCA – střední křivky (A) a hlavní komponenty (B)

Jádrové odhady hustoty rozdělení pravděpodobnosti skórů (S_1, S_2), resp. (S'_1, S'_2): $\hat{f}_{(S_1, S_2)}(u_1, u_2)$, resp. $\hat{f}_{(S'_1, S'_2)}(u_1, u_2)$

$$(s_1, s_2) = \underset{(u_1, u_2)}{\operatorname{arg\,max}} \hat{f}_{(S_1, S_2)}(u_1, u_2)$$

$$(s'_1, s'_2) = \underset{(u_1, u_2)}{\operatorname{arg\,max}} \hat{f}_{(S'_1, S'_2)}(u_1, u_2)$$

Reprezentanti:

$$x_{ML}(t) = \bar{x}(t) + s_1\xi_1(t) + s_2\xi_2(t)$$

$$x'_{ML}(t) = \bar{x}'(t) + s'_1\eta_1(t) + s'_2\eta_2(t)$$

fPCA – reprezentanti

Skóre EPI – con vs. SS

Skóre EPI – tón vs. klik

Skóre

Oblasti dle hloubky

Odkazy

- Pokora O., Koláček J., Chiu T.-W., Qiu W. (2017) Functional data analysis of single-trial auditory evoked potentials recorded in the awake rat. *Biosystems* 161, 67–75.
- Wan I., Pokora O., Chiu T.-W., Lánský P., Poon P. W. (2015) Altered intensity coding in the salicylate-overdose animal model of tinnitus. *BioSystems* 136, 113–119.
- Ferraty, F. and Vieu, P. (2006) Nonparametric functional data analysis: theory and practice. Springer.
- Norena, A. J. (2011) An integrative model of tinnitus based on a central gain controlling neural sensitivity. *Neurosci Biobehav Rev.* 35: 1089–1109.
- Wang, J.-L., Chiou, J.-M. and Müller, H. G. (2016) Functional Data Analysis. Annual Review of Statistics and Its Application 3 (1): 257–295.