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Important notice

We consider intervals in a set sense, no distribution, no fuzzy shape.
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Interval Data

Where interval data do appear

numerical analysis (handling rounding errors)
1
3 ∈ [0.33333333333333, 0.33333333333334]
π ∈ [3.1415926535897932384, 3.1415926535897932385].

constraint solving and global optimization

find robot singularities, where it may breakdown
check joint angles [0, 180]◦
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Interval Matrices

Definition (Interval matrix)

An interval matrix is the family of matrices

A = {A ∈ R
m×n : A ≤ A ≤ A},

The midpoint and the radius matrices are defined as

Ac := 1
2 (A+ A), A∆ := 1

2(A− A).

The set of all interval m × n matrices is denoted by IR
m×n.
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An interval matrix is the family of matrices

A = {A ∈ R
m×n : A ≤ A ≤ A},

The midpoint and the radius matrices are defined as

Ac := 1
2 (A+ A), A∆ := 1

2(A− A).

The set of all interval m × n matrices is denoted by IR
m×n.

Basic problem

Let f : Rn 7→ R
m and x ∈ IR

n. Determine the image

f (x) = {f (x) : x ∈ x},

or at least its tight interval enclosure.
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Interval Arithmetic

Interval Arithmetic (proper rounding used when implemented)

For arithmetical operations (+,−, ·,÷), their images are readily computed

a + b = [a+ b, a + b],

a − b = [a− b, a − b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a ÷ b = [min(a÷ b, a÷ b, a÷ b, a ÷ b),max(a ÷ b, a÷ b, a÷ b, a÷ b)].
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Yes, but with overestimation in general due to dependencies.

Example (Evaluate f (x) = x
2 − x on x = [−1, 2])

x2 − x = [−1, 2]2 − [−1, 2] = [−2, 5],

x(x − 1) = [−1, 2]([−1, 2]− 1) = [−4, 2],

(x − 1
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2 − 1
4 = ([−1, 2]− 1

2 )
2 − 1

4 = [− 1
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Software

Matlab/Octave libraries

Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/

Interval package for Octave (by O. Heimlich),
free package of verified interval functions
https://wiki.octave.org/Interval_package

Lime (by M. Hlad́ık, J. Horáček et al.),
interval methods written in Intlab, under development
http://kam.mff.cuni.cz/~horacek/projekty/lime/

8 / 51

http://www.ti3.tu-harburg.de/~rump/intlab/
https://wiki.octave.org/Interval_package
http://kam.mff.cuni.cz/~horacek/projekty/lime/


Software

Matlab/Octave libraries

Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/

Interval package for Octave (by O. Heimlich),
free package of verified interval functions
https://wiki.octave.org/Interval_package

Lime (by M. Hlad́ık, J. Horáček et al.),
interval methods written in Intlab, under development
http://kam.mff.cuni.cz/~horacek/projekty/lime/

Other languages libraries

Int4Sci Toolbox (by Coprin team, INRIA),
A Scilab Interface for Interval Analysis
http://www-sop.inria.fr/coprin/logiciels/Int4Sci/

C++ libraries: C-XSC, PROFIL/BIAS, BOOST interval, FILIB++,. . .

many others: for Fortran, Pascal, Lisp, Maple, Mathematica,. . .
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Interval linear equations

Let A ∈ IR
m×n and b ∈ IR

m. The family of systems

Ax = b, A ∈ A, b ∈ b.

is called interval linear equations and abbreviated as Ax = b.

Solution set

The solution set is defined

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Important notice

We do not want to compute x ∈ IR
n such that Ax = b.

Theorem (Oettli–Prager, 1964)

The solution set Σ is a non-convex polyhedral set described by

|Acx − bc | ≤ A∆|x |+ b∆.
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Interval Linear Equations

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4 x1

x2
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Example of the Solution Set

Example





[3, 5] [1, 3] −[0, 2]
− [0, 2] [3, 5] [0, 2]
[0, 2] −[0, 2] [3, 5]









x1
x2
x3



 =





[−1, 1]
[−1, 1]
[−1, 1]



 .

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
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Topology of the Solution Set

Proposition

In each orthant, Σ is either empty or a convex polyhedral set.
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Using |a| ≤ b ⇔ a ≤ b, −a ≤ b, we get

(Ac − A∆ diag(s))x ≤ b, (−Ac − A∆ diag(s))x ≤ −b, diag(s)x ≥ 0.

Corollary

The solutions of Ax = b, x ≥ 0 is described by Ax ≤ b, Ax ≥ b, x ≥ 0.
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Topology of the Solution Set

Theorem (Jansson, 1997)

When Σ 6= ∅, then exactly one of the following alternatives holds true:

1 Σ is bounded and connected (A is regular).

2 Each topologically connected component of Σ is unbounded (A is
irregular).
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irregular).

Remark
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Two basic polynomial cases

1 Ac = In,

2 A is inverse nonnegative, i.e., A−1 ≥ 0 ∀A ∈ A.

Theorem (Kuttler, 1971)

A ∈ IR
n×n is inverse nonnegative if and only if A−1 ≥ 0 and A

−1
≥ 0.

(Then �Σ = [A
−1

b,A−1b] when b ≥ 0, etc.)
14 / 51



Interval Linear Equations

Enclosure

Since Σ is hard to determine and deal with, we seek for enclosures

x ∈ IR
n such that Σ ⊆ x .
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Since Σ is hard to determine and deal with, we seek for enclosures

x ∈ IR
n such that Σ ⊆ x .

Many methods exist (GE,. . . ), usually employ preconditioning.

Preconditioning (Hansen, 1965)

Let R ∈ R
n×n. The preconditioned system of equations:

(RA)x = Rb.

Remark

the solution set of the preconditioned systems contains Σ

usually, we use R ≈ (Ac)
−1

then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)

15 / 51



Interval Linear Equations

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

7

14

−7

−14

7 14−7−14 x1

x2
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Interval Linear Equations

Example (typical case)

(

[6, 7] [2, 3]
[1, 2] −[4, 5]

)(

x1
x2

)

=

(

[6, 8]
− [7, 9]

)

2.5

1.5

0.5 1.0−0.5 x1

x2
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Interval Linear Inequalities

Interval Linear Inequalities

Let A ∈ IR
m×n and b ∈ IR

m. The family of systems

Ax ≤ b, A ∈ A, b ∈ b.

is called interval linear inequalities and abbreviated as Ax ≤ b.
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m. The family of systems

Ax ≤ b, A ∈ A, b ∈ b.

is called interval linear inequalities and abbreviated as Ax ≤ b.

Solution set

The solution set is defined

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax ≤ b}.

Theorem (Gerlach, 1981)

A vector x ∈ R
n is a solution of Ax ≤ b if and only if

Acx ≤ A∆|x |+ b.

Corollary

An x ∈ R
n is a solution of Ax ≤ b, x ≥ 0 if and only if Ax ≤ b, x ≥ 0.

18 / 51



Example of the Solution Set

Example (An interval polyhedron)

5

10

−5

−10

5 10−5−10 0 x1

x2







−[2, 5] −[7, 11]
[1, 13] −[4, 6]
[5, 8] [−2, 1]
−[1, 4] [5, 9]
−[5, 6] −[0, 4]






x ≤







[61, 63]
[19, 20]
[15, 22]
[24, 25]
[26, 37]







union of all feasible
sets in light gray,
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5

10

−5

−10

5 10−5−10 0 x1

x2

0







−[2, 5] −[7, 11]
[1, 13] −[4, 6]
[5, 8] [−2, 1]
−[1, 4] [5, 9]
−[5, 6] −[0, 4]






x ≤







[61, 63]
[19, 20]
[15, 22]
[24, 25]
[26, 37]







union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,
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Strong Solution

Strong Solution

A vector x ∈ R
n is a strong solution to Ax ≤ b if it solves Ax ≤ b for

every A ∈ A and b ∈ b.
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A vector x ∈ R
n is a strong solution iff there are x1, x2 ∈ R

n such that
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Theorem (Machost, 1970)

A vector x ∈ R
n is a strong solution Ax ≤ b, x ≥ 0 iff it solves

Ax ≤ b, x ≥ 0.

Theorem (Rohn & Kreslová, 1994)

Ax ≤ b has a strong solution iff Ax ≤ b is solvable ∀A ∈ A,∀b ∈ b.
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Strong Solution

A vector x ∈ R
n is a strong solution to Ax ≤ b if it solves Ax ≤ b for

every A ∈ A and b ∈ b.

Theorem (Rohn & Kreslová, 1994)

A vector x ∈ R
n is a strong solution iff there are x1, x2 ∈ R

n such that

x = x1 − x2, Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0.

Theorem (Machost, 1970)

A vector x ∈ R
n is a strong solution Ax ≤ b, x ≥ 0 iff it solves

Ax ≤ b, x ≥ 0.

Theorem (Rohn & Kreslová, 1994)

Ax ≤ b has a strong solution iff Ax ≤ b is solvable ∀A ∈ A,∀b ∈ b.

No analogy for interval equations (x + y = [1, 2], x − y = [2, 3]).
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Regularity

Definition (Regularity)

A ∈ IR
n×n is regular if each A ∈ A is nonsingular.
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2 det(Ac − diag(y)A∆ diag(z)) has constant sign for each y , z ∈ {±1}n.

3 Acx − diag(y)A∆|x | = y is solvable for each y ∈ {±1}n.

Theorem (Beeck, 1975)

If ρ(|(Ac )
−1|A∆) < 1, then A is regular.
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Regularity

Definition (Regularity)

A ∈ IR
n×n is regular if each A ∈ A is nonsingular.

Theorem

Checking regularity of an interval matrix is co-NP-hard.

Forty equivalent conditions for regularity of A by Rohn (2010), e.g.,

1 The system |Acx | ≤ A∆|x | has the only solution x = 0.

2 det(Ac − diag(y)A∆ diag(z)) has constant sign for each y , z ∈ {±1}n.

3 Acx − diag(y)A∆|x | = y is solvable for each y ∈ {±1}n.

Theorem (Beeck, 1975)

If ρ(|(Ac )
−1|A∆) < 1, then A is regular.

Necessary Condition

If 0 ∈ Ax for some 0 6= x ∈ R
n, then A is not regular. (Try x := (Ac)

−1
∗i )
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Eigenvalues of Interval Matrices

Eigenvalues

For A ∈ R
n×n, A = AT , denote its eigenvalues λ1(A) ≥ · · · ≥ λn(A).
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Eigenvalues

For A ∈ R
n×n, A = AT , denote its eigenvalues λ1(A) ≥ · · · ≥ λn(A).

Let for A ∈ IR
n×n, denote its eigenvalue sets

λi (A) = {λi (A) : A ∈ A, A = AT}, i = 1, . . . , n.

Theorem

Checking whether 0 ∈ λi (A) for some i = 1, . . . , n is NP-hard.

We have the following enclosures for the eigenvalue sets

λi (A) ⊆ [λi (Ac)− ρ(A∆), λi (Ac) + ρ(A∆)], i = 1, . . . , n.

By Hertz (1992)

λ1(A) = max
z∈{±1}n

λ1(Ac + diag zA∆ diag z),

λn(A) = min
z∈{±1}n

λn(Ac − diag zA∆ diag z).
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Introduction

Linear programming – three basic forms

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.
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Linear programming – three basic forms

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c , in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

The three forms are not transformable between each other!

Main goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.
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Optimal Value Range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c .
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Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c .

Observation

If f (A, b, c) is continuous on A × b × c, then f and f are finite and
f (A,b, c) = [f , f ].

Example (Bereanu, 1978)

max x1 subject to x1 ≤ [1, 2], [−1, 1]x1 ≤ 0, −x1 ≤ 0.

The image of the optimal value is {0} ∪ [1, 2].

Open problems

How many components of f (A,b, c)? Always closed?
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Optimal Value Range

Theorem (Wets, 1985, Mostafaee et al., 2016)

Suppose that both interval linear systems

Ax = 0, x ≥ 0, cT x ≤ 0

and

AT y ≤ 0, bT y ≥ 0

have only trivial solution. Then f (A, b, c) is continuous on A × b × c.
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Theorem (Wets, 1985, Mostafaee et al., 2016)

Suppose that both interval linear systems

Ax = 0, x ≥ 0, cT x ≤ 0

and

AT y ≤ 0, bT y ≥ 0

have only trivial solution. Then f (A, b, c) is continuous on A × b × c.

Theorem

It is NP-hard to check if the value f is attained for a given f ∈ [f , f ].
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Optimal Value Range

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.
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Theorem (Machost, 1970, Rohn, 1984)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
s∈{±1}m

f (Ac − diag(s)A∆, bc + diag(s)b∆, c).
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Optimal Value Range

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.

Theorem (Machost, 1970, Rohn, 1984)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
s∈{±1}m

f (Ac − diag(s)A∆, bc + diag(s)b∆, c).

Theorem (Rohn (1997), Gabrel et al. (2008))

checking f = ∞ is NP-hard

checking f ≥ 1 is strongly NP-hard (with A, c crisp and f < ∞)
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Optimal Value Range

Example (A Classification Problem)

Find a separating hyperplane aT x = b for two sets of points
{x1, . . . , xm} ⊂ R

n and {y1, . . . , yk} ⊂ R
n. This can be formulated as a

linear program

min 1Tu + 1T v

subject to aT xi − b ≥ 1− ui , i = 1, . . . ,m,

aT yj − b ≤ −(1− vj), j = 1, . . . , k ,

u, v ≥ 0.

If the optimal value is zero, then the points can be separated and the
optimal solution gives the separating hyperplane.

If the optimal value is positive, then the points cannot be separated,
but the optimal value approximates the minimum number of
misclassified points and the optimal solution gives the corresponding
hyperplane.
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Optimal Value Range

Example (A Classification Problem)

For interval x1, . . . , xm ∈ IR
n and y1, . . . , y ∈ IR

n, f and f give
approximately the lowest and highest number of misclassified points.

Two sets of 30 and 35 randomly generated interval data in R
2.

We compute f = 0 and f = 8.2 (for the midpoint data f = 3.15).

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
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Optimal Solution Set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).
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Optimal Solution Set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Goal

Find a tight enclosure to S.

Characterization

By duality theory, we have that x ∈ S if and only if there is some y ∈ R
m,

A ∈ A, b ∈ b, and c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c , cT x = bT y ,

where A ∈ A, b ∈ b, c ∈ c.
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Optimal Solution Set

Example (Garajová, 2016)

The optimal solution set may be disconnected and nonconvex.

Consider the interval LP problem

max x2 subject to [−1, 1]x1 + x2 ≤ 0, x2 ≤ 1.

1

−1

−2

1 2 3 4 5−1−2−3−4−5 0 x1

x2
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Optimal Solution Set

Theorem (Garajová, H., 2016)

The set of optimal solutions S of the interval linear program (with real A)

min cT x subject to Ax = b, x ≥ 0

is a path-connected union of at most 2n convex polyhedra.
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Optimal Solution Set

Theorem (Garajová, H., 2016)

The set of optimal solutions S of the interval linear program (with real A)

min cT x subject to Ax = b, x ≥ 0

is a path-connected union of at most 2n convex polyhedra.

Observation

If b is real in addition, then S is formed by a union of some faces of the
feasible set.

Open Problems

More about topology of the optimal solution set S
(Is it always polyhedral?),

characterization of S,

tight approximation of S.
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Basis Stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.
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Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Moreover, f (A, b, c) = cTB A−1
B b is continuous and f (A,b, c) = [f , f ].
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Basis Stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Moreover, f (A, b, c) = cTB A−1
B b is continuous and f (A,b, c) = [f , f ].

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.

(Otherwise each realization has at least one optimal solution in this set.)
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .
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Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C1

C1 says that AB is regular;

co-NP-hard problem;

Beeck’s sufficient condition: ρ
(

|((Ac)B)
−1|(A∆)B

)

< 1.
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C2

C2 says that the solution set to ABxB = b lies in R
n
+;

sufficient condition: check of some enclosure to ABxB = b.
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C3

C2 says that AT
Ny ≤ cN , AT

B y = cB is strongly feasible;

co-NP-hard problem;

sufficient condition:
(AT

N )y ≤ cN , where y is an enclosure to AT
B y = cB .

36 / 51



Basis Stability – Example

Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

x ≤

(

[15, 16]
[18, 19]
[6, 7]

)

, x ≥ 0.
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Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

x ≤

(

[15, 16]
[18, 19]
[6, 7]

)

, x ≥ 0.

1

2

3

4

1 2 3 4 50 x1

x2 union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

set of optimal
solutions in dotted
area
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Basis Stability – Interval Right-Hand Side

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0 for each b ∈ b.

C3. cTN − cTB A−1
B

AN ≥ 0T .
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Basis Stability – Interval Right-Hand Side

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0 for each b ∈ b.

C3. cTN − cTB A−1
B

AN ≥ 0T .

Condition C1

C1 and C3 are trivial

C2 is simplified to

A−1
B b ≥ 0,

which is easily verified by interval arithmetic

overall complexity: polynomial
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Basis Stability – Interval Objective Function

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T for each c ∈ c
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Basis Stability – Interval Objective Function

Interval case
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Basis Stability – Interval Objective Function

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T for each c ∈ c

Condition C1

C1 and C2 are trivial

C3 is simplified to

AT
Ny ≤ cN , AT

B y = cB

or,

(AT
N
A−T
B

)cB ≤ cN .

overall complexity: polynomial
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Applications

Real-life applications

Transportation problems with uncertain demands, suppliers, and/or
costs.

Networks flows with uncertain capacities.

Diet problems with uncertain amounts of nutrients in foods.

Portfolio selection with uncertain rewards.

Matrix games with uncertain payoffs.
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Real-life applications

Transportation problems with uncertain demands, suppliers, and/or
costs.

Networks flows with uncertain capacities.

Diet problems with uncertain amounts of nutrients in foods.

Portfolio selection with uncertain rewards.

Matrix games with uncertain payoffs.

Technical applications

Tool for global optimization.

Measure of sensitivity of linear programs.

Verification

Handle rigorously numerics of real-valued linear programs.
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Applications – Diet Problem

Example (Stigler’s Nutrition Model)

http://www.gams.com/modlib/libhtml/diet.htm.

n = 20 different types of food,

m = 9 nutritional demands,

aij is the the amount of nutrient j contained in one unit of food i ,

bi is the required minimal amount of nutrient j ,

cj is the price per unit of food j ,

minimize the overall cost
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Applications – Diet Problem

Example (Stigler’s Nutrition Model)

http://www.gams.com/modlib/libhtml/diet.htm.

n = 20 different types of food,

m = 9 nutritional demands,

aij is the the amount of nutrient j contained in one unit of food i ,

bi is the required minimal amount of nutrient j ,

cj is the price per unit of food j ,

minimize the overall cost

The model reads

min cT x subject to Ax ≥ b, x ≥ 0.

The entries aij are not stable!
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Applications – Diet Problem

Example (Stigler’s Nutrition Model)

Nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c
(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg)

wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106
cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4

peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525

porkroast 4.4 249 .3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209

greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257

limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navybeans 26.9 1691 11.4 792 38.4 24.6 217
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Applications – Diet Problem

Example (Stigler’s Nutrition Model)

If the entries aij are known with 10% accuracy, then

the problem is not basis stable

the minimal cost ranges in [0.09878, 0.12074],

the interval enclosure of the solution set is

[0, 0.0734], [0, 0.0438], [0, 0.0576], [0, 0.0283], [0, 0.0535], [0, 0.0315], [0, 0.0339],

[0, 0.0300], [0, 0.0246], [0, 0.0337], [0, 0.0358], [0, 0.0387], [0, 0.0396], [0, 0.0429],

[0, 0.0370], [0, 0.0443], [0, 0.0290], [0, 0.0330], [0, 0.0472], [0, 0.1057].
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the minimal cost ranges in [0.09878, 0.12074],
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[0, 0.0734], [0, 0.0438], [0, 0.0576], [0, 0.0283], [0, 0.0535], [0, 0.0315], [0, 0.0339],

[0, 0.0300], [0, 0.0246], [0, 0.0337], [0, 0.0358], [0, 0.0387], [0, 0.0396], [0, 0.0429],

[0, 0.0370], [0, 0.0443], [0, 0.0290], [0, 0.0330], [0, 0.0472], [0, 0.1057].

If the entries aij are known with 1% accuracy, then

the problem is basis stable

the minimal cost ranges in [0.10758, 0.10976],

the interval hull of the solution set is

x1 = [0.0282, 0.0309], x8 = [0.0007, 0.0031], x12 = [0.0110, 0.0114],

x15 = [0.0047, 0.0053], x20 = [0.0600, 0.0621].
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Robust Interval Linear Programming

Consider the interval LP problem

min cT x subject to Ax ≤ b, x ≥ 0.

45 / 51



Robust Interval Linear Programming

Consider the interval LP problem

min cT x subject to Ax ≤ b, x ≥ 0.

The robust counterpart

min cT x subject to Ax ≤ b, x ≥ 0, ∀A ∈ A, b ∈ b

45 / 51



Robust Interval Linear Programming

Consider the interval LP problem

min cT x subject to Ax ≤ b, x ≥ 0.

The robust counterpart

min cT x subject to Ax ≤ b, x ≥ 0, ∀A ∈ A, b ∈ b

takes the form

min cT x subject to Ax ≤ b, x ≥ 0.

45 / 51



Robust Interval Linear Programming

Consider the interval LP problem

min cT x subject to Ax ≤ b, x ≥ 0.

The robust counterpart

min cT x subject to Ax ≤ b, x ≥ 0, ∀A ∈ A, b ∈ b

takes the form

min cT x subject to Ax ≤ b, x ≥ 0.

Consider the interval LP problem

min cT x subject to Ax ≤ b.

45 / 51



Robust Interval Linear Programming

Consider the interval LP problem

min cT x subject to Ax ≤ b, x ≥ 0.

The robust counterpart

min cT x subject to Ax ≤ b, x ≥ 0, ∀A ∈ A, b ∈ b

takes the form

min cT x subject to Ax ≤ b, x ≥ 0.

Consider the interval LP problem

min cT x subject to Ax ≤ b.

The robust counterpart

min cT x subject to Ax ≤ b, ∀A ∈ A, b ∈ b

45 / 51



Robust Interval Linear Programming

Consider the interval LP problem

min cT x subject to Ax ≤ b, x ≥ 0.

The robust counterpart

min cT x subject to Ax ≤ b, x ≥ 0, ∀A ∈ A, b ∈ b

takes the form

min cT x subject to Ax ≤ b, x ≥ 0.

Consider the interval LP problem

min cT x subject to Ax ≤ b.

The robust counterpart

min cT x subject to Ax ≤ b, ∀A ∈ A, b ∈ b

takes the form

min cT x1 − cT x2 subject to Ax1 − Ax2 ≤ b, x1, x2 ≥ 0.
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Verification – Motivation

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .



Verification – Motivation

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .
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Verification

Verification of a system of linear equations

Given a real system Ax = b and x∗ approximate solution, find
x∗ ∈ x ∈ IR

n such that A−1b ∈ x .

Example

x1

x2

x∗
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Verification in Linear Programming

Consider a linear program

min cT x subject to Ax = b, x ≥ 0.

Let B∗ be an optimal basis, f ∗ optimal value and x∗ optimal solution.
All these are numerically computed.
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All these are numerically computed.
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confirmation that B∗ is (unique) optimal basis,

Verification of the optimal value (Neumaier & Shcherbina, 2004)

finding f ∗ ∈ f ∈ IR such that f contains the optimal value,

Verification of the optimal solution

finding x∗ ∈ x ∈ IR
n such that x contains the (unique) optimal

solution.
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Verification of Optimal Basis

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .
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C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Verification of condition C2

Compute verification interval xB for ABxB = b,

check xB ≥ 0 (resp. xB > 0 for uniqueness)

Verification of condition C3

Compute verification interval y for AT
B y = cB ,

check cTN − yTAN ≥ 0 (resp. cTN − yTAN > 0 for uniqueness).
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Conclusion

Conclusion

Interval linear programming provides techniques for

studying effects of data variations on optimal value and optimal
solutions

processing state space of parameters

calculating bounds

handling numerical errors
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