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Financial High-Frequency Data

Ultra-high-frequency data are irregularly spaced time series recorded at highest
possible frequency corresponding to each transaction or change in bid/ask prices.
e Engle, R. F. (2000). The Econometrics of Ultra-High-Frequency Data.
Econometrica, 68(1), 1-22.

Financial high-frequency time series include

e exchange rates,
e stock prices,
e commodity prices.

The price process is often modeled with continuous values and continuous time.

However, there are some crucial market microstructure specifics such as

e rounding error (prices have discrete values),

e discretness of price changes (transactions can occur only at discrete times),

e bid-ask spread (transactions can happen either on bid or ask side),

e informational effects (agents do not behave according to the economic theory).
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Market Microstructure Noise

e Market microstructure specifics can be captured by the model with additive noise
X,':PTI.—f-E,', i=1,...,n,

where

e X; is the observable price with discrete time,
e Pg, is the efficient price with continuous time sampled at discrete times T;,
e E; is the market microstructure noise with discrete time.

e We assume the market microstructure noise to be independent white noise and
Ei ~ (O7w2)'

e Generally, the market microstructure noise can be dependent in time and
dependent on efficient price.
o Hansen, P. R., & Lunde, A. (2006). Realized Variance and Market Microstructure
Noise. Journal of Business & Economic Statistics, 24(2), 127-161.
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Non-Parametric Approach

e Estimation of the quadratic variation and the integrated variance.

e Zhang, L., Mykland, P. A., & Ait-Sahalia, Y. (2005). A Tale of Two Time Scales:
Determining Integrated Volatility with Noisy High-Frequency Data. Journal of the
American Statistical Association, 100(472), 1394-1411.

e Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2008).
Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the
Presence of Noise. Econometrica, 76(6), 1481-1536.

e Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., & Vetter, M. (2009).
Microstructure Noise in the Continuous Case: The Pre-Averaging Approach.
Stochastic Processes and Their Applications, 119(7), 2249-2276.

o Nolte, I., & Voev, V. (2012). Least Squares Inference on Integrated Volatility and
the Relationship Between Efficient Prices and Noise. Journal of Business &
Economic Statistics, 30(1), 94-108.
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Parametric Approach

e Estimation of Wiener process parameters.

e Discrete process contaminated by the independent white noise follow ARIMA(0,1,1).

e Parameters are estimated by maximum likelihood of reparametrization.

o Ait-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005). How Often to Sample a
Continuous-Time Process in the Presence of Market Microstructure Noise. The
Review of Financial Studie, 18(2), 351-416.

e Estimation of Ornstein-Uhlenbeck process parameters.

e Discrete process contaminated by the independent white noise follow ARIMA(1,0,1).

e Parameters are estimated by method of moments, maximum likelihood of
reparametrization and direct maximum likelihood.

e Holy, V., & Tomanovd, P. (2017). Ornstein-Uhlenbeck Process Contaminated by the
White Noise: Effects, Estimation and Application. In review.
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Wiener Process

e The standard Wiener process is a random variable W; that satisfies

[ ] Wt = 0'
e for0<s<t<u<v, Wy— W, and W, — W, are independent,

o for0<s<t, Wy— W, ~N(0,t—s).

e We consider the price process given by

Pt:O'Wt,

where ¢ > 0 is the instantaneous volatility.
e When the process is contaminated, the estimate of ¢ is biased.

Conclusion
[o]e]



Financial High-Frequency Data Wiener Process Ornstein-Uhlenbeck Process Conclusion
00000 o] o] 00000000 [o]e]

ARIMA(0,1,1) Reparametrization

We consider equidistant sampling A =T; — T;_1,i=1,...,n.

The first difference of process X; is
Xi—Xi-1=P1,—Pr._,+E —E_1.
e We can rewrite the process X; as
X = &;ﬁ Rr._ .1 +VE,- —E-1,  Rr_,1=Pr,—Pr_, ~N( a’A).

DF
Xi XiMA

This is ARIMA(0,1,1) process, which can be reparametrized as

Xi=Xi_1+0Viii+ Vi,  Vi~N(0,9%).
~ ——

XDF XMA
1 1
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ARIMA(0,1,1) Estimation

00000

e Parameters 6 and 72 can be estimated by maximizing the likelihood function
L(0,7%) = fixo(x0) i (x2|Xo = x0) - -+ Fx, (xn X0 = X0, - - - s Xn—1 = Xn_1).

e To identify 62 and w?, we solve the equations
21+ 62) = var[XMA] = 622 + 202,
072 = cov[XMA XM = —u2.

e Finally, we get the original estimates as
6% = A7152(1 + 0)%,
2= —4%.

&
|
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Ornstein-Uhlenbeck Process
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Ornstein-Uhlenbeck Process

e The Ornstein-Uhlenbeck process P; satisfy
dPt = 'T(/J/ - Pt)dt + O'th,

where

W; is a Wiener process,

1 is the long term mean level,

7 > 0 is the speed of reversion,

o > 0 is the instantaneous volatility.

e This stochastic differential equation has solution

t
Pr=Poe Tt pu(l —e ) + 0/ e Tt aw;.
0

e When the process is contaminated, the estimates of 7 and ¢ are biased.

Conclusion
[o]e]
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Bias of Ornstein-Uhlenebeck Parameters
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ARII\/IA(l 0,1) Reparametrization

e When considering equidistant sampling, the process X; can be decomposed as

A
Xi=Pr +E=Pr_ e ™ 4+ pu(l- )+a/ e TA=AW, + E;.
0

e Furthermore, from relation P, , = X;_; — E;_1 we obtain

A
Xi=p(l—e™)+e ™ X1 +o / e TASAW, — e TAE_1 + E; .
0

v
Ic AR
X, X;
XMA
1

e This is ARIMA(1,0,1) process, which can be reparametrized as

Xi=_o_+pXi1+0Vi 1+ V, Vi ~ N(0,7?).
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ARIMA(1,0,1) Estimation

e Parameters o, ¢, # and v2 can be estimated by maximizing the likelihood function
L(av ©, 9, ’72) = on(XO)fX1 (X1|X0 = XO) T fX,,(Xn|XO = X0,--- 7Xn71 = anl)-
e Finally, we get the original estimates by solving equations

a=X"=pl-eT8),
©Xi_1 =X = e AX;_y,

2
72(1 + 92) = VaI‘[XiMA] = 3—7(1 — e_2TA) + w2(1 + e—27’A)’

07% = cov[XMA XM = —w?e A,
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Direct Method of Moments
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e We use four unconditional moments

2
o
my = E[Xi] = i, my = var[X] = > + w?,
o? o?
A my = cov[Xi, Xi_a] = 2—e727A.
T

ms3 = COV[X,‘,X,'_l] = Zei ,

e By replacing theoretical moments with their estimated counterparts, we get

N X R 1 | 3
MOM = Iy TMOM = — 108 —
L ) A g m4a
1m2 s M2

Wyom = M2 — ——

A2
o = — lo - .
MOM N g P’ Pa
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Direct Maximum Likelihood Estimation

e Observed variables X; are normally distributed with conditional density functions
fx;. (x7;|X1,_,) and conditional moments

2
XT,_,0° + 27',uw oA N
E[XTI‘|XT:‘71 = XTi—l] = 012 + 27w? Tt 'U’<1 l)’
2,2 2
Var[XTI‘XTi—l = XTi—l] — L —27A; + — > (1 _ e—2TAi>.

21 2r2®
e We get the estimates by maximizing the logarithmic likelihood function

n
/(Ma T, 027 w2) = Z |Og fXTi (XTI‘XTFI - XTifl)'
i=1
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Bias of Traditional Parameter Estimates

Estimation of |1 by MOM-TR

Estimation of i1 by AR-TR

Estimation of 1 by MLE-TR
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Comparison of Proposed Estimators

Estimation of |1 by MOM-NR Estimation of j1 by ARMA-NR

Estimation of 1 by MLE-NR
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Conclusion

Ignoring the market microstructure noise leads to significant bias and
inconsistency of estimates of the process parameters.

For the Ornstein-Uhlenbeck process, finite-sample simulations show that the
maximum likelihood of ARIMA(1,0,1) reparametrization gives the most accurate
estimates.

We assume the standard Ornstein-Uhlenbeck process and the independent
Gaussian white noise. However, both of these assumptions are too restrictive for
financial data as many papers suggest. Relaxation of Gaussian assumptions is a
topic for the future research.

High-frequency Ornstein-Uhlenbeck process can be utilized e.g. in pairs trading
strategies and stochastic volatility models.
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