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Financial High-Frequency Data

• Ultra-high-frequency data are irregularly spaced time series recorded at highest
possible frequency corresponding to each transaction or change in bid/ask prices.

• Engle, R. F. (2000). The Econometrics of Ultra-High-Frequency Data.
Econometrica, 68(1), 1–22.

• Financial high-frequency time series include
• exchange rates,
• stock prices,
• commodity prices.

• The price process is often modeled with continuous values and continuous time.

• However, there are some crucial market microstructure specifics such as
• rounding error (prices have discrete values),
• discretness of price changes (transactions can occur only at discrete times),
• bid-ask spread (transactions can happen either on bid or ask side),
• informational effects (agents do not behave according to the economic theory).
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Market Microstructure Noise

• Market microstructure specifics can be captured by the model with additive noise

Xi = PTi
+ Ei , i = 1, . . . , n,

where
• Xi is the observable price with discrete time,
• PTi is the efficient price with continuous time sampled at discrete times Ti ,
• Ei is the market microstructure noise with discrete time.

• We assume the market microstructure noise to be independent white noise and

Ei ∼ (0, ω2).

• Generally, the market microstructure noise can be dependent in time and
dependent on efficient price.

• Hansen, P. R., & Lunde, A. (2006). Realized Variance and Market Microstructure
Noise. Journal of Business & Economic Statistics, 24(2), 127–161.
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Non-Parametric Approach

• Estimation of the quadratic variation and the integrated variance.
• Zhang, L., Mykland, P. A., & Äıt-Sahalia, Y. (2005). A Tale of Two Time Scales:

Determining Integrated Volatility with Noisy High-Frequency Data. Journal of the
American Statistical Association, 100(472), 1394–1411.

• Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2008).
Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the
Presence of Noise. Econometrica, 76(6), 1481–1536.

• Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., & Vetter, M. (2009).
Microstructure Noise in the Continuous Case: The Pre-Averaging Approach.
Stochastic Processes and Their Applications, 119(7), 2249–2276.

• Nolte, I., & Voev, V. (2012). Least Squares Inference on Integrated Volatility and
the Relationship Between Efficient Prices and Noise. Journal of Business &
Economic Statistics, 30(1), 94–108.
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Parametric Approach

• Estimation of Wiener process parameters.
• Discrete process contaminated by the independent white noise follow ARIMA(0,1,1).
• Parameters are estimated by maximum likelihood of reparametrization.
• Äıt-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005). How Often to Sample a

Continuous-Time Process in the Presence of Market Microstructure Noise. The
Review of Financial Studie, 18(2), 351–416.

• Estimation of Ornstein-Uhlenbeck process parameters.
• Discrete process contaminated by the independent white noise follow ARIMA(1,0,1).
• Parameters are estimated by method of moments, maximum likelihood of

reparametrization and direct maximum likelihood.
• Holý, V., & Tomanová, P. (2017). Ornstein-Uhlenbeck Process Contaminated by the

White Noise: Effects, Estimation and Application. In review.
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Wiener Process

• The standard Wiener process is a random variable Wt that satisfies
• Wt = 0,
• for 0 ≤ s < t < u < v , Wt −Ws and Wv −Wu are independent,
• for 0 ≤ s < t, Wt −Ws ∼ N(0, t − s).

• We consider the price process given by

Pt = σWt ,

where σ > 0 is the instantaneous volatility.

• When the process is contaminated, the estimate of σ is biased.
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ARIMA(0,1,1) Reparametrization

• We consider equidistant sampling ∆ = Ti − Ti−1, i = 1, . . . , n.

• The first difference of process Xi is

Xi − Xi−1 = PTi
− PTi−1

+ Ei − Ei−1.

• We can rewrite the process Xi as

Xi = Xi−1︸︷︷︸
XDF
i

+RTi−1,Ti
+ Ei − Ei−1︸ ︷︷ ︸
XMA
i

, RTi−1,Ti
= PTi

− PTi−1
∼ N(0, σ2∆).

• This is ARIMA(0,1,1) process, which can be reparametrized as

Xi = Xi−1︸︷︷︸
XDF
i

+ θVi−1 + Vi︸ ︷︷ ︸
XMA
i

, Vi ∼ N(0, γ2).
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ARIMA(0,1,1) Estimation

• Parameters θ and γ2 can be estimated by maximizing the likelihood function

L(θ, γ2) = fX0(x0)fX1(x1|X0 = x0) · · · fXn(xn|X0 = x0, . . . ,Xn−1 = xn−1).

• To identify σ2 and ω2, we solve the equations

γ2(1 + θ2) = var[XMA
i ] = σ2∆ + 2ω2,

θγ2 = cov[XMA
i ,XMA

i−1 ] = −ω2.

• Finally, we get the original estimates as

σ̂2 = ∆−1γ̂2(1 + θ̂)2,

ω̂2 = −γ̂2θ̂.
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Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process Pt satisfy

dPt = τ(µ− Pt)dt + σdWt ,

where
• Wt is a Wiener process,
• µ is the long term mean level,
• τ > 0 is the speed of reversion,
• σ > 0 is the instantaneous volatility.

• This stochastic differential equation has solution

Pt = P0e
−τ t + µ(1− e−τ t) + σ

∫ t

0
e−τ(t−s)dWs .

• When the process is contaminated, the estimates of τ and σ are biased.
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Bias of Ornstein-Uhlenebeck Parameters
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ARIMA(1,0,1) Reparametrization

• When considering equidistant sampling, the process Xi can be decomposed as

Xi = PTi
+ Ei = PTi−1

e−τ∆ + µ(1− e−τ∆) + σ

∫ ∆

0
e−τ(∆−s)dWs + Ei .

• Furthermore, from relation PTi−1
= Xi−1 − Ei−1 we obtain

Xi = µ(1− e−τ∆)︸ ︷︷ ︸
X IC
i

+ e−τ∆Xi−1︸ ︷︷ ︸
XAR
i

+σ

∫ ∆

0
e−τ(∆−s)dWs − e−τ∆Ei−1 + Ei︸ ︷︷ ︸

XMA
i

.

• This is ARIMA(1,0,1) process, which can be reparametrized as

Xi = α︸︷︷︸
X IC
i

+ϕXi−1︸ ︷︷ ︸
XAR
i

+ θVi−1 + Vi︸ ︷︷ ︸
XMA
i

, Vi ∼ N(0, γ2).
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ARIMA(1,0,1) Estimation

• Parameters α, ϕ, θ and γ2 can be estimated by maximizing the likelihood function

L(α,ϕ, θ, γ2) = fX0(x0)fX1(x1|X0 = x0) · · · fXn(xn|X0 = x0, . . . ,Xn−1 = xn−1).

• Finally, we get the original estimates by solving equations

α = X IC
i = µ(1− e−τ∆),

ϕXi−1 = XAR
i = e−τ∆Xi−1,

γ2(1 + θ2) = var[XMA
i ] =

σ2

2τ
(1− e−2τ∆) + ω2(1 + e−2τ∆),

θγ2 = cov[XMA
i ,XMA

i−1 ] = −ω2e−τ∆.
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Direct Method of Moments

• We use four unconditional moments

m1 = E[Xi ] = µ, m2 = var[Xi ] =
σ2

2τ
+ ω2,

m3 = cov[Xi ,Xi−1] =
σ2

2τ
e−τ∆, m4 = cov[Xi ,Xi−2] =

σ2

2τ
e−2τ∆.

• By replacing theoretical moments with their estimated counterparts, we get

µ̂MOM = m̂1, τ̂MOM =
1

∆
log

m̂3

m̂4
,

σ̂2
MOM = 2

1

∆

m̂2
3

m̂4
log

m̂3

m̂4
, ω̂2

MOM = m̂2 −
m̂2

3

m̂4
.
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Direct Maximum Likelihood Estimation

• Observed variables Xi are normally distributed with conditional density functions
fXTi

(xTi
|XTi−1

) and conditional moments

E[XTi
|XTi−1

= xTi−1
] =

xTi−1
σ2 + 2τµω2

σ2 + 2τω2
e−τ∆i + µ

(
1− e−τ∆i

)
,

var[XTi
|XTi−1

= xTi−1
] =

σ2ω2

σ2 + 2τω2
e−2τ∆i +

σ2

2τ

(
1− e−2τ∆i

)
.

• We get the estimates by maximizing the logarithmic likelihood function

l(µ, τ, σ2, ω2) =
n∑

i=1

log fXTi
(xTi
|XTi−1

= xTi−1
).
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Bias of Traditional Parameter Estimates
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Comparison of Proposed Estimators
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Conclusion

• Ignoring the market microstructure noise leads to significant bias and
inconsistency of estimates of the process parameters.

• For the Ornstein-Uhlenbeck process, finite-sample simulations show that the
maximum likelihood of ARIMA(1,0,1) reparametrization gives the most accurate
estimates.

• We assume the standard Ornstein-Uhlenbeck process and the independent
Gaussian white noise. However, both of these assumptions are too restrictive for
financial data as many papers suggest. Relaxation of Gaussian assumptions is a
topic for the future research.

• High-frequency Ornstein-Uhlenbeck process can be utilized e.g. in pairs trading
strategies and stochastic volatility models.



Financial High-Frequency Data Wiener Process Ornstein-Uhlenbeck Process Conclusion

Thank you for your attention!

This work was supported by the Internal Grant Agency of University of Economics,
Prague under Grant F4/63/2016.


	Financial High-Frequency Data
	Wiener Process
	Ornstein-Uhlenbeck Process
	Conclusion

