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Introduction

Introduction
Well-known from basic courses:

There is a one-to-one relationship between distribution function and
characteristics function

X — random variable

F(x) = P(X < x), x € R — distribution function
o(t) = E(exp{itX}), t € R — characteristic function

Statistical problems typically formulated in terms of distribution functions
and their parameters, therefore also in terms of characteristics functions.

o(t) = E(exp{itX}) = C(t) + iS(t)
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Goodness-of-fit tests

e Goodness-of-fit tests, simplest formulation:
X1,...,X, are i.i.d. random variables with d.f. F

Ho : F = Fy for a given Fy
against

H; : Hy is not true

More often:

Hg : F € F, F a system of distributions, typically depending on
parameters—nuisance parameters
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Kolmogorov-Smirnov type tests

Typical test procedures for Hy versus H; are based on empirical
distribution functions

~ 1<
Fn(x):;ZI{X;SX}, x€R
j=1

Kolmogorov-Smirnov test: sup,cp |Fa(x) — Fo(x)|
Cramér-von-Mises test: [ . |:E,,(X) — Fo(x)|?dFo(x)

Anderson-Darling test: [ IFa(x) = Fo(x)Pw(x)dFo(x)
w(x)- weight function, often w(x) = (Fo(x)(1 — Fo(x)))~!

x- test
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Advantage: if Fy is continuous, the distribution of KS and CVM under
Ho does not depend on Fqy (distribution free test statistics).

Similar problem:
(i) Hy: distribution F is symmetric (F(x) = 1 — F(x)Vx),

(i) two sample tests—two independent samples, we are testing that they
have the same distribution,

(iii) independence tests,

(iv) change-point tests.
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Empirical characteristic function based procedures

Empirical characteristic function based procedures
Xi,...,X, — i.i.d. random variables

Testing problem Hy versus Hy can be equivalently expressed as
Ho 1 ¢ = g for a given g versus Hj : Hp is not true
o(u) = Eexp{iuX;}, u € R — characteristic function (CF)

@n(u) = =377 exp{iuX;}, u € R — empirical characteristic
function (ECF)

Test statistic:

w(-)- weight function (usually, nonnegative, symmetric).
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Empirical characteristic function based procedures

e Large values indicate that the null hypothesis is violated.

e Question is critical value — simulation (Fy given), asymptotics for
n — oo, simulated critical values, bootstrap.

o Noticing that exp{iuXj} = cos(uX;) + isin(uX;), u € R and by
symmetry of w(-) we get

1 n

To(w) = /R (> (U - l_fouj(u)))2 x w(u)du = %ZZJW(XJ- - X,)
- j=1 j=1 v=1

Ju(x) = [ cos(ux)w(u)du and Ey(...) denotes the expectation under
the null hypothesis and

Uj(u) = cos(uXj) +sin(uX;), uveR.
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Empirical characteristic function based procedures

Asymptotic behavior of T,(w) :
Under the null hypothesis and [, uv?w(u)du < oo

w) —>d/RV2(u)W(u)du

where {V/(u); u € R} is a Gaussian process with zero mean and

cov(V(u1), V(u2)) = covo(Uj(un), Uj(u2))
covp(.) — covariance under the null hypothesis. Generally,
nTo(w) — / VA(EU;(u) — EOUJ-(U)))2 w(u)du

If [ (EUj(u) — EoU;(u))? dw(t) > O then

nTo(w) = cc.
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Empirical characteristic function based procedures

Something from the history

H. Cramér (1946) — classical book, empirical characteristic function
mentioned

Feuerverger and Mureika (1997), Annals of Statistics

Sandor Csorgé (1984) — Proceedings of Asymptotic Statistics, 1984,
Praha

Ushakov (1999) — Selected Topics in Characteristics Functions (book)

Meintanis ( 2016), South African Statistical Journals — survey paper with
discussions

More general setup:
Klebanov (2005) — N-distances and Their Applications (book)

Procedures based on Probability generating function — see talk of
Hudecova

Rizzo and Székely et al (2010,...)
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Empirical characteristic function based procedures

Further procedures based on empirical characteristic functions for various
statistical problems in recent years:

e tests for symmetry,

e test for independence,

e two-sample problem,

e change point problem,

e nuisance parameters,

asymptotics, computational aspects, simulations, applications.
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Two-sample problem

Two-sample problem

Y1,..., Y, —independent random variables
F; — distribution function of Y;

Testing problem

H01F1:...:Fn
H:hR=..=Fh#Fna1=...=F, for m < n,

F1 and F,, are unknown, m - known.

To-m(w) = [ g (6) = 80 (P we)a,

n —00
w(-) is a nonnegative weight function,
Pm(t) and @O_, (t) — empirical characteristic functions based on

Yi,..., Ym and Y1, ..., Yy, respectively, i.e.,
_ 1< . 0 1 . .
Balt) = 1 eplitV)}, ()= —— O it}
j=1 j=mt1
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Two-sample problem

Under the null hypothesis

o0

ETmnm(w) = " [ Elp(6) - B0 w(e)de

— 00

:W%/ (s Zu(t_izu ) w(

j=m+1
= /j)o var(Uy(t))w(t)dt.
Generally,
( Zu(t -— Z Ui( t)>
J m+1
_ var(Ul(t) n var(Un(t) + (EUl(t) — EUl(t)>2'

m n—m
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Two-sample problem

Limit behavior under Hp and 0 < [, t?w(t)dt < oo:
For m=my, m,/n — 6y € (0,1)

Tmn—m(w) — /V2 w(t)dt,

{V(t);,t € R} — Gaussian process with zero mean and covariance
structure

cov(V(t1), V(t2)) = cov(Uj(t1), Uj(t2))-

For testing — null hypothesis rejected for large values of test statistic,
approximation for critical values — either simulation of the limit
distribution with estimated covariance, or some bootstrap.

Consistent test.

Multivariate version — quite straightforward.
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Two-sample problem

Simulations

NOTATION USED IN THE TABLES
N: N(0,1,0)

N1: N(0.4,1,0)

N2: N(0.7,1,0)

N3: N(0,1.5,0)

N4: N(0,2,0)

N5: N(0,1,0.6)

N6: N(0,1,0.9)

MN1: MN(0.2,1,0)
MN2: MN(0.4,1,0)
MN3: MN(0,1.2,0)
MN4: MN(0,1.5,0)
MN5: MN(0,1.2,0.5)
MN6: MN(0,1.2,0.8)

I1: 1(0.01,1)
Ir'2: 1'(0.5,0.5)
I'3: '(0.5,1.0)
I'4: I'(1.0,1.0).
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Two-sample problem

F T1 T1.s T> T1.5 T2 T4 Ty Ti.5 T2 Ti5 T2 T4
N 510 510 610 611 611 610 | 510 510 510 510 510 610
N1 (2435 2636 2737 2233 2535 2839|4153 4355 4556 3748 4051 4655
N2 (6878 7180 7281 6273 6878 7582(9296 9396 9497 88393 9195 9497
N3 (3043 3044 3044 2741 2943 2944 | 5267 5468 5568 4863 5266 5469
N4 | 6174 6275 6376 5669 6173 6277|9096 9296 9297 8794 9096 9397
N5 712 612 6 12 712 712 611 713 612 6 12 714 613 610
N6 815 714 713 1018 815 611 |[1018 612 612 1525 1118 612
MN1|1117 1118 1118 916 1017 1018|1423 1523 1523 1422 1423 1624
MN2 | 2737 2839 2940 2333 2637 3140|4354 4556 4657 3951 4354 4859
MN3 | 916 916 917 915 815 915 |1422 1422 1422 1421 1422 1423
MN4 | 1827 1827 1827 1724 1826 1726|3039 3140 3140 2938 3040 3041
MN5| 917 917 917 915 816 915 |1422 1423 1422 1421 1423 1422
MN6 (1018 1017 1017 916 916 915 |1523 1523 1523 1523 1523 1423

Table 1 (d = 2): Percentage of rejection of the null hypothesis with F} the standard
multivariate normal distribution based on samples of size n; = no= 25 (left part)
and n; = ny = 50 (right part). Nominal size: o = 5% (left entry), a = 10% (right
entry)

Hlavka and Hukova es University, Prague

St

al procedures based on empirical characteristic functions



Change-point

Change-point problem

Yi,..., Y, — independent random variables
F; — distribution function of Y;

H01F1:...:F,,
H:FhR=..=Fh#Fn1=...=F, for m < n,

m, F; and F,, are unknown.

oo (w) = max (M0 T 50 - 8 Pwto)at

1<k<n n? n o

w(-) is a nonnegative weight function, v € (0, 1)
?k(t) and 2%, (t) — empirical characteristic functions based on
Yi,..., Yk and Yii1,..., Yy, respectively.
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Change-point

Under Hy
E[() M [ ) - 8w Pwoe]
= (k(nn; k)>v/jo var(Z;(t))w(t)dt
Generally,

(M) M [ ) - 20 P

- (Mo [

— 00
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Change-point

Limit behavior under Hp and 0 < [, t?w(t)dt < oo:

For m = my, m,/n— 6y € (0,1)

T (W) =9 sup (s(1—s))! / 22(s, )w(t)dt,
s€(0,1) R

~v€(0,1], {V(s,t); s €(0,1), t € R} — Gaussian process with zero
mean and covariance structure (0 < s; < s < 1)

COV(Z(Sl7 tl), Z(52t2)) = 51(1 — SQ)COV(Uj(tl), Uj(tz))
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Some theoretical results

Some theoretical results

We are interested in limit behavior (n — o0) of

sup (s(1—s))7? / (Zo(s,u) — sZ,(1, u))?w(u)du
s€(0,1) R

7 €(0,1]
Lsn)
Zn(s, u) = —=> (U(u) - EUi(u)), weR, se(0,1)

Uj(u) = cos(Yju) +sin(Yju).
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Some theoretical results

The following holds true:

a) Forany 0 < s < 1 it holds sup, E [, (Za(s, u))*w(u)du < occ.

b) There exists an a > 0, 0 < D < oo such that for any 0 < s < 1 it
holds
sup E | Z2(s. un) — Z3(s, )| < Dljun — wa]?.

c) The marginal distributions of {Z,(s, u)} converge to the marginal
distributions of a Gaussian process {Z(s, u)} with covariance
structure (0 < 51 < s, < 1)

cov{Z(s1,u1), Z(s2, up)} = s cov(Ur(u1), Ur(u2)).
Then

/R (Zo(s, u))Pw(u)du —* /R (Z(s,u) — sZ(1, u)2w(u)du

for any fixed s € (0,1) by Theorem 22 in Ibragimov and Chasminkij
(1981)
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Some theoretical results

Still needed to investigate

X (s) = (/R(Z,,(s, u)—sZ,,(l,u))2W(u)du)1/2, se(0,1)

it means to prove tightness and convergence of the finite dimensional
distribution.
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Nuisance parameters

Procedures when nuisance parameters are present
Linear models

Yi,..., Y, — independent observations following the linear model
Y, = xJ-TB +ce, j=1,2,...,n,

x; = (1, %72, ..., xp)T € RP, j=1,2,...,n — known regressors,
B € RP and ¢ > 0 — unspecified regression and scale parameters,

e, j=1,2,...,n— errors assumed to be i.i.d. random variables having
distribution function F(-).
We wish to test the null hypothesis

HQZFEFQ,

against general alternatives.

g=(Y;— XJ-TB,,)/En-, Jj=1,2,...,n - residuals

Hlavka and Hugkova rles University, Prague
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Nuisance parameters

Nonparametric version
Model: (X, Y) are observed

Y = m(X)+ a(X)e, (2)

m(-) and o(-) — unspecified regression and scale functions,

e — error with a distribution function F, characteristic function ¢(t),
mean zero and unit variance,

To test the null hypothesis
Ho: Fe F={Fy, ve0O}
F — parametric family of distributions indexed by ¥ € © C R9, g > 1.

Ho : ¢ € {¢(-:7),9 € ©},

©(+; 1) — characteristic function corresponding to Fy, for some
(unspecified) ¢ € ©.

Hlavka and Hugkova Charles University, Prague
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Nuisance parameters

The proposed test statistic based on the residuals
é;:(y.l_fﬁ”(xj))/an()g)? Jj=12,...n, (3)

m,(+) and 52(+) — kernel estimators of m(-) and o2(-), the corresponding
empirical characteristic function (ECF):

1<~ s
(pn(t) = E Z elteJ.
j=1
Test statistic:

Tow =1 | loa(t) = o(t:30) Pu()c (@)

— 00

5,, — a suitable estimator of ¥,

w(-) — a symmetric nonnegative weight function.
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Nuisance parameters

(X1, Y1), ..., (Xn, Ya) are i.i.d. random vectors such that
Yi=m(Xj) +o(Xj)e, j=1,....n, (5)

where e1, ..., e, Xi,..., X, m(.) and o(.) satisfy:

e (A1) Let ey,..., e, be i.i.d. random variables with zero mean, unit
variance and Eej‘-‘ < 00 and characteristic function ¢(t; ¥), t € R, where
9= (V1,...,94)" €O, Yy denotes the true parameter value.

e (A.2) On the real and imaginary parts of ((t; ¥J) denoted by C(t; )
and S(t; ), we assume that the first partial derivatives w.r.t. t as well

as ¥,...,9, exist. Particularly, we assume that
Co(t,9) = ac(t 9 Sy(t, ) = 858(519) s=1,...,q, are bounded

continuous in 19 in a neighborhood of ¥ (whlch is the true parameter
value), for each t. The first derivatives C’(t; 9J) and S'(t; J) w.r.t. t are
bounded and continuous for all t in a neighborhood of .

Hlavka and Hugkova Charles University, Prague
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Nuisance parameters

e (A3) Xq,..., X, are i.i.d. on [0, 1] with common positive continuous
density fx.

o (A4) Let (ey,...,€e,) and (Xi,...,X,) be independent.

e (A.5) Let m(-) and o(-) be functions on [0, 1] with Lipschitz first
derivative, o(x) > 0, x € [0,1]

e (A.6) The weight function w is nonnegative and symmetric, and

oo
/ t*w(t)dt < oc.

o (A7) Let 3, be an estimator of ¥ such that
—~ 1 <&
V(U = d0) = 7= > _w(esido) + op(1)
j=1

P(z;9) = (V1(z;9), ..., ¥q(2;9)) T are continuously differentiable
functions w.r.t. to z and continuous in components of ¥ in a
neighborhood of ¥y and such that Eyi(ej; ¥) = 0 and

Eyl|1(ej; 9)|[? < oo for ¥ in a neighborhood of 9

Hlavka and Hugkova Charles University, Prague
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Nuisance parameters

Estimators of m(.), o(.) are kernel type generated by the kernel K(-) and
the bandwidth h = h, satisfying

e (A.8) Let K be a symmetric twice continuously differentiable density on
[-1,1] with K(—1) = K(1) = 0.

e (A.10) Let {h,} be a sequence of the bandwidth such that

lim,_s o0 nh2 = oo and lim, nhﬁ*‘S = 0 for some 6 > 0.

We use the following estimators of the density function fx(.) of Xj's,
regression function m(.) and variance function o2(.):

K00 = i SOKG =)/, Al) = - X)ZK )/ hn)Y;

S2(x) = — ; i — X — ma(x)?,  x
Ta(x) = e (0) ;K((XJ )/bn)(Yj — ma(x))", x € [0,1].

Hlavka and Hugkova Charles University, Prague
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Nuisance parameters

Recall that the residuals €; are defined above. Choice of the estimators
¥, of ¥y satisfying (A.8) — for maximum likelihood type estimator ¥,

Vi = v5) = = > bl o) + op(1)

for a measurable h(.; Jp).
ej's are replaced by the respective residuals & we get for the respective

estimator ¥, (ass.A.8) holds true with

2

Egeih'(e;0), xeRL

P(x;9) = h(x;9) — xEyh’(e1; 9) + x

Hlavka and Hugkova Charles University, Prague
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Nuisance parameters

Theorem Let assumptions (A.1)-(A.10) be satisfied. Then under the
null hypothesis, as n — oo,

Tow ¢ / 1Zo(t) | Pw(t)d,

where {Zy(t), t € R} is a Gaussian process with the covariance
structure of the form cov(Zy(t1), Zo(t2)) where Zy(t) := Z(t; ¥9) with

Z(t;9) = (cos(tey) + sin(ter) — Ey(cos(ter) + sin(ter)))

2
€ —

—ter(C(t,9) — S(t,9)) —t 1(C'(t,19)+5'(t,19))

—T (e1;9)(€(t;9) + $(t; ).
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Nuisance parameters

e The explicit form of the limit distribution of T, , is unknown even
under the null hypothesis. It depends on the hypothetical distribution of
the error terms and the chosen estimator of the nuisance parameter .

e Surprisingly it does not depend on the density fx of X;'s, the functions
m(.) and o(.) and even not on the kernel K(.) and the bandwidth h,.

e The limit distribution does not provide an approximation for the critical
values. However, a special parametric bootstrap does it.

e The crucial part of proof is on the process

Z,(:0,) = \% S {sin(t8) + cos(t8) — C(t:7,) — S(t:0)} .t R,
j=1

behaves asymptotically as the Gaussian process {Zy(t); t € R} described
above.

Hlavka and Hugkova Charles University, Prague
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Nuisance parameters

Bootstrap

The parametric bootstrap Neumeyer et al. (2006) .

I) bootstrap errors e}y, ...,es, —a random sample of size n from the
distribution F(.; 1),

2) The bootstrap observations :

Y,j;- = m(X;) + e:jan(Xj), j=1...,n,

3) The bootstrap version T, of the test statistic is defined as T, ,, with

Yi,..., Yy replaced by Y},..., Y, and 19,, is replaced by its bootstrap
counterpart.

It can be shown that

(i) under Hp and ass. (A.1) — (A.10), given Yi,..., Y, the limit
distribution of T, is the same limit dlstrlbutlon as that of T, .,

(i) under alternatives plus some assumptions T, mw = O0p=(1) holds true
in probability (P*(.) denotes conditional probability given Yi,..., Y.

Hlavka and Hukova Charles University, Prague
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Nuisance parameters

Simulations

Model:
Yi =B+ BXi+ BXP+e, j=1...,n

X; —i.i.d. uniform on (0,1),

Po=0 pr=p=1,

w(t) = exp{—7t?}, VvVt ~>0,

5000 replications, bootstrap size B = 100,

distribution of the errors:

normal(N), Laplace (LP), 8(1,9), x3, ty, skewnormal(SNy), asymmetric
Laplace (AL), logistic (LG).

Hlavka and Hukova Charles University, Prague
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Nuisance parameters

n=25 n=>50
KS CM y=01 05 075 1.0 KS CM  y=0.1 05 075 1.0

N 511 510 510 510 510 510 510 510 510 510 611 511
LP 1928 2232 2029 2635 2737 2737 3447 4355 4153 4657 4556 4455
LG 814 915 814 1118 1219 1320 1017 1220 1118 1624 1725 1725
S(IJ.S 4149 4653 4251 5159 5360 5360 6673 7378 7076 7782 7883 7883
S(l’_75 2027 2329 2027 2734 2835 2936 3240 3745 3441 4451 4653 4753
Sl_sl 4857 5462 4958 6269 6371 6471 7683 8483 8085 8992 9093 9093
5[7‘5 2230 2633 2230 3139 3340 3441 4049 4553 4048 5260 5563 5664
bps 4054 5064 5366 5066 4461 3856 7787 8995 9296 9297 8995 8494
bp7s 1628 2336 2941 2136 1428 1021 3853 5570 6477 6077 4870 3660
x32 4154 5164 4558 6173 6375 6375 7384 8692 8390 9296 9396 9397
x52 2739 3346 2840 4254 4457 4558 5164 6476 5871 7685 7987 7987
)(72 2131 2536 2132 3143 3345 3446 3852 4962 4356 6272 6475 6576
3 2433 2937 2534 3443 3644 3744 4253 5260 4857 5866 5967 5867
ty 1523 1826 1623 2331 2433 2533 2636 3342 3039 4050 4151 4252
ts 1119 1422 1219 1825 1927 2028 1726 2231 1928 2837 3039 3040

Percentage of rejection for the normality null hypothesis at level 5% (left
entry), 10% (right entry)

[
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Nuisance parameters

n=25 n=>50
KS CcM y=0.1 05 075 1.0 KS CcM y=0.1 05 075 1.0

LP 511 511 510 510 510 510 511 611 510 510 510 510
S?_S 1825 2127 916 1724 2027 2230 2533 2937 1522 2533 2937 3240
S?_75 8§14 915 713 915 815 915 1017 1118 1119 1220 1119 1218
stl 3244 3849 1929 3548 3850 4051 6174 6880 4256 7081 7283 7383
8[715 1219 1321 1018 1424 1423 1422 2234 2537 1728 2742 2741 2740
bos 3048 3556 5569 6480 4771 2952 7186 8193 9397 9899 9699 8398
bp7s 1020 1228 3651 4464 2348 723 2647 4067 7687 9197 8295 5587
)(32 3147 3552 2942 4461 4260 3756 6682 7588 6679 8895 8694 8293
xg 1832 2035 1931 2846 2542 2237 4262 4869 4360 6884 6582 5878
x72 1425 1426 1627 2136 1732 1527 3049 3454 3349 5572 4970 4265
SN3 816 716 1120 1325 1021 716 1630 1733 2338 3554 2848 2139
SNg 1426 1428 1930 2541 1935 1529 3452 3858 4157 6279 5575 4668
SNjp 1630 1833 2234 3047 2342 1935 4160 4666 5066 7286 6682 5676
ALgg 3956 4562 3346 5067 5067 4764 7889 8593 7485 9196 9197 8996
Alge 2638 2842 2030 3044 2944 2843 5671 6176 4761 6578 6477 6276

Percentage of rejection for the Laplace null hypothesis at level 5% (left
entry), 10% (right entry)

[
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Nuisance parameters

y= n=>50 n =100
0.1 0.5 0.75 1.0 0.1 0.5 0.75 1.0

ALg4 510 510 510 410 410 510 49 49
ALgs 510 510 612 612 510 611 511 410
ALg75 510 59 49 37 611 510 510 49
AL, 510 510 612 613 59 511 611 511
AL3 59 510 59 410 510 510 59 49
ALy 510 49 48 38 510 59 49 49
)(12 1521 6575 8389 8591 2331 9396 98 99 98 99
)(22 611 915 1325 17 30 611 1526 2439 2542
LN, 814 2233 47 60 5670 914 5164 8189 8693
LN} s 1117 2740 5672 7585 1218 7383 96 98 99 100
To.7s 713 1422 24 37 3044 813 2134 46 62 5571
Ty 915 2335 48 62 5671 914 50 64 8189 8692
Wos 1622 6071 8391 9095 2532 9597 99 100 100 100
Wo.75 10 16 4758 7079 75 84 1319 8289 9597 96 98

Percentage of rejection for the asymmetric Laplace null hypothesis at
level 5% (left entry), 10% (right entry)
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Computation

Computations
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Computation

Computations for ECF-based statistics

AIM:

Advantages vs. disadvantages

CONCLUSION: The ECF test statistic has computationally expensive
closed form expression.

Hlavka and Hukova Charles University, Prague
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Computation
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Computations for ECF-based statistics

Typically, research papers say that ECF based test statistics, e.g,

T= [ lox(t) - pr(win)ar,

—00

can be (it is easy to see, using simple algebra, clearly) expressed as
2
—nzZ’ (X — X;) 22/ —Yj)f%ZIW(X;—Yj),
i

where, for example, 1,,(D) = /7 exp(—D?) or 2/(1 + D?).
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Computations for two-sample problem

In the two-sample problem, we use the test statistic

T [ lex() - ev(Pwit)at

where $x(t) = 1 S exp(itX;) and Py (t) = L 3" exp(itY;).

Let us recall some helpful formulas:

x+iyl = V2
exp(it) = cos(t) + isin(t).

It follows that T is equal to

/Oo |% > {cos(tX;) +isin(£X;)} — % > {cos(tY;)+isin(tYi)} Pw(t)dt.
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Next, using the formula for absolute value, we have

RN ()
n {,17 > sin(tX;) — % ZSin(tYi)}2:| w(t)dt
-/ Z 253 (eos(tX) cos(tY;) + sin(tX)sin(Y;))
+ % S S {cos(£X;) cos(X;) + sin(£X;) sin(£X))}
+ % S S {cos(tY;) cos(tY;) + sin(£Y;) sin(t ;) w()dt

Using
cos(a — 3) = cos(a) cos(3) + sin(a) sin(3),

Hlavka and Hugkova Charles University, Prague
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we obtain
> 2 1
/m (=25 cos{t 06— Y)} + 5 3 cos{t(X — X))}
i,J )

£ 3 cos{e(Y: - Y} (o)

T

_ _% Z/cos{t(X,- — V) w(t)dt + %/Zcos{t(X,- — X)) }w(t)dt

+ % Z/cos{t(Yi — Yj)tw(t)dt

and it remains to choose the weight function w(t) so that
J cos{tD}w(t)dt has closed form expression.

Hlavka and Hugkova Charles University, Prague
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Favorite choices are w(t) = exp(—at?) or w(t) = exp(—b|t|) because

/OO cos{tD} exp(—at®)dt = \/jexp(D2/4a),

—0o0

/oo cos{tD} exp(—blt|)dt = -2
P - B+ D

— 00

The resulting algorithm is:
Calculate the (n+ m)? differences DF*, D), and D"
Calculate the integrals I;; = [ cos{tD;}w(t)dt.
Calculate T as the (weighted) sum of the integrals /j.

Hlavka and Hugkova Charles University, Prague

Statistical procedures based on empirical characteristic functions



Computation

T1=0
for (i in 1:n) {
for (j in 1:n) {
T1=Ti+iw(x[i]-x[j])
}
}
T2=0
for (i in 1:m) {
for (j in 1:m) {
T2=T2+iw(y[1]1-y [j1)
}
}
T3=0
for (i in 1:n) {
for (j in 1:m) {
T3=T3+iw(x[1]-y[j]1)
}
}
T=T1/(n"2)+T2/(m"2)-2*T3/ (n*m)

Hlavka and Hugkova Charles University, Prague

Statistical procedures based on empirical characteristic functions



Computation

Speed of calculation

Good news: ECF lead to closed form expression.

Bad news: the algorithm is not fast (we have to calculate and sum
n(n—1)/24+ m(m—-1)/24+nx«m=(n+m)(n+ m—1)/2 terms).

Naive R implementation of the two-sample ECF test statistics leads to:
n= m =100 0.04s
n=m=200 0.18s
n=m =400 0.68s
n=m=3800 2.74s

Hlavka and Hukova

Charles University, Prague
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Other testing problems

This method can be used in other testing problems, for example:
k-sample problem Hp: @1 = -+ = @y,

goodness-of-fit Hy : wx = ¢ or some other property of ¢,
multivariate symmetry Hp : o(t) = ®(]|t|?),

independence Hp : ¢(t,s) = ¢(t)e(s).

In the following, we shortly discuss a change-point problem
(generalization of the two-sample problem):

Ho : Y; are iid
VS.
H; : dk such that Yy,..., Yy ~ F; and Yk+1,...,YTNF2.
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Two-sample changepoint (and bootstrap)

We need to compare samples Yi,..., Yx and Yii1,..., Y7 for all
k=1,...,n—1.

The ECF test statistic is

o0

T=max1(k) [ 18u(0) - PO

— 00

where @k (t) = %ZLI exp(itY;), pFi(t) = ﬁ Z,.T:kﬂ exp(itY;) and
~(k) is a weight function.

Critical values are typically obtained by bootstrap leading to
computational difficulties.
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Speed of calculation

Naive R implementation of the two-sample test statistics leads to:
n=m =100 0.04s
n=m=200 0.18s
n=m =400 0.68s
n=m=3800 2.74s

In changepoint analysis with bootstrap critical values (say B = 1000), we
need to calculate this roughly BT = B(n+ m) times leading to:

n= m =100 8000s = 2.2h
n = m =200 72000s = 20h
n = m = 400 544000s = 6.3d
n = m = 800 4384000s = 51d

Hlavka and Hukova Charles University, Prague
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Speed of calculation

Higher speed is possible by using C code and compiled shared library:

twosam <- function (x,y) {.C("twosam",x=as.double(x),
y=as.double(y) ,n=as.integer (length(x)),
m=as.integer (length(y)) ,t=double(1))$t

}

dyn.load("./twosam.so")

T2=twosam(x,y)

The computation time for n = m = 800 is reduced from 2.74s
(corresponding to 51 days) to 0.008s (corresponding to 21 minutes).

The code can be further optimized by using some simple relations.

Hlavka and Hukova Charles University, Prague
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void twosam(double *x, double *y, int *n, int *m, double *t)
{ int i, j;

double t1, t2, t3;

tl = 0.0; t2 = 0.0; t3 = 0.0;

for(i = 0; i < *n; i++)

{ for( j = 0; j < *n; j++)

tl +=1.0 / (1.0 + ((x[31-x[i]) * (x[31-x[i1)));
N }
for(i = 0; i < *m; i++)
{ for( j = 0; j < #m; j++)

{ t2 += 1.0 / (1.0 + ((y[j1-y[il) * (y[j1-y[i1)));

) }
for(i = 0; i < *n; i++)
‘ for( j = 0; j < *m; j++)

t3 += 1.0 / (1.0 + ((y[31-x[iD) * (y[31-x[i1)));
. }

*t = t1/(xn * *n) + t2/(Ckm * *m) - 2.0 * t3/(kn * *m) ;

d Huskova
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Advantages

Advantages:
closed form expression,

easy generalization to more dimensions.

Recall that multivariate CF is (t) = E exp{it ' X}.

All derivations for multivariate ECFs are very similar.

Hldvka and Hugkov4 s University, Prague

St al procedures based on empirical characteristic functions



Computation

Multivariate setup

In the two-dimensional two-sample problem, we use the same test statistic

T= [ lox(t) - pr(win)ar,

—00

with multivariate ECFs $x(t) = 1 S exp(it" X;) and

n

Py (t) = L S exp(it"Y;) leading to
T = —%Z[cos{tT(X; V) w(t)dt + %/Zcos{tT(X; X)) w(t)dt

+ % Z/COS{tT(Yi = i)} w(t)dt

Hlavka and Hukova Charles University, Prague
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Multivariate setup

Using cos(a + ) = cos(«) cos(B) — sin(a) sin(5), we have
/cos{tT(X,- Y w()dt

- /cos{tl(X,-l V) + (X — Vi) bw(t)dt

[leostt(X ~ Yi)} cos{ea(Xa — Vi)
— sin{tl(X,-l — le)}Sin{tz(X,'g — ng)}]Wl(tl)WQ(tg)dtldtg
/COS{tl(X,'l — le)}Wl(tl)dtl/COS{tg(Xiz — Yj2)}W2(t2)dt2

if w(t) = wy(t1)wa(tz), where w;(x) are symmetric.
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Multivariate setup

The resulting expression for the two-dimensional test statistics

o= 2 WX = Vi) (X2 = Vo)
’)J

1
+ Z Ly (Xix — Xj1)hw (Xi2 — Xj2)
isj
1
5 D (Y = Vi) (Y2 = Vo).
]

is not much more complicated than in one-dimension because it only
replaces the terms 1, (Xi1 — Yj1) by 1w (Xi1 — Yj1)lw(Xi2 — Yj2).
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Disadvantages

{

\\\\\\\mlh'llll|lll“(lMlli\lilllllru\‘“\L

Disadvantages:
choice of tuning parameters (of the weight function),
nuisance parameters (bootstrap),

computationally intensive (but some tests of this type are even
worse).

and Hugkova es University, Prague
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ECF-based test of spherical symmetry

Let o(t) = E(exp(it" X)), t € RP, denote the characteristic function
(CF) of random vector X.

Hp : there is some function ¢ : R — R such that
o(t) = o([[t]?), t € RP.

Test statistic can be based on discrepancies
Dn(t,5) = @n(t) = @n(s),

computed on pairs of points t,s € RP such that ||t]| = ||s]|.
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ECF-based test of spherical symmetry

A Cramér-von Mises type test statistic is
o [ K K
M, = ’7/ Z Z |Dn(puj; pum) ) | W(p)dp,
0 j=1 m=1
where u;, i = 1,..., K, are points scattered on unit sphere.
Straightfoward algebra yields:

K n
1
M, =~ S Iwlw] Xim) + Iw(ug Xim) = 20w (ud Xi = 0] X))

r,s=1/,m=1

where Xjm = X; — Xm and lw(z) == [ cos(pz) W(p)dp

Hlavka and Hukova Charles University, Prague
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MGF-based test of skew-normality

Moment generating function of bivariate skew-normal distribution
satisfies:
aM(tl,tz) 5 8/\/I(t1,t2)

O _
2 oty ! Oty

= [(52 — wél)tl — ((51 — u)(;z)tz] M(tl, t2)
Test statistics:
Tn,W(@n) = n/ DS(tl, to; @n)W(tl, tg)dtldtz,
R2

where D, (ty, ty; 9) is

8/\/’"(1‘1,1‘2) 5 8M,,(t17t2)
5 _

o oty ! oty

— [(62 — w51)t1 — ((51 — w§2)t2] Mn(tl, tz).
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MGF-based test of skew-normality

By straightforward algebra (it is easy to see, clearly)

n

1
Tow(¥) = = Z [6§X1jxlk + 6§X2jX2k - 26152X1jx2k:| To(Xuji) lo(Xaji)
k=1
1 n
+; [Hglz(xljk)lo(xyk) + K2 b (X ) o (Xuj) — 2H152/1(X1jk)/1(X2jk)]
jok=1

2 n
+; Z{[(szlilxu — 0181 X051 h (Xojic ) o (Xvjk)

J k=1

+ [0152X2j — Sk X1 h (Xujk) lo(Xajk) }

where Xmjx = Xmj + Xk, m=1,2, and In(z) = [ t"e%w(t)dt.
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Tests for martingale difference hypothesis (MDH)

Testing procedures which detect if the observed time series is martingale
difference sequence (MDH)

Tests detection of change-points in the conditional expectation of the
series given its past.

New test statistics based on Fourier-type conditional expectations.
The asymptotic properties, simulations, applications to the real data.

Motivation for our test is from Bierens (1982).
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The standard formulation of the MDH:
E(yt|Ht71):0, t:].7...7 (6)

I; - the information set available at time t, and

Y; — represents first differences of a process which under this hypothesis
forms a martingale sequence.

Standard assumption statistical models used in finance and economics:
The efficient market hypothesis states that in efficient markets, prices
follow a martingale and always fully and instantaneously reflect all
available relevant information consisting of past prices and returns, asset
returns in an efficient market.

The basic idea for the MDH is the unpredictability of macro and financial
series on the basis of currently available information.

Hlavka and Hukova Charles University, Prague

Statistical procedures based on empirical characteristic functions



MDH

Testing for zero autocorrelation — 1978 — Ljung and Box (1978)
Bierens — 1982,

Hong 1999, Escanciano and Velasco (2006), Jong (1996)

Lobato — 2002

Escanciano and Lobato (2009)- survey

MDH for exchange rates, for instance, Belaire-Franch and Contreras
(2011), Yilmaz (2003), Hong and Lee (2003), Fong et al. (1997), and
Fong and Ouliaris (1995).

Less standard areas for MDH:

electricity prices (Veka, 2013)

CO2 emissions (Daskalakis et al., 2009, Charles et al., 2011a)

Hlavka and Hugkova Charles University, Prague
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Null hypothesis and test statistics

HY . E(Yile_) =0, t=1,..., (7)
I; — the information set available at time t against
HY - E(YiL—1) = g(Yee1s .- s Yeem)s
P(g(ytfl, ey thm) = 0) < 1,
g — an arbitrary unknown function g, m > 0 — a chosen time-lag.

Change point version — ky — unknown change point

HP © E(Ye[l—1) =0,
H® . E(YiIi_1) =0, t< ko,
but E(Y:|le—1) = g(Yeo1,- -y Yiem), t> ko
P(g(Yeo1,...,Yeom)=0) < 1.

Hlavka and Hugkova Charles University, Prague
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Test procedures based on characterization (Bierens (1982)):

E(Y|X)=0< E(Yexp{iX'u})=0 wecR"

Define:
(m) IR
S"(u) = —= YyeYrm ot =m41,...,n, (8)
' \/ﬁ‘r;rl

Yt,m - (Yt—17 Yt—27 sy Yt—m)/,

m > 0 denotes a chosen time-lag.
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Consider the integrated process
1 "
Qum(s) :/ == > Y.e"YorPw(u)du, 0<s<1, (9)
Rm ﬁr:\_sn]+1
w(-) — a weight function.
The null hypothesis H(gl) against alternative H{I) rejected if
T == Qm(0) (10)

is large.

The null hypothesis Hé2) is rejected in favor of alternative H£2) if

(2) o
7,7 (7) = mggfgan(k/n)/q(k/nﬁ) (11)
is large, where
q(S,’y):(l—S)’y,SE (071)7 O§’7< 1. (12)

Hlavka and Hugkova Charles University, Prague

Statistical procedures based on empirical characteristic functions



MDH

@00000
Asymptotic behavior of the test statistics

Behavior under the null hypothesis

Theorem {Y;} is a martingale difference sequence as well as stationary,
ergodic with E|Y;|>"% < oo for some § > 0
w(-) be a measurable non-negative function on R™

w(t) =w(—t) >0, for all teR”, 0< / w(t)dt < oo.
Then as n — oo:

(a) T =7 [ 1Z(0,u)w(u)du,

Rm

() T~ sp o [ 1250 - Z(Lw)Pw(u) .
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Asymptotic behavior of the test statistics

0<~v<1,{Z(s,u),s €[0,1], u € R™} is a Gaussian process with
expectation zero and covariance (0 < 5 < s, <1)

cov{Z(s1,u1), Z(s2, u2)} = 51E(Y31+1h(ym+17 u)h(Y my1, U2)), uy, Uy,

h(Y m, u) = cos Z UgYmt1—q | + sin Z UgYmti—q | » (13)
q=1 g=1

Here u = (u1, .- s um)y Ymir = (Ymy .-+, Y1)

The assertion of our theorem remains true if cov{Z(s1, u1), Z(s2, u2)}
are replaced by their consistent estimators.

Critical values can be obtained by simulating the limit distribution. But
more convenient is a proper bootstrap.
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Asymptotic behavior of the test statistics

Alternatives

Hél) versus Hfl)
Yie =&+ 8(&4),

{&:} is a stationary and ergodic martingale difference sequence and g is
a measurable function such that for some § > 0

P(g(£m+1) = O) < 17 E‘£1|2+6 < 00, E‘g(£m+1)‘2 < 0.

Change-point alternative with an MDS before the change H((,2) and
T,Sz):

Vi =&k +8(&k) Liksky, ko= [An]
for some 0 < A\ < 1, where ({£:}, g) fulfill above.

Both tests are consistent, even sensitive w.r.t. local alternatives.
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Asymptotic behavior of the test statistics

Estimator of the change point kg:

k(~) = min{m < k < n; Qu(k/n)/d(k/n,~)
= max Qm(j/n)/a(i/n. ")},

m<j<

Qnfs) = [ 15(7) () = sS{7 () Pu(w)ds
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Asymptotic behavior of the test statistics

Wild bootstrap

(B.1): {n;}; are i.i.d. with mean zero, unit variance and E |n;|>*% < oo
for some § > 0,

(B.2): {ni}; and {Y;}; are independent sequences of random variables.
Bootstrap statistics:

* 1 ‘
ST = = D Yeew (WY,

n T=m+1
define T* analogously to TY) with S(m)( ) replaced by St(m)*(u).
Under the null hypothesis and local alternatives:

P(TY* < x|Y1,...,Y,) = P(TY) <x) »P0, j=1,2, xeR.L
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Asymptotic behavior of the test statistics

Under fixed alternatives for all x:

IP(TW* < x|Yy,...,Y,)— P(/ |Z°(0, u)|w(u) du < x)| =P 0,

{Z°%(s,u),s €[0,1], u € R™} is a Gaussian process with expectation
zero and covariance (0 < 53 <5, <1)

\_nslj
cov{Zo(sl,ul),Z(SQ,uQ)}:nIme; Z E<Yj2h(Yj,u1)h(Yj,U2)), uy, us.
Jj=14m
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Data example: S&P 500

Martingale difference hypothesis (MDH)

Most efficiency studies on financial markets focus on a weak form of
market efficiency through the MDH, whereby the profit expected from an
asset (which is forecasted to have its future price equal to its the current
price) is equal to zero.

Apart of testing MDH in a given time period (H(()l)), we test also the
hypothesis of no change in the martingale difference structure (Héz)).

Real data example: Daily scaled log returns of S&P 500 from 1990
until 1997 (source: Yahoo! Finance) have been previously analyzed by
EV2006 [Escanciano and Velasco: Generalized spectral tests for the
martingale difference hypothesis. J.Econometr. 134 (2006) 151-185].
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Data example: S&P 500

S&P 500

2
1

100 x log returns

6 -4 -2 0

Daily scaled log returns of S&P 500. Dashed line denotes January 1st, 1994,
solid line denotes December 8th, 1994.

EV2006 conclude that MDH is not rejected for the first period
(Jan1990-Dec1993) and it is rejected for the second period
(Jan1994-Dec1997).
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Data example: S&P 500

Change-point analysis

We obtain the change—point estimate k = 1250 corresponding to a
change occurring on December 8th, 1994.

We obtain p-value 0.649 for data observed until December 7th, 1994,
and p-value 0.000 for data observed from December 8th, 1994, which
implies that the MDH is not rejected for the first period (Jan1990-Dec7,
1994), while it is rejected for the second perriod (Dec8, 1994-Dec1997).

To confirm that there is no further change in the first period we tested
the change-point hypothesis Hé2) and obtained a p-value of 0.526.
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Data example: S&P 500

Conclusions

The hypothesis of no change in the martingale difference structure
between January 1990 and December 1997 is rejected. The change in the
martingale difference structure of the S&P 500 log returns occurred in
December 1994, almost one year later than the change-point considered
previously in EV2006.

MDH is not rejected for log returns until December 7th, 1994, and it is
rejected for log returns observed after December 8th, 1994.

The hypothesis of no change in the martingale difference structure is not
rejected using the data between January 1990 and December 7th, 1994.
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Data example: S&P 500

Economic crises in 1990s

Japanese asset price bubble (1986-2003)
Bank stock crisis (Israel 1983)

Black Monday (1987)

Savings and loan crisis of the 1980s and 1990s in the U.S.
Early 1990s Recession

1991 India economic crisis

Finnish banking crisis (1990s)

Swedish banking crisis (1990s)

1994 Tequila crisis in Mexico

1997 Asian financial crisis

1998 Russian financial crisis

Argentine economic crisis (1999-2002)

Source: wikipedia

Hlavka and Hukova Charles University, Prague

Statistical procedures based on empirical characteristic functions



0000080

Data example: S&P 500

Economic crises in 1990s

Japanese asset price bubble (1986-2003)
Bank stock crisis (Israel 1983)

Black Monday (1987)

Savings and loan crisis of the 1980s and 1990s in the U.S.
Early 1990s Recession

1991 India economic crisis
Finnish banking crisis (1990s)
Swedish banking crisis (1990s)
1994 Tequila crisis in Mexico

1997 Asian financial crisis

1998 Russian financial crisis
Argentine economic crisis (1999-2002)

Source: wikipedia
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Data example: S&P 500

The Tequila crisis

The Tequila crisis was a currency crisis sparked by the Mexican
government's sudden devaluation of the peso against the U.S. dollar in
December 1994. The Mexican economy experienced hyperinflation of
around 52% and mutual funds began liquidating Mexican assets as well
as emerging market assets in general. The effects spread to economies in
Asia and the rest of Latin America. source: wikipedia
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