

# Statistical procedures based on empirical characteristic functions

## Zdeněk Hlávka and Marie Hušková

Charles University, Prague

ROBUST 2016

Charles University, Prague

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



# Outline

## 1 Introduction

## 2 Goodness-of-fit tests

- Kolmogorov-Smirnov type tests
- Empirical characteristic function based procedures
- 3 Two-sample problem
- 4 Change-point problem
- 5 Some theoretical results
- 6 Procedures when nuisance parameters are present
- 7 Computation
- 8 MDH testing
  - Asymptotic behavior of the test statistics
  - Data example: S&P 500



#### Introduction

Well-known from basic courses:

There is a one-to-one relationship between distribution function and characteristics function

X – random variable

 $F(x) = P(X \le x), x \in \mathcal{R}$  - distribution function  $\varphi(t) = E(\exp\{itX\}), t \in \mathcal{R}$  - characteristic function

Statistical problems typically formulated in terms of distribution functions and their parameters, therefore also in terms of characteristics functions.

$$\varphi(t) = E(\exp\{itX\}) = C(t) + iS(t)$$

. . . . . . .



## Goodness-of-fit tests

• **Goodness-of-fit tests**, simplest formulation:  $X_1, \ldots, X_n$  are i.i.d. random variables with d.f. F

 $H_0: F = F_0$  for a given  $F_0$ 

against

 $H_1$ :  $H_0$  is not true

More often:

 $H_0^*: F \in \mathcal{F}, \ \mathcal{F}$  a system of distributions, typically depending on parameters—nuisance parameters

Hlávka and Hušková

Charles University, Prague

. . . . . . .



#### Kolmogorov-Smirnov type tests

Typical test procedures for  $H_0$  versus  $H_1$  are based on empirical distribution functions

$$\widehat{F}_n(x) = rac{1}{n} \sum_{j=1}^n I\{X_i \le x\}, \quad x \in \mathbb{R}$$

Kolmogorov-Smirnov test:  $\sup_{x \in \mathbb{R}} |\widehat{F}_n(x) - F_0(x)|$ 

Cramér-von-Mises test:  $\int_{x \in \mathbb{R}} |\widehat{F}_n(x) - F_0(x)|^2 dF_0(x)$ 

And erson-Darling test:  $\int_{x \in \mathbb{R}} |\widehat{F}_n(x) - F_0(x)|^2 w(x) dF_0(x)$ 

w(x)- weight function, often  $w(x) = (F_0(x)(1 - F_0(x)))^{-1}$ 

 $\chi^2$ - test

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Advantage: if  $F_0$  is continuous, the distribution of KS and CVM under  $H_0$  does not depend on  $F_0$  (distribution free test statistics).

Similar problem:

(i)  $H_0^S$ : distribution F is symmetric  $(F(x) = 1 - F(x) \forall x)$ ,

(ii) two sample tests—two independent samples, we are testing that they have the same distribution,

(iii) independence tests,

(iv) change-point tests.

< ∃ > <

Hlávka and Hušková

Introduction GOF Two-sample problem Change-point Some theoretical results Nuisance parameters Computation MDH ●●●○○○○
Empirical Anarateristic function based procedures
Empirical Anarateristic function based procedures

#### Empirical characteristic function based procedures

 $X_1, \ldots, X_n$  — i.i.d. random variables

Testing problem  $H_0$  versus  $H_1$  can be equivalently expressed as

 $H_0: \varphi = \varphi_0$  for a given  $\varphi_0$  versus  $H_1: H_0$  is not true

 $\varphi(u) = E \exp\{iuX_j\}, u \in \mathcal{R}$  – characteristic function (CF)

 $\widehat{\varphi}_n(u) = \frac{1}{n} \sum_{j=1}^n \exp\{iuX_j\}, \ u \in \mathcal{R} - \text{empirical characteristic}$ function (ECF)

Test statistic:

$$T_n(w) = \int_{\mathcal{R}} |\widehat{\varphi}_n(u) - \varphi_0(u)|^2 w(u) du$$

 $w(\cdot)$ - weight function (usually, nonnegative, symmetric).

ヘロト 人間ト 人間ト 人間ト



• Large values indicate that the null hypothesis is violated.

• Question is critical value – simulation ( $F_0$  given), asymptotics for  $n \rightarrow \infty$ , simulated critical values, bootstrap.

• Noticing that  $\exp\{iuX_j\} = \cos(uX_j) + i\sin(uX_j), u \in \mathcal{R}$  and by symmetry of  $w(\cdot)$  we get

$$T_n(w) = \int_{\mathcal{R}} \left( \frac{1}{n} \sum_{j=1}^n \left( U_j(u) - E_0 U_j(u) \right) \right)^2 \times w(u) du = \frac{1}{n^2} \sum_{j=1}^n \sum_{\nu=1}^n J_w(X_j - X_\nu)$$

 $J_w(x) = \int_{\mathcal{R}} \cos(ux) w(u) du$  and  $E_0(...)$  denotes the expectation under the null hypothesis and

$$U_j(u) = \cos(uX_j) + \sin(uX_j), \quad u \in \mathcal{R}.$$

Charles University, Prague

(日) (同) (三) (三)

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



Asymptotic behavior of  $T_n(w)$ : Under the null hypothesis and  $\int_{\mathcal{R}} u^2 w(u) du < \infty$ 

$$nT_n(w) \to^d \int_{\mathcal{R}} V^2(u)w(u)du,$$

where  $\{V(u); u \in \mathcal{R}\}$  is a Gaussian process with zero mean and

$$cov(V(u_1), V(u_2)) = cov_0(U_j(u_1), U_j(u_2))$$

 $cov_0(.)$  – covariance under the null hypothesis. Generally,

$$nT_n(w) \to^d \int_{\mathcal{R}} \left( \tilde{V}(u) - \sqrt{n} (EU_j(u) - E_0 U_j(u)) \right)^2 \quad w(u) du.$$
  
$$\int \left( EU_j(u) - E_0 U_j(u) \right)^2 dw(t) > 0 \text{ then}$$
$$nT_n(w) \to^P \infty.$$

▶ ★ 国 ▶ ★ 国

Charles University, Prague

Image: Image:

lf



#### Something from the history

H. Cramér (1946) – classical book, empirical characteristic function mentioned

Feuerverger and Mureika (1997), Annals of Statistics

Sandor Csörgő (1984) – Proceedings of Asymptotic Statistics, 1984, Praha

Ushakov (1999) – Selected Topics in Characteristics Functions (book)

Meintanis (2016), South African Statistical Journals – survey paper with discussions

More general setup:

Klebanov (2005) – N-distances and Their Applications (book)

Procedures based on Probability generating function – see talk of Hudecová

```
Rizzo and Székely et al (2010,...)
```

Hlávka and Hušková

< ロト < 同ト < ヨト < ヨト



Further procedures based on empirical characteristic functions for various statistical problems in recent years:

- tests for symmetry,
- test for independence,
- two-sample problem,
- change point problem,
- nuisance parameters,

asymptotics, computational aspects, simulations, applications.



#### Two-sample problem

 $Y_1, \ldots, Y_n$  – independent random variables  $F_j$  – distribution function of  $Y_j$ Testing problem

$$\begin{aligned} &H_0: F_1 = \ldots = F_n \\ &H_1: F_1 = \ldots = F_m \neq F_{m+1} = \ldots = F_n \qquad \text{for} \quad m < n, \end{aligned}$$

 $F_1$  and  $F_n$  are unknown, m - known.

$$T_{m,n-m}(w) = \frac{m(n-m)}{n} \int_{-\infty}^{\infty} |\widehat{\varphi}_m(t) - \widehat{\varphi}_{n-m}^0(t)|^2 w(t) dt,$$

 $w(\cdot)$  is a nonnegative weight function,  $\widehat{\varphi}_m(t)$  and  $\widehat{\varphi}_{n-m}^0(t)$  – empirical characteristic functions based on  $Y_1, \ldots, Y_m$  and  $Y_{m+1}, \ldots, Y_n$ , respectively, i.e.,

$$\widehat{\varphi}_m(t) = \frac{1}{k} \sum_{j=1}^m \exp\{itY_j\}, \quad \widehat{\varphi}_{n-m}^0(t) = \frac{1}{n-m} \sum_{j=m+1}^n \exp\{itY_j\}.$$

Hlávka and Hušková



#### Under the null hypothesis

$$ET_{m,n-m}(w) = \frac{m(n-m)}{n} \int_{-\infty}^{\infty} E|\widehat{\varphi}_m(t) - \widehat{\varphi}_{n-m}^0(t)|^2 w(t) dt$$

$$= \frac{m(n-m)}{n} \int_{-\infty}^{\infty} E\left(\frac{1}{m} \sum_{j=1}^{m} U_j(t) - \frac{1}{n-m} \sum_{j=m+1}^{n} U_j(t)\right)^2 w(t) dt$$
$$= \int_{-\infty}^{\infty} var(U_1(t))w(t) dt.$$

Generally,

Hlávka and Hušková

$$E\left(\frac{1}{m}\sum_{j=1}^{m}U_{j}(t)-\frac{1}{n-m}\sum_{j=m+1}^{n}U_{j}(t)\right)^{2}$$
$$=\frac{var(U_{1}(t))}{m}+\frac{var(U_{n}(t))}{n-m}+\left(EU_{1}(t)-EU_{1}(t)\right)^{2}.$$

< • • • **•** 



Limit behavior under  $H_0$  and  $0 < \int_{\mathcal{R}} t^2 w(t) dt < \infty$ : For  $m = m_n, \ m_n/n \to \theta_0 \in (0, 1)$ 

$$T_{m,n-m}(w) \rightarrow^d \int_{\mathcal{R}} V^2(t)w(t)dt,$$

 $\{V(t);, t \in \mathcal{R}\}$  – Gaussian process with zero mean and covariance structure

$$cov(V(t_1), V(t_2)) = cov(U_j(t_1), U_j(t_2)).$$

For testing — null hypothesis rejected for large values of test statistic, approximation for critical values — either simulation of the limit distribution with estimated covariance, or some bootstrap.

Consistent test.

Multivariate version — quite straightforward.





## Simulations

NOTATION USED IN THE TABLES

N: N(0, 1, 0)

N1: N(0.4, 1, 0)

- N2: N(0.7, 1, 0)
- N3: N(0, 1.5, 0)
- N4: N(0, 2, 0)
- N5: N(0, 1, 0.6)
- N6: N(0, 1, 0.9)
- MN1: MN(0.2, 1, 0)
- MN2: MN(0.4, 1, 0)
- MN3: MN(0, 1.2, 0)
- MN4: MN(0, 1.5, 0)
- MN5: MN(0, 1.2, 0.5)MN6: MN(0, 1.2, 0.8)
- $\Gamma_{1:} \Gamma(0.01, 1)$
- $\Gamma_2: \Gamma(0.5, 0.5)$
- $\Gamma_3: \Gamma(0.5, 1.0)$
- $\Gamma 4: \Gamma(1.0, 1.0).$

Image: Image:

→ Ξ →

| $F_2$ | $T_1$ | $T_{1.5}$ | $T_2$     | $	au_{1.5}$ | $	au_2$   | $	au_4$   | $T_1$    | $T_{1.5}$ | $T_2$     | $	au_{1.5}$ | $	au_2$   | $	au_4$   |
|-------|-------|-----------|-----------|-------------|-----------|-----------|----------|-----------|-----------|-------------|-----------|-----------|
| N     | 5 10  | 5 10      | 6 10      | 6 11        | 6 11      | 6 10      | 5 10     | 5 10      | 5 10      | 5 10        | 5 10      | 6 10      |
| N1    | 24 35 | $26 \ 36$ | $27 \ 37$ | $22 \ 33$   | 25  35    | $28 \ 39$ | 41 53    | 43 55     | 45  56    | 37  48      | 40  51    | 46 55     |
| N2    | 68 78 | 71  80    | 72 81     | 62 73       | 68  78    | 75 82     | 92 96    | 93 96     | 94  97    | 88 93       | 91 95     | 94 97     |
| N3    | 30 43 | 30  44    | 30  44    | $27 \ 41$   | 29  43    | 29  44    | $52\ 67$ | 54  68    | 5568      | 48  63      | $52\ 66$  | 54 69     |
| N4    | 61 74 | 62  75    | $63 \ 76$ | 56 69       | 61  73    | 62 77     | 90 96    | $92 \ 96$ | 92  97    | 87 94       | 90 96     | 93  97    |
| N5    | 7 12  | $6\ 12$   | $6\ 12$   | $7\ 12$     | $7\ 12$   | 6 11      | 7 13     | $6\ 12$   | 6 12      | 714         | 6 13      | 6 10      |
| N6    | 8 15  | 7  14     | $7\ 13$   | 10  18      | 8 15      | $6\ 11$   | 10 18    | $6\ 12$   | $6\ 12$   | $15 \ 25$   | $11 \ 18$ | $6\ 12$   |
| MN1   | 11 17 | 11 18     | 11 18     | 9 16        | 10 17     | 10 18     | 14 23    | $15 \ 23$ | 15 23     | 14 22       | 14 23     | $16\ 24$  |
| MN2   | 27 37 | 28 39     | 29  40    | $23 \ 33$   | $26 \ 37$ | 31  40    | 43 54    | 45 56     | 46 57     | 3951        | 43 54     | 48 59     |
| MN3   | 9 16  | $9\ 16$   | 9 17      | $9\ 15$     | 8 15      | $9\ 15$   | 14 22    | $14 \ 22$ | $14 \ 22$ | $14 \ 21$   | $14\ 22$  | $14 \ 23$ |
| MN4   | 18 27 | $18\ 27$  | $18\ 27$  | $17\ 24$    | $18 \ 26$ | $17\ 26$  | 30 39    | 31  40    | 31  40    | 29 38       | 30 40     | $30 \ 41$ |
| MN5   | 9 17  | $9\ 17$   | $9\ 17$   | $9\ 15$     | 8 16      | $9\ 15$   | 14 22    | $14\ 23$  | $14 \ 22$ | $14 \ 21$   | $14 \ 23$ | $14 \ 22$ |
| MN6   | 10 18 | $10 \ 17$ | 10 17     | 9 16        | 9 16      | 9 15      | 15 23    | $15 \ 23$ | $15 \ 23$ | $15 \ 23$   | $15 \ 23$ | $14 \ 23$ |

Table 1 (d = 2): Percentage of rejection of the null hypothesis with  $F_1$  the standard multivariate normal distribution based on samples of size  $n_1 = n_2 = 25$  (left part) and  $n_1 = n_2 = 50$  (right part). Nominal size:  $\alpha = 5\%$  (left entry),  $\alpha = 10\%$  (right entry)

Image: Image:

. . . . . .

#### Change-point problem

 $Y_1, \ldots, Y_n$  – independent random variables  $F_j$  – distribution function of  $Y_j$ 

$$H_0: F_1 = \ldots = F_n$$
  
 $H_1: F_1 = \ldots = F_m \neq F_{m+1} = \ldots = F_n$  for  $m < n$ ,

#### $m, F_1$ and $F_n$ are unknown.

$$T_{n,\gamma}(w) = \max_{1 \le k < n} \left(\frac{k(n-k)}{n^2}\right)^{\gamma} \frac{k(n-k)}{n} \int_{-\infty}^{\infty} |\widehat{\varphi}_k(t) - \widehat{\varphi}_{n-k}^0(t)|^2 w(t) dt,$$
(1)

・ロト ・同ト ・ヨト ・ヨ

Charles University, Prague

 $w(\cdot)$  is a nonnegative weight function,  $\gamma \in (0, 1)$  $\widehat{\varphi}_k(t)$  and  $\widehat{\varphi}_{n-k}^0(t)$  – empirical characteristic functions based on  $Y_1, \ldots, Y_k$  and  $Y_{k+1}, \ldots, Y_n$ , respectively.

Hlávka and Hušková



Under H<sub>0</sub>

$$E\Big[\Big(\frac{k(n-k)}{n^2}\Big)^{\gamma}\frac{k(n-k)}{n}\int_{-\infty}^{\infty}|\widehat{\varphi}_k(t)-\widehat{\varphi}_{n-k}^0(t)|^2w(t)dt\Big]$$
$$=\Big(\frac{k(n-k)}{n^2}\Big)^{\gamma}\int_{-\infty}^{\infty}var(Z_j(t))w(t)dt.$$

Generally,

$$E\left[\left(\frac{k(n-k)}{n^2}\right)^{\gamma}\frac{k(n-k)}{n}\int_{-\infty}^{\infty}|\widehat{\varphi}_k(t)-\widehat{\varphi}_{n-k}^0(t)|^2w(t)dt\right]$$
$$=\left(\frac{k(n-k)}{n^2}\right)^{\gamma}\int_{-\infty}^{\infty}\left(\ldots\right)$$

▲ ≧ ▶ ≧ ∽ ♀ 
 Charles University, Prague

(日) (四) (三) (三)

Hlávka and Hušková



Limit behavior under  $H_0$  and  $0 < \int_{\mathcal{R}} t^2 w(t) dt < \infty$ :

For  $m = m_n, \ m_n/n o heta_0 \in (0,1)$ 

$$T_{n,\gamma}(w) \rightarrow^d \sup_{s \in (0,1)} (s(1-s))^{\gamma-1} \int_{\mathcal{R}} Z^2(s,t) w(t) dt,$$

 $\gamma \in (0, 1]$ , {V(s, t);  $s \in (0, 1)$ ,  $t \in \mathcal{R}$ } – Gaussian process with zero mean and covariance structure ( $0 < s_1 \le s_2 < 1$ )

$$cov(Z(s_1, t_1), Z(s_2t_2)) = s_1(1 - s_2)cov(U_j(t_1), U_j(t_2)).$$

▶ < E > < E</p>

Image: Image:

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



#### Some theoretical results

We are interested in limit behavior  $(n o \infty)$  of

$$\sup_{s\in(0,1)} (s(1-s))^{\gamma-1} \int_{\mathcal{R}} (Z_n(s,u) - sZ_n(1,u))^2 w(u) du$$

 $\gamma \in (0,1]$ 

$$egin{aligned} Z_n(s,\ u) &= rac{1}{\sqrt{n}} \sum_{k=1}^{\lfloor sn 
floor} (U_j(u) - EU_j(u)), \quad u \in \mathcal{R}, \quad s \in (0,1) \ U_j(u) &= \cos(Y_j u) + \sin(Y_j u). \end{aligned}$$

Charles University, Prague

- - E > - - E

Image: 0

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



The following holds true:

- a) For any 0 < s < 1 it holds  $\sup_n E \int_{\mathcal{R}} (Z_n(s, u))^2 w(u) du < \infty$ .
- b) There exists an a > 0,  $0 < D < \infty$  such that for any 0 < s < 1 it holds

$$\sup_{n} E\left|Z_{n}^{2}(s, u_{1}) - Z_{n}^{2}(s, u_{2})\right| \leq D\|u_{1} - u_{2}\|^{a}.$$

c) The marginal distributions of  $\{Z_n(s, u)\}$  converge to the marginal distributions of a Gaussian process  $\{Z(s, u)\}$  with covariance structure  $(0 < s_1 \le s_2 < 1)$ 

$$cov{Z(s_1, u_1), Z(s_2, u_2)} = s cov(U_1(u_1), U_1(u_2))$$

Then

$$\int_{\mathbb{R}} (Z_n(s,u))^2 w(u) du \to^d \int_{\mathbb{R}} (Z(s,u) - sZ(1,u))^2 w(u) du$$

for any fixed  $s \in (0,1)$  by Theorem 22 in Ibragimov and Chasminkij (1981)

Hlávka and Hušková

Statistical procedures based on empirical characteristic functions

Charles University, Prague



Still needed to investigate

$$X_n(s) = \left(\int_{\mathcal{R}} (Z_n(s, \boldsymbol{u}) - sZ_n(1, \boldsymbol{u}))^2 w(\boldsymbol{u}) d\boldsymbol{u}\right)^{1/2}, \quad s \in (0, 1)$$

it means to prove tightness and convergence of the finite dimensional distribution.



Hlávka and Hušková Statistical procedures based on empirical characteristic functions



#### Procedures when nuisance parameters are present

#### Linear models

 $Y_1, \ldots, Y_n$  – independent observations following the linear model

 $Y_j = \mathbf{x}_j^{\mathrm{T}} \boldsymbol{\beta} + c \mathbf{e}_j, \ j = 1, 2, ..., n,$ 

 $\mathbf{x}_j = (1, x_{j2}, ..., x_{jp})^{\mathrm{T}} \in R^p, \; j = 1, 2, ..., n$  – known regressors,

 $\beta \in R^{p}$  and c > 0 – unspecified regression and scale parameters,

 $e_j$ , j = 1, 2, ..., n – errors assumed to be i.i.d. random variables having distribution function  $F(\cdot)$ .

We wish to test the null hypothesis

$$H_0: F\equiv F_0,$$

against general alternatives.

$$\widehat{e}_{j} = (Y_{j} - \mathbf{x}_{j}^{\mathrm{T}} \widehat{oldsymbol{eta}}_{n}) / \widehat{c}_{n}, j = 1, 2, ..., n$$
 – residuals

Hlávka and Hušková

< ロ > < 同 > < 回 > < 回 > < 回 >



#### Nonparametric version

Model: (X, Y) are observed

$$Y = m(X) + \sigma(X)e, \qquad (2)$$

Charles University, Prague

 $m(\cdot)$  and  $\sigma(\cdot)$  – unspecified regression and scale functions,

*e* – error with a distribution function *F*, characteristic function  $\varphi(t)$ , mean zero and unit variance,

To test the null hypothesis

$$H_0: F \in \mathcal{F} = \{F_\vartheta, \ \vartheta \in \Theta\}$$

 $\mathcal{F}$  – parametric family of distributions indexed by  $\vartheta \in \Theta \subseteq \mathbb{R}^q, \ q \ge 1$ .

 $H_0: \varphi \in \{\varphi(\cdot; \vartheta), \vartheta \in \Theta\},\$ 

 $\varphi(\cdot; \vartheta)$  - characteristic function corresponding to  $F_{\vartheta}$ , for some (unspecified)  $\vartheta \in \Theta$ .

Hlávka and Hušková



The proposed test statistic based on the residuals

$$\widehat{e}_j = (Y_j - \widehat{m}_n(X_j)) / \widehat{\sigma}_n(X_j), \ j = 1, 2, \dots, n,$$
(3)

 $\widehat{m}_n(\cdot)$  and  $\widehat{\sigma}_n^2(\cdot)$  – kernel estimators of  $m(\cdot)$  and  $\sigma^2(\cdot)$ , the corresponding empirical characteristic function (ECF):

$$\varphi_n(t) = \frac{1}{n} \sum_{j=1}^n e^{jt\hat{e}_j}$$

Test statistic:

$$T_{n,w} = n \int_{-\infty}^{\infty} |\varphi_n(t) - \varphi(t; \widehat{\vartheta}_n)|^2 w(t) dt$$
(4)

 $\widehat{\vartheta}_n$  – a suitable estimator of  $\vartheta$ ,

$$w(\cdot)$$
 – a symmetric nonnegative weight function.

4 B 🕨 4



 $(X_1, Y_1), \ldots, (X_n, Y_n)$  are i.i.d. random vectors such that

$$Y_j = m(X_j) + \sigma(X_j)e_j, \quad j = 1, \dots, n,$$
(5)

where  $e_1, \ldots, e_n, X_1, \ldots, X_n, m(.)$  and  $\sigma(.)$  satisfy:

• (A.1) Let  $e_1, \ldots, e_n$  be i.i.d. random variables with zero mean, unit variance and  $Ee_j^4 < \infty$  and characteristic function  $\varphi(t; \vartheta), t \in \mathbb{R}^1$ , where  $\vartheta = (\vartheta_1, \ldots, \vartheta_q)^T \in \Theta, \vartheta_0$  denotes the true parameter value.

• (A.2) On the real and imaginary parts of  $\varphi(t; \vartheta)$  denoted by  $C(t; \vartheta)$ and  $S(t; \vartheta)$ , we assume that the first partial derivatives w.r.t. t as well as  $\vartheta_1, \ldots, \vartheta_q$  exist. Particularly, we assume that  $\dot{C}_s(t, \vartheta) = \frac{\partial C(t, \vartheta)}{\partial \vartheta_s}, \dot{S}_s(t, \vartheta) = \frac{\partial S(t, \vartheta)}{\partial \vartheta_s}, s = 1, \ldots, q$ , are bounded continuous in  $\vartheta$  in a neighborhood of  $\vartheta_0$  (which is the true parameter value), for each t. The first derivatives  $C'(t; \vartheta)$  and  $S'(t; \vartheta)$  w.r.t. t are bounded and continuous for all t in a neighborhood of  $\vartheta_0$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



• (A.3)  $X_1, \ldots, X_n$  are i.i.d. on [0,1] with common positive continuous density  $f_X$ .

- (A.4) Let  $(e_1, \ldots, e_n)$  and  $(X_1, \ldots, X_n)$  be independent.
- (A.5) Let  $m(\cdot)$  and  $\sigma(\cdot)$  be functions on [0,1] with Lipschitz first derivative,  $\sigma(x) > 0, x \in [0,1]$
- (A.6) The weight function w is nonnegative and symmetric, and

$$\int_{-\infty}^{\infty}t^{4}w(t)dt<\infty.$$

• (A.7) Let  $\widehat{\vartheta}_n$  be an estimator of  $\vartheta_0$  such that

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta_0) = \frac{1}{\sqrt{n}} \sum_{j=1}^n \psi(e_j; \vartheta_0) + o_P(1)$$

 $\psi(z; \vartheta) = (\psi_1(z; \vartheta), \dots, \psi_q(z; \vartheta))^T$  are continuously differentiable functions w.r.t. to z and continuous in components of  $\vartheta$  in a neighborhood of  $\vartheta_0$  and such that  $E_{\vartheta}\psi(e_j; \vartheta) = \mathbf{0}$  and  $E_{\vartheta}||\psi(e_j; \vartheta)||^2 < \infty$  for  $\vartheta$  in a neighborhood of  $\vartheta_0$  and  $\varepsilon_{\vartheta} = \varepsilon_{\vartheta} + \varepsilon_{\vartheta} + \varepsilon_{\vartheta}$ .

Hlávka and Hušková



Estimators of  $m(.), \sigma(.)$  are kernel type generated by the kernel  $K(\cdot)$  and the bandwidth  $h = h_n$  satisfying

• (A.8) Let K be a symmetric twice continuously differentiable density on [-1,1] with K(-1) = K(1) = 0.

• (A.10) Let  $\{h_n\}$  be a sequence of the bandwidth such that  $\lim_{n\to\infty} nh_n^2 = \infty$  and  $\lim_{n\to\infty} nh_n^{3+\delta} = 0$  for some  $\delta > 0$ .

We use the following estimators of the density function  $f_X(.)$  of  $X_j$ 's, regression function m(.) and variance function  $\sigma^2(.)$ :

$$\widehat{f}_{X}(x) = \frac{1}{nh_{n}} \sum_{j=1}^{n} K((X_{j} - x)/h_{n}), \quad \widehat{m}_{n}(x) = \frac{1}{nh_{n}\widehat{f}_{X}(x)} \sum_{j=1}^{n} K((X_{j} - x)/h_{n})Y_{j},$$
$$\widehat{\sigma}_{n}^{2}(x) = \frac{1}{nh_{n}\widehat{f}_{X}(x)} \sum_{j=1}^{n} K((X_{j} - x)/h_{n})(Y_{j} - \widehat{m}_{n}(x))^{2}, \quad x \in [0, 1].$$

Charles University, Prague

・ロト ・同ト ・ヨト ・ヨ

Hlávka and Hušková



Recall that the residuals  $\hat{e}_j$  are defined above. Choice of the estimators  $\hat{\vartheta}_n$  of  $\vartheta_0$  satisfying (A.8) – for maximum likelihood type estimator  $\tilde{\vartheta}_n$ 

$$\sqrt{n}(\widetilde{\vartheta}_n - \vartheta_0) = rac{1}{\sqrt{n}}\sum_{j=1}^n \mathbf{h}(e_j; \vartheta_0) + o_P(1)$$

for a measurable  $\mathbf{h}(.; \vartheta_0)$ .

 $e_j$ 's are replaced by the respective residuals  $\widehat{e}_j$  we get for the respective estimator  $\widehat{\vartheta}_n$  (ass.A.8) holds true with

$$\psi(x;artheta)= {f h}(x;artheta)-x {\cal E}_artheta {f h}'(e_1;artheta)+rac{x^2-1}{2} {\cal E}_artheta e_1 {f h}'(e_1;artheta), \quad x\in {\mathbb R}^1.$$

Charles University, Prague

Hlávka and Hušková



**Theorem** Let assumptions (A.1)-(A.10) be satisfied. Then under the null hypothesis, as  $n \to \infty$ ,

$$T_{n,w} \rightarrow^d \int ||Z_0(t)||^2 w(t) dt,$$

where  $\{Z_0(t), t \in \mathbb{R}^1\}$  is a Gaussian process with the covariance structure of the form  $cov(Z_0(t_1), Z_0(t_2))$  where  $Z_0(t) := Z(t; \vartheta_0)$  with

$$Z(t;\vartheta) = \left(\cos(te_1) + \sin(te_1) - E_{\vartheta}(\cos(te_1) + \sin(te_1))\right)$$
$$-te_1(C(t,\vartheta) - S(t,\vartheta)) - t\frac{e_1^2 - 1}{2}(C'(t,\vartheta) + S'(t,\vartheta))$$
$$-\psi^T(e_1;\vartheta)(\dot{\mathbf{C}}(t;\vartheta) + \dot{\mathbf{S}}(t;\vartheta)).$$

< 3 > < 3

Hlávka and Hušková

The explicit form of the limit distribution of *T<sub>n,w</sub>* is unknown even under the null hypothesis. It depends on the hypothetical distribution of the error terms and the chosen estimator of the nuisance parameter *θ*.
Surprisingly it does not depend on the density *f<sub>X</sub>* of *X<sub>i</sub>*'s, the functions *m*(.) and *σ*(.) and even not on the kernel *K*(.) and the bandwidth *h<sub>n</sub>*.
The limit distribution does not provide an approximation for the critical values. However, a special parametric bootstrap does it.

• The crucial part of proof is on the process

$$Z_n(t;\widehat{\vartheta}_n) = \frac{1}{\sqrt{n}} \sum_{j=1}^n \left\{ \sin(t\widehat{e}_j) + \cos(t\widehat{e}_j) - C(t;\widehat{\vartheta}_n) - S(t;\widehat{\vartheta}_n) \right\}, \quad t \in \mathbb{R}^1,$$

behaves asymptotically as the Gaussian process  $\{Z_0(t); t \in \mathbb{R}^1\}$  described above.

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



## Bootstrap

The parametric bootstrap Neumeyer et al. (2006).

!) bootstrap errors  $e_{n1}^*, \ldots, e_{nn}^*$  – a random sample of size *n* from the distribution  $F(.; \hat{\vartheta}_n)$ ,

2) The bootstrap observations :

$$Y_{nj}^* = \widehat{m}(X_j) + e_{nj}^* \widehat{\sigma}_n(X_j), j = 1, \ldots, n,$$

3) The bootstrap version  $T_{n,w}^*$  of the test statistic is defined as  $T_{n,w}$  with  $Y_1, \ldots, Y_n$  replaced by  $Y_{n1}^*, \ldots, Y_{nn}^*$  and  $\widehat{\vartheta}_n$  is replaced by its bootstrap counterpart.

It can be shown that

(i) under  $H_0$  and ass. (A.1) – (A.10), given  $Y_1, \ldots, Y_n$  the limit distribution of  $T_{n,w}^*$  is the same limit distribution as that of  $T_{n,w}$ , (ii) under alternatives plus some assumptions  $T_{n,w}^* = O_{P^*}(1)$  holds true in probability ( $P^*(.)$ ) denotes conditional probability given  $Y_1, \ldots, Y_n$ .



# Simulations

Model:

$$Y_j = \beta_0 + \beta_1 X_j + \beta_2 X_j^2 + e_j, \quad j = 1, \dots, n,$$

 $X_j$  – i.i.d. uniform on (0,1),

$$\beta_0 = 0 \quad \beta_1 = \beta_2 = 1,$$

$$w(t)=\exp\{-\gamma t^2\},\quad orall t\quad \gamma>0,$$

5000 replications, bootstrap size B = 100,

distribution of the errors:

normal(N), Laplace (LP),  $\beta(1, \vartheta)$ ,  $\chi^2_{\theta}$ ,  $t_{\vartheta}$ , skewnormal( $SN_{\vartheta}$ ), asymmetric Laplace (AL), logistic (LG).

|                                | n = 25 | n = 25 |                |       |       |       |       |       | n = 50         |       |       |       |  |  |
|--------------------------------|--------|--------|----------------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|--|--|
|                                | KS     | СМ     | $\gamma = 0.1$ | 0.5   | 0.75  | 1.0   | KS    | СМ    | $\gamma = 0.1$ | 0.5   | 0.75  | 1.0   |  |  |
| N                              | 5 1 1  | 5 10   | 5 10           | 5 10  | 5 10  | 5 10  | 5 10  | 5 10  | 5 10           | 5 10  | 6 1 1 | 5 11  |  |  |
| LP                             | 19 28  | 22 32  | 20 29          | 26 35 | 27 37 | 27 37 | 34 47 | 43 55 | 41 53          | 46 57 | 45 56 | 44 55 |  |  |
| LG                             | 8 14   | 9 1 5  | 8 14           | 11 18 | 12 19 | 13 20 | 10 17 | 12 20 | 11 18          | 16 24 | 17 25 | 17 25 |  |  |
| S <sup>0</sup> <sub>1.5</sub>  | 41 49  | 46 53  | 42 51          | 51 59 | 53 60 | 53 60 | 66 73 | 73 78 | 70 76          | 77 82 | 78 83 | 78 83 |  |  |
| S <sup>0</sup> <sub>1.75</sub> | 20 27  | 23 29  | 20 27          | 27 34 | 28 35 | 29 36 | 32 40 | 37 45 | 34 41          | 44 51 | 46 53 | 47 53 |  |  |
| $S_{1.5}^{-1}$                 | 48 57  | 54 62  | 49 58          | 62 69 | 63 71 | 64 71 | 76 83 | 84 88 | 80 85          | 89 92 | 90 93 | 90 93 |  |  |
| $S_{1.75}^{-1}$                | 22 30  | 26 33  | 22 30          | 31 39 | 33 40 | 34 41 | 40 49 | 45 53 | 40 48          | 52 60 | 55 63 | 56 64 |  |  |
| b0.5                           | 40 54  | 50 64  | 53 66          | 50 66 | 44 61 | 38 56 | 77 87 | 89 95 | 92 96          | 92 97 | 89 95 | 84 94 |  |  |
| b <sub>0.75</sub>              | 16 28  | 23 36  | 29 41          | 21 36 | 14 28 | 10 21 | 38 53 | 55 70 | 64 77          | 60 77 | 48 70 | 36 60 |  |  |
| $\chi^2_3$                     | 41 54  | 51 64  | 45 58          | 61 73 | 63 75 | 63 75 | 73 84 | 86 92 | 83 90          | 92 96 | 93 96 | 93 97 |  |  |
| $\chi_5^2$                     | 27 39  | 33 46  | 28 40          | 42 54 | 44 57 | 45 58 | 51 64 | 64 76 | 58 71          | 76 85 | 79 87 | 79 87 |  |  |
| $\chi^2_7$                     | 21 31  | 25 36  | 21 32          | 31 43 | 33 45 | 34 46 | 38 52 | 49 62 | 43 56          | 62 72 | 64 75 | 65 76 |  |  |
| t3                             | 24 33  | 29 37  | 25 34          | 34 43 | 36 44 | 37 44 | 42 53 | 52 60 | 48 57          | 58 66 | 59 67 | 58 67 |  |  |
| t4                             | 15 23  | 18 26  | 16 23          | 23 31 | 24 33 | 25 33 | 26 36 | 33 42 | 30 39          | 40 50 | 41 51 | 42 52 |  |  |
| t5                             | 11 19  | 14 22  | 12 19          | 18 25 | 19 27 | 20 28 | 17 26 | 22 31 | 19 28          | 28 37 | 30 39 | 30 40 |  |  |

Percentage of rejection for the normality null hypothesis at level 5% (left entry), 10% (right entry)

Image: A math a math

|                                | <i>n</i> = 25 |       |                |       |       |       |       | <i>n</i> = 50 |                |       |       |       |  |  |
|--------------------------------|---------------|-------|----------------|-------|-------|-------|-------|---------------|----------------|-------|-------|-------|--|--|
|                                | KS            | СМ    | $\gamma = 0.1$ | 0.5   | 0.75  | 1.0   | KS    | СМ            | $\gamma = 0.1$ | 0.5   | 0.75  | 1.0   |  |  |
| LP                             | 5 11          | 5 1 1 | 5 10           | 5 10  | 5 10  | 5 10  | 5 1 1 | 6 1 1         | 5 10           | 5 10  | 5 10  | 5 10  |  |  |
| S <sup>0</sup> <sub>1.5</sub>  | 18 25         | 21 27 | 9 16           | 17 24 | 20 27 | 22 30 | 25 33 | 29 37         | 15 22          | 25 33 | 29 37 | 32 40 |  |  |
| S <sup>0</sup> <sub>1.75</sub> | 8 14          | 9 15  | 7 13           | 9 1 5 | 8 15  | 9 15  | 10 17 | 11 18         | 11 19          | 12 20 | 11 19 | 12 18 |  |  |
| $S_{1.5}^{-1}$                 | 32 44         | 38 49 | 19 29          | 35 48 | 38 50 | 40 51 | 61 74 | 68 80         | 42 56          | 70 81 | 72 83 | 73 83 |  |  |
| $S_{1.75}^{-1}$                | 12 19         | 13 21 | 10 18          | 14 24 | 14 23 | 14 22 | 22 34 | 25 37         | 17 28          | 27 42 | 27 41 | 27 40 |  |  |
| b0.5                           | 30 48         | 35 56 | 55 69          | 64 80 | 47 71 | 29 52 | 71 86 | 81 93         | 93 97          | 98 99 | 96 99 | 88 98 |  |  |
| b <sub>0.75</sub>              | 10 20         | 12 28 | 36 51          | 44 64 | 23 48 | 7 23  | 26 47 | 40 67         | 76 87          | 91 97 | 82 95 | 55 87 |  |  |
| $\chi_3^2$                     | 31 47         | 35 52 | 29 42          | 44 61 | 42 60 | 37 56 | 66 82 | 75 88         | 66 79          | 88 95 | 86 94 | 82 93 |  |  |
| $\chi_5^2$                     | 18 32         | 20 35 | 19 31          | 28 46 | 25 42 | 22 37 | 42 62 | 48 69         | 43 60          | 68 84 | 65 82 | 58 78 |  |  |
| $\chi^2_7$                     | 14 25         | 14 26 | 16 27          | 21 36 | 17 32 | 15 27 | 30 49 | 34 54         | 33 49          | 55 72 | 49 70 | 42 65 |  |  |
| SN <sub>3</sub>                | 8 16          | 7 16  | 11 20          | 13 25 | 10 21 | 7 16  | 16 30 | 17 33         | 23 38          | 35 54 | 28 48 | 21 39 |  |  |
| SN <sub>6</sub>                | 14 26         | 14 28 | 19 30          | 25 41 | 19 35 | 15 29 | 34 52 | 38 58         | 41 57          | 62 79 | 55 75 | 46 68 |  |  |
| SN <sub>10</sub>               | 16 30         | 18 33 | 22 34          | 30 47 | 23 42 | 19 35 | 41 60 | 46 66         | 50 66          | 72 86 | 66 82 | 56 76 |  |  |
| AL <sub>0.4</sub>              | 39 56         | 45 62 | 33 46          | 50 67 | 50 67 | 47 64 | 78 89 | 85 93         | 74 85          | 91 96 | 91 97 | 89 96 |  |  |
| AL <sub>0.6</sub>              | 26 38         | 28 42 | 20 30          | 30 44 | 29 44 | 28 43 | 56 71 | 61 76         | 47 61          | 65 78 | 64 77 | 62 76 |  |  |

Percentage of rejection for the Laplace null hypothesis at level 5% (left entry), 10% (right entry)

Image: A math a math

| GOF | Change-point | Nuisance parameters | Computation | MDH |
|-----|--------------|---------------------|-------------|-----|
|     |              |                     |             |     |

| $\gamma =$         | n = 50 |       |       |       | n = 100 | n = 100 |        |         |  |  |  |  |
|--------------------|--------|-------|-------|-------|---------|---------|--------|---------|--|--|--|--|
|                    | 0.1    | 0.5   | 0.75  | 1.0   | 0.1     | 0.5     | 0.75   | 1.0     |  |  |  |  |
| AL <sub>0.4</sub>  | 5 10   | 5 10  | 5 10  | 4 10  | 4 10    | 5 10    | 49     | 49      |  |  |  |  |
| AL <sub>0.5</sub>  | 5 10   | 5 10  | 6 12  | 6 1 2 | 5 10    | 6 1 1   | 5 11   | 4 10    |  |  |  |  |
| AL <sub>0.75</sub> | 5 10   | 59    | 49    | 37    | 6 1 1   | 5 10    | 5 10   | 49      |  |  |  |  |
| AL <sub>2</sub>    | 5 10   | 5 10  | 6 12  | 613   | 59      | 5 11    | 6 1 1  | 5 11    |  |  |  |  |
| AL <sub>3</sub>    | 59     | 5 10  | 59    | 4 10  | 5 10    | 5 10    | 59     | 49      |  |  |  |  |
| $AL_4$             | 5 10   | 49    | 48    | 38    | 5 10    | 59      | 49     | 4 9     |  |  |  |  |
| $\chi_1^2$         | 15 21  | 65 75 | 83 89 | 85 91 | 23 31   | 93 96   | 98 99  | 98 99   |  |  |  |  |
| $\chi^2_2$         | 6 11   | 9 15  | 13 25 | 17 30 | 6 1 1   | 15 26   | 24 39  | 25 42   |  |  |  |  |
| LN <sub>1</sub>    | 8 14   | 22 33 | 47 60 | 56 70 | 9 14    | 51 64   | 81 89  | 86 93   |  |  |  |  |
| LN <sub>1.5</sub>  | 11 17  | 27 40 | 56 72 | 75 85 | 12 18   | 73 83   | 96 98  | 99 100  |  |  |  |  |
| T <sub>0.75</sub>  | 7 13   | 14 22 | 24 37 | 30 44 | 8 13    | 21 34   | 46 62  | 55 71   |  |  |  |  |
| Т1                 | 9 15   | 23 35 | 48 62 | 56 71 | 9 14    | 50 64   | 81 89  | 86 92   |  |  |  |  |
| W <sub>0.5</sub>   | 16 22  | 60 71 | 83 91 | 90 95 | 25 32   | 95 97   | 99 100 | 100 100 |  |  |  |  |
| W <sub>0.75</sub>  | 10 16  | 47 58 | 70 79 | 75 84 | 13 19   | 82 89   | 95 97  | 96 98   |  |  |  |  |

Percentage of rejection for the asymmetric Laplace null hypothesis at level 5% (left entry), 10% (right entry)

(4) (3) (4) (4) (4)


# Computations



Hlávka and Hušková

Charles University, Prague

(ロ) (部) (目) (日) (日)

# Computations for ECF-based statistics

AIM:

Advantages vs. disadvantages





**CONCLUSION:** The ECF test statistic has computationally expensive closed form expression.

Hlávka and Hušková

Statistical procedures based on empirical characteristic functions

Charles University, Prague



# Bibliography



Polák (2005). Přehled středoškolské matematiky, Prométheus.

Henze, Hlávka & Meintanis (2014). Testing for spherical symmetry via the empirical characteristic function. *Statistics* 48(6), 1282–1296.

Meintanis & Hlávka (2010). Goodness-of-fit tests for bivariate and multivariate skew-normal distributions. *Scandinavian Journal of Statistics* 37(4), 701–714.

3 1 4



#### Computations for ECF-based statistics

Typically, research papers say that ECF based test statistics, e.g,

$$T = \int_{-\infty}^{\infty} |\hat{\varphi}_X(t) - \hat{\varphi}_Y(t)|^2 w(t) dt,$$

can be (it is easy to see, using simple algebra, clearly) expressed as

$$T = \frac{1}{n^2} \sum_{i,j} I_w(X_i - X_j) + \frac{1}{m^2} \sum_{i,j} I_w(Y_i - Y_j) - \frac{2}{mn} \sum_{i,j} I_w(X_i - Y_j),$$

where, for example,  $I_w(D) = \sqrt{\pi} \exp(-D^2)$  or  $2/(1+D^2)$ .

Charles University, Prague

Hlávka and Hušková



#### Computations for two-sample problem

In the two-sample problem, we use the test statistic

$$T=\int_{-\infty}^{\infty}|\hat{\varphi}_X(t)-\hat{\varphi}_Y(t)|^2w(t)dt,$$

where  $\hat{\varphi}_X(t) = \frac{1}{n} \sum \exp(itX_i)$  and  $\hat{\varphi}_Y(t) = \frac{1}{m} \sum \exp(itY_i)$ .

Let us recall some helpful formulas:

$$\begin{aligned} |x + iy| &= \sqrt{x^2 + y^2}, \\ \exp(it) &= \cos(t) + i\sin(t) \end{aligned}$$

It follows that T is equal to

$$\int_{-\infty}^{\infty} |\frac{1}{n} \sum \{\cos(tX_i) + i\sin(tX_i)\} - \frac{1}{m} \sum \{\cos(tY_i) + i\sin(tY_i)\}|^2 w(t) dt.$$

#### Hlávka and Hušková

Charles University, Prague

< 3 > < 3

Next, using the formula for absolute value, we have

$$T = \int_{-\infty}^{\infty} \left[ \left\{ \frac{1}{n} \sum \cos(tX_i) - \frac{1}{m} \sum \cos(tY_i) \right\}^2 + \left\{ \frac{1}{n} \sum \sin(tX_i) - \frac{1}{m} \sum \sin(tY_i) \right\}^2 \right] w(t) dt$$
$$= \int_{-\infty}^{\infty} \left[ -\frac{2}{mn} \sum \sum \left\{ \cos(tX_i) \cos(tY_j) + \sin(tX_i) \sin(tY_j) \right\} + \frac{1}{n^2} \sum \sum \left\{ \cos(tX_i) \cos(tX_j) + \sin(tX_i) \sin(tX_j) \right\} + \frac{1}{m^2} \sum \sum \left\{ \cos(tY_i) \cos(tY_j) + \sin(tY_i) \sin(tY_j) \right\} \right] w(t) dt$$

Using

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta),$$

4 B 🕨 4

Charles University, Prague

Hlávka and Hušková



#### we obtain

$$T = \int_{-\infty}^{\infty} \left[ -\frac{2}{mn} \sum_{i,j} \cos\{t(X_i - Y_j)\} + \frac{1}{n^2} \sum_{i,j} \cos\{t(X_i - X_j)\} + \frac{1}{m^2} \sum_{i,j} \cos\{t(Y_i - Y_j)\}\right] w(t) dt$$
  
$$= -\frac{2}{mn} \sum_{i,j} \int \cos\{t(X_i - Y_j)\} w(t) dt + \frac{1}{n^2} \int \sum_{i,j} \cos\{t(X_i - X_j)\} w(t) dt$$
  
$$+ \frac{1}{m^2} \sum_{i,j} \int \cos\{t(Y_i - Y_j)\} w(t) dt$$

• = • •

Charles University, Prague

and it remains to choose the weight function w(t) so that  $\int \cos{tD}w(t)dt$  has closed form expression.

Hlávka and Hušková



Favorite choices are  $w(t) = \exp(-at^2)$  or  $w(t) = \exp(-b|t|)$  because

$$\int_{-\infty}^{\infty} \cos\{tD\} \exp(-at^2) dt = \sqrt{\frac{\pi}{a}} \exp(-D^2/4a),$$
$$\int_{-\infty}^{\infty} \cos\{tD\} \exp(-b|t|) dt = \frac{2b}{b^2 + D^2}.$$

The resulting algorithm is:

- **1** Calculate the  $(n + m)^2$  differences  $D_{ii}^{XX}$ ,  $D_{kl}^{YY}$ , and  $D_{ik}^{XY}$ .
- **2** Calculate the integrals  $I_{ij} = \int \cos\{tD_{ij}\}w(t)dt$ .
- **3** Calculate T as the (weighted) sum of the integrals  $I_{ij}$ .



```
T1=0
for (i in 1:n) {
    for (j in 1:n) {
        T1=T1+iw(x[i]-x[j])
    }
}
T_{2=0}
for (i in 1:m) {
    for (j in 1:m) {
        T2=T2+iw(y[i]-y[j])
    }
}
T3=0
for (i in 1:n) {
    for (j in 1:m) {
        T3=T3+iw(x[i]-y[j])
    }
}
T=T1/(n^2)+T2/(m^2)-2*T3/(n*m)
```



• 3 • • 3



#### Speed of calculation

Good news: ECF lead to closed form expression.

Bad news: the algorithm is not fast (we have to calculate and sum n(n-1)/2 + m(m-1)/2 + n \* m = (n+m)(n+m-1)/2 terms).

Naive R implementation of the two-sample ECF test statistics leads to:  $n = m = 100 \ 0.04s$   $n = m = 200 \ 0.18s$   $n = m = 400 \ 0.68s$  $n = m = 800 \ 2.74s$ 

4 B 🕨 4

Hlávka and Hušková



#### Other testing problems

This method can be used in other testing problems, for example: *k*-sample problem  $H_0: \varphi_1 = \cdots = \varphi_k$ , goodness-of-fit  $H_0: \varphi_X = \varphi$  or some other property of  $\varphi$ , multivariate symmetry  $H_0: \varphi(t) = \Phi(||t||^2)$ , independence  $H_0: \varphi(t, s) = \varphi(t)\varphi(s)$ .

In the following, we shortly discuss a *change-point problem* (generalization of the two-sample problem):

 $H_0$ :  $Y_i$  are iid vs.  $H_1$ :  $\exists k$  such that  $Y_1, \ldots, Y_k \sim F_1$  and  $Y_{k+1}, \ldots, Y_T \sim F_2$ .

・ロト ・同ト ・ヨト ・ヨ

Hlávka and Hušková



#### Two-sample changepoint (and bootstrap)

We need to compare samples  $Y_1, \ldots, Y_k$  and  $Y_{k+1}, \ldots, Y_T$  for all  $k = 1, \ldots, n-1$ .

The ECF test statistic is

$$T = \max_k \gamma(k) \int_{-\infty}^{\infty} |\hat{\varphi}_k(t) - \hat{\varphi}^{k+1}(t)|^2 w(t) dt,$$

where  $\hat{\varphi}_k(t) = \frac{1}{k} \sum_{i=1}^k \exp(itY_i)$ ,  $\hat{\varphi}^{k+1}(t) = \frac{1}{T-k} \sum_{i=k+1}^T \exp(itY_i)$  and  $\gamma(k)$  is a weight function.

Critical values are typically obtained by bootstrap leading to computational difficulties.

(日) (同) (三) (三)



#### Speed of calculation

Naive R implementation of the two-sample test statistics leads to:

- $n = m = 100 \, 0.04 \mathrm{s}$
- $n = m = 200 \, 0.18 \mathrm{s}$
- $n = m = 400 \ 0.68 \mathrm{s}$
- n = m = 800 2.74s

In changepoint analysis with bootstrap critical values (say B = 1000), we need to calculate this roughly BT = B(n + m) times leading to:

- n = m = 100 8000 s = 2.2 h
- n = m = 200 72000s = 20h
- n = m = 400 544000s = 6.3d
- n = m = 800 4384000s = 51d

< 3 > < 3



### Speed of calculation

Higher speed is possible by using C code and compiled shared library:

```
twosam <- function (x,y) {.C("twosam",x=as.double(x),
    y=as.double(y),n=as.integer(length(x)),
    m=as.integer(length(y)),t=double(1))$t
}
dyn.load("./twosam.so")
T2=twosam(x,y)
```

The computation time for n = m = 800 is reduced from 2.74s (corresponding to 51 days) to 0.008s (corresponding to 21 minutes).

The code can be further optimized by using some simple relations.

Charles University, Prague



```
void twosam(double *x, double *y, int *n, int *m, double *t)
ſ
                    int i, j;
                     double t1, t2, t3;
                     t1 = 0.0; t2 = 0.0; t3 = 0.0;
                     for(i = 0: i < *n: i++)</pre>
                      ſ
                                         for( j = 0; j < *n; j++)
                                          ſ
                                                             t1 += 1.0 / (1.0 + ((x[j]-x[i]) * (x[j]-x[i])));
                                          }
                      }
                     for(i = 0; i < *m; i++)</pre>
                     Ł
                                          for( j = 0; j < *m; j++)</pre>
                                           Ł
                                                             t2 += 1.0 / (1.0 + ((y[j]-y[i]) * (y[j]-y[i])));
                                          }
                     }
                     for(i = 0: i < *n: i++)</pre>
                     Ł
                                         for( j = 0; j < *m; j++)
                                                             t3 += 1.0 / (1.0 + ((y[j]-x[i]) * (y[j]-x[i])));
                                          }
                     *t = t1/(*n * *n) + t2/(*m * *m) - 2.0 * t3/(*n * *m);
 }
                                                                                                                                                                                                                                                                                                   Image: Image:
```

#### Hlávka and Hušková

4 B K 4 B K



# Advantages



Advantages:

- 1 closed form expression,
- 2 easy generalization to more dimensions.

Recall that multivariate CF is  $\varphi(t) = E \exp\{it^{\top}X\}$ .

All derivations for multivariate ECFs are very similar.



### Multivariate setup

In the two-dimensional two-sample problem, we use the same test statistic

$$T=\int_{-\infty}^{\infty}|\hat{\varphi}_X(t)-\hat{\varphi}_Y(t)|^2w(t)dt,$$

with multivariate ECFs  $\hat{\varphi}_X(t) = \frac{1}{n} \sum \exp(it^\top X_i)$  and  $\hat{\varphi}_Y(t) = \frac{1}{m} \sum \exp(it^\top Y_i)$  leading to

$$T = -\frac{2}{mn} \sum_{i,j} \int \cos\{t^{\top}(X_i - Y_j)\}w(t)dt + \frac{1}{n^2} \int \sum_{i,j} \cos\{t^{\top}(X_i - X_j)\}w(t)dt + \frac{1}{m^2} \sum_{i,j} \int \cos\{t^{\top}(Y_i - Y_j)\}w(t)dt$$

Charles University, Prague

. . . . . . .

Hlávka and Hušková



#### Multivariate setup

Using 
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
, we have

$$\int \cos\{t^{\top}(X_{i} - Y_{j})\}w(t)dt$$

$$= \int \cos\{t_{1}(X_{i1} - Y_{j1}) + t_{2}(X_{i2} - Y_{j2})\}w(t)dt$$

$$= \int [\cos\{t_{1}(X_{i1} - Y_{j1})\}\cos\{t_{2}(X_{i2} - Y_{j2})\}$$

$$- \sin\{t_{1}(X_{i1} - Y_{j1})\}\sin\{t_{2}(X_{i2} - Y_{j2})\}]w_{1}(t_{1})w_{2}(t_{2})dt_{1}dt_{2}$$

$$= \int \cos\{t_{1}(X_{i1} - Y_{j1})\}w_{1}(t_{1})dt_{1}\int \cos\{t_{2}(X_{i2} - Y_{j2})\}w_{2}(t_{2})dt_{2}$$

• = • •

Charles University, Prague

if  $w(t) = w_1(t_1)w_2(t_2)$ , where  $w_i(x)$  are symmetric.

Hlávka and Hušková



### Multivariate setup

The resulting expression for the two-dimensional test statistics

$$T = -\frac{2}{mn} \sum_{i,j} I_w (X_{i1} - Y_{j1}) I_w (X_{i2} - Y_{j2}) + \frac{1}{n^2} \sum_{i,j} I_w (X_{i1} - X_{j1}) I_w (X_{i2} - X_{j2}) + \frac{1}{m^2} \sum_{i,j} I_w (Y_{i1} - Y_{j1}) I_w (Y_{i2} - Y_{j2}).$$

is not much more complicated than in one-dimension because it only replaces the terms  $I_w(X_{i1} - Y_{j1})$  by  $I_w(X_{i1} - Y_{j1})I_w(X_{i2} - Y_{j2})$ .

Charles University, Prague

Hlávka and Hušková



## Disadvantages



Disadvantages:

- 1 choice of tuning parameters (of the weight function),
- 2 nuisance parameters (bootstrap),
- **3** computationally intensive (but some tests of this type are even worse).



## ECF-based test of spherical symmetry

Let  $\varphi(t) = E(\exp(it^{\top}X)), t \in \mathbb{R}^{p}$ , denote the characteristic function (CF) of random vector X.

 $\mathcal{H}_0$ : there is some function  $\phi : \mathbb{R} \to \mathbb{R}$  such that  $\varphi(t) = \phi(||t||^2), \ t \in \mathbb{R}^p$ .

Test statistic can be based on discrepancies

$$D_n(t,s) = \hat{\varphi}_n(t) - \hat{\varphi}_n(s),$$

computed on pairs of points  $t, s \in \mathbb{R}^p$  such that ||t|| = ||s||.

Charles University, Prague

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



## ECF-based test of spherical symmetry

A Cramér-von Mises type test statistic is

$$\mathsf{CM}_n = n \int_0^\infty \left( \sum_{j=1}^K \sum_{m=1}^K |D_n(\rho u_j, \rho u_m)|^2 \right) W(\rho) d\rho,$$

where  $u_i$ , i = 1, ..., K, are points scattered on unit sphere.

Straightfoward algebra yields:

$$\mathsf{CM}_{n} = \frac{1}{n} \sum_{r,s=1}^{K} \sum_{l,m=1}^{n} \left[ I_{W}(u_{r}^{\top} X_{lm}) + I_{W}(u_{s}^{\top} X_{lm}) - 2I_{W}(u_{s}^{\top} X_{l} - u_{r}^{\top} X_{m}) \right],$$

where 
$$X_{lm} = X_l - X_m$$
 and  $I_W(z) := \int_0^\infty \cos(\rho z) W(\rho) d\rho$ .

• E • •



#### MGF-based test of skew-normality

Moment generating function of bivariate skew-normal distribution satisfies:

$$\delta_2 \frac{\partial M(t_1, t_2)}{\partial t_1} - \delta_1 \frac{\partial M(t_1, t_2)}{\partial t_2} = \left[ (\delta_2 - \omega \delta_1) t_1 - (\delta_1 - \omega \delta_2) t_2 \right] M(t_1, t_2)$$

Test statistics:

$$T_{n,W}(\hat{\vartheta}_n) = n \int_{\mathbf{R}^2} D_n^2(t_1, t_2; \hat{\vartheta}_n) W(t_1, t_2) dt_1 dt_2,$$

where  $D_n(t_1, t_2; \vartheta)$  is

$$\delta_2 \frac{\partial M_n(t_1, t_2)}{\partial t_1} - \delta_1 \frac{\partial M_n(t_1, t_2)}{\partial t_2} - \left[ (\delta_2 - \omega \delta_1) t_1 - (\delta_1 - \omega \delta_2) t_2 \right] M_n(t_1, t_2).$$

Charles University, Prague

Hlávka and Hušková



# MGF-based test of skew-normality

By straightforward algebra (it is easy to see, clearly)

$$\begin{split} \mathcal{T}_{n,w}(\vartheta) &= \frac{1}{n} \sum_{j,k=1}^{n} \left[ \delta_2^2 X_{1j} X_{1k} + \delta_1^2 X_{2j} X_{2k} - 2\delta_1 \delta_2 X_{1j} X_{2k} \right] I_0(X_{1jk}) I_0(X_{2jk}) \\ &+ \frac{1}{n} \sum_{j,k=1}^{n} \left[ \kappa_2^2 I_2(X_{1jk}) I_0(X_{2jk}) + \kappa_1^2 I_2(X_{2jk}) I_0(X_{1jk}) - 2\kappa_1 \kappa_2 I_1(X_{1jk}) I_1(X_{2jk}) \right] \\ &+ \frac{2}{n} \sum_{j,k=1}^{n} \{ [\delta_2 \kappa_1 X_{1j} - \delta_1 \kappa_1 X_{2j}] I_1(X_{2jk}) I_0(X_{1jk}) \\ &+ [\delta_1 \kappa_2 X_{2j} - \delta_2 \kappa_2 X_{1j}] I_1(X_{1jk}) I_0(X_{2jk}) \} \end{split}$$

where  $X_{mjk} = X_{mj} + X_{mk}$ , m = 1, 2, and  $I_m(z) = \int_{-\infty}^{\infty} t^m e^{tz} w(t) dt$ .

Charles University, Prague

イロト イヨト イヨト イヨト

Hlávka and Hušková





#### Hlávka and Hušková Statistical procedures based on empirical characteristic functions

Charles University, Prague

# Tests for martingale difference hypothesis (MDH)

Testing procedures which detect if the observed time series is martingale difference sequence (MDH)

Tests detection of change-points in the conditional expectation of the series given its past.

New test statistics based on Fourier-type conditional expectations.

The asymptotic properties, simulations, applications to the real data.

Motivation for our test is from Bierens (1982).

Hlávka and Hušková



# Formulation

The standard formulation of the MDH:

$$E(Y_t|\mathbb{I}_{t-1}) = 0, \qquad t = 1, \dots,$$
 (6)

 $I_t$  – the information set available at time t, and

 $Y_t$  – represents first differences of a process which under this hypothesis forms a martingale sequence.

Standard assumption statistical models used in finance and economics: The efficient market hypothesis states that in efficient markets, prices follow a martingale and always fully and instantaneously reflect all available relevant information consisting of past prices and returns, asset returns in an efficient market.

The basic idea for the MDH is the unpredictability of macro and financial series on the basis of currently available information.



Testing for zero autocorrelation – 1978 – Ljung and Box (1978) Bierens – 1982,

Hong 1999, Escanciano and Velasco (2006), Jong (1996)

Lobato – 2002

Escanciano and Lobato (2009)- survey

MDH for exchange rates, for instance, Belaire-Franch and Contreras (2011), Yilmaz (2003), Hong and Lee (2003), Fong et al. (1997), and Fong and Ouliaris (1995).

Less standard areas for MDH:

electricity prices (Veka, 2013)

CO2 emissions (Daskalakis et al., 2009, Charles et al., 2011a)

4 B 🕨 4



Null hypothesis and test statistics

$$H_0^{(1)}: \quad E(Y_t | \mathbb{I}_{t-1}) = 0, \qquad t = 1, \dots,$$
(7)

 $\mathbb{I}_t$  – the information set available at time t against

$$H_1^{(1)}: \quad E(Y_t|\mathbb{I}_{t-1}) = g(Y_{t-1}, \dots, Y_{t-m}),$$
  
$$P(g(Y_{t-1}, \dots, Y_{t-m}) = 0) < 1,$$

g – an arbitrary unknown function g, m > 0 – a chosen time-lag. Change point version –  $k_0$  – unknown change point

$$\begin{aligned} & \mathcal{H}_{0}^{(2)} : \quad \mathcal{E}(Y_{t}|\mathbb{I}_{t-1}) = 0, \\ & \mathcal{H}_{1}^{(2)} : \quad \mathcal{E}(Y_{t}|\mathbb{I}_{t-1}) = 0, \quad t < k_{0}, \\ & \text{but } \mathcal{E}(Y_{t}|\mathbb{I}_{t-1}) = g(Y_{t-1}, \dots, Y_{t-m}), \quad t \geq k_{0} \\ & \qquad \mathcal{P}(g(Y_{t-1}, \dots, Y_{t-m}) = 0) < 1. \end{aligned}$$

イロト イポト イヨト イヨト

Test procedures based on characterization (Bierens (1982)):

 $E(Y|\mathbf{X}) = 0 \Leftrightarrow E(Y \exp\{i\mathbf{X}'\mathbf{u}\}) = 0 \quad \mathbf{u} \in \mathbb{R}^m.$ 

Define:

Hlávka and Hušková

$$S_{t}^{(m)}(\boldsymbol{u}) = \frac{1}{\sqrt{n}} \sum_{\tau=m+1}^{t} Y_{\tau} e^{i\boldsymbol{u}'\boldsymbol{Y}_{\tau,m}}, \quad t = m+1,\ldots,n,$$
(8)  
$$S_{t}^{(m)}(\boldsymbol{u}) = 0, \quad t = 0, 1,\ldots,m,$$
  
$$\boldsymbol{Y}_{t,m} = (Y_{t-1}, Y_{t-2}, ..., Y_{t-m})',$$

m > 0 denotes a chosen time-lag.

(人) 日本 (人) 日本



Consider the integrated process

$$Q_m(s) = \int_{\mathbb{R}^m} |\frac{1}{\sqrt{n}} \sum_{\tau=\lfloor sn \rfloor+1}^n Y_\tau e^{i\mathbf{u}' \mathbf{Y}_{\tau,m}} |^2 w(\mathbf{u}) d\mathbf{u}, \quad 0 \le s \le 1, \quad (9)$$

 $w(\cdot)$  – a weight function.

The null hypothesis  $H_0^{(1)}$  against alternative  $H_1^{(1)}$  rejected if  $T_n^{(1)} := Q_m(0) \tag{10}$ 

is large.

The null hypothesis  $H_0^{(2)}$  is rejected in favor of alternative  $H_1^{(2)}$  if

$$T_n^{(2)}(\gamma) := \max_{m+1 \le k \le n} Q_m(k/n) / q(k/n, \gamma)$$
(11)

is large, where

$$q(s,\gamma) = (1-s)^{\gamma}, s \in (0,1), \quad 0 \le \gamma < 1.$$
 (12)

< ロ > < 同 > < 回 > < 回 > < 回

Charles University, Prague

Hlávka and Hušková



### Behavior under the null hypothesis

**Theorem**  $\{Y_t\}$  is a martingale difference sequence as well as stationary, ergodic with  $E|Y_1|^{2+\delta} < \infty$  for some  $\delta > 0$  $w(\cdot)$  be a measurable non-negative function on  $\mathbb{R}^m$ 

$$w(oldsymbol{t})=w(-oldsymbol{t})>0, \quad \textit{for} \quad \textit{all} \quad oldsymbol{t}\in\mathbb{R}^m, \quad 0<\int_{\mathbb{R}^m}w(oldsymbol{t})doldsymbol{t}<\infty.$$

Then as  $n \to \infty$ :

(a) 
$$T_n^{(1)} \to^d \int_{\mathbb{R}^m} |Z(0,\mathbf{u})|^2 w(\mathbf{u}) \, du,$$
  
(b)  $T_n^{(2)}(\gamma) \to^d \sup_{0 < s < 1} \frac{1}{(1-s)^{\gamma}} \int_{\mathbb{R}^m} |Z(s,\mathbf{u}) - Z(1,\mathbf{u})|^2 w(\mathbf{u}) \, d\mathbf{u},$ 

3 1 4

Charles University, Prague



 $0 \leq \gamma < 1$ ,  $\{Z(s, \mathbf{u}), s \in [0, 1], \mathbf{u} \in \mathbb{R}^m\}$  is a Gaussian process with expectation zero and covariance  $(0 \leq s_1 \leq s_2 \leq 1)$ 

$$cov\{Z(s_1, u_1), Z(s_2, u_2)\} = s_1 E\Big(Y_{m+1}^2 h(Y_{m+1}, u_1) h(Y_{m+1}, u_2)\Big), \quad u_1, u_2,$$

$$h(\boldsymbol{Y}_{m},\boldsymbol{u}) = \cos\left(\sum_{q=1}^{m} u_{q} Y_{m+1-q}\right) + \sin\left(\sum_{q=1}^{m} u_{q} Y_{m+1-q}\right), \quad (13)$$

Here  $\boldsymbol{u} = (u_1, \ldots, u_m)', \ \boldsymbol{Y}_{m+1} = (Y_m, \ldots, Y_1)'.$ 

The assertion of our theorem remains true if  $cov\{Z(s_1, u_1), Z(s_2, u_2)\}$  are replaced by their consistent estimators.

Critical values can be obtained by simulating the limit distribution. But more convenient is a proper bootstrap.

(日) (同) (三) (三)

Charles University, Prague



#### Alternatives

$$H_0^{(1)}$$
 versus  $H_1^{(1)}$ 

$$Y_k = \xi_k + g(\boldsymbol{\xi}_k),$$

 $\{\xi_t\}$  is a stationary and ergodic martingale difference sequence and g is a measurable function such that for some  $\delta>0$ 

$$P(g(\boldsymbol{\xi}_{m+1}) = 0) < 1, \qquad E|\xi_1|^{2+\delta} < \infty, \quad E|g(\boldsymbol{\xi}_{m+1})|^2 < \infty.$$

Change-point alternative with an MDS before the change  $H_0^{(2)}$  and  $T_n^{(2)}$ :

$$Y_k = \xi_k + g(\boldsymbol{\xi}_k) \ \mathbf{1}_{\{k > k_0\}}, \quad k_0 = \lfloor \lambda n \rfloor$$

< □ > < 同

for some  $0 < \lambda < 1$ , where  $(\{\xi_t\}, g)$  fulfill above.

Both tests are consistent, even sensitive w.r.t. local alternatives.

Hlávka and Hušková



Estimator of the change point  $k_0$ :

$$\widehat{k}(\gamma) = \min\{m < k < n; \ \widetilde{Q}_m(k/n)/\widetilde{q}(k/n,\gamma) \\ = \max_{m < j < n} \widetilde{Q}_m(j/n)/\widetilde{q}(j/n,\gamma)\},$$

$$\tilde{Q}_m(s) = \int_{\mathbb{R}^m} |S^{(m)}_{\lfloor sn \rfloor}(\boldsymbol{u}) - sS^{(m)}_n(\boldsymbol{u})|^2 w(\boldsymbol{u}) d\boldsymbol{u}$$

Charles University, Prague

э

・ロト ・部ト ・ヨト ・ヨト

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



## Wild bootstrap

(B.1):  $\{\eta_i\}_i$  are i.i.d. with mean zero, unit variance and  $E |\eta_1|^{2+\delta} < \infty$  for some  $\delta > 0$ ,

(B.2):  $\{\eta_i\}_i$  and  $\{Y_i\}_i$  are independent sequences of random variables.

Bootstrap statistics:

$$S_t^{(m)*}(\mathbf{u}) = \frac{1}{\sqrt{n}} \sum_{\tau=m+1}^t Y_\tau \exp{(i\mathbf{u}' \mathbf{Y}_{\tau,m})} \eta_\tau,$$

define  $T_n^{(j)*}$  analogously to  $T_n^{(j)}$  with  $S_t^{(m)}(\mathbf{u})$  replaced by  $S_t^{(m)*}(\mathbf{u})$ . Under the null hypothesis and local alternatives:

$$P(T_n^{(j)*} \leq x | Y_1, \ldots, Y_n) - P(T_n^{(j)} \leq x) \rightarrow^p 0, \quad j = 1, 2, \quad x \in \mathbb{R}^1.$$

< ロ > < 同 > < 回 > < 回 > < 回 >


Under fixed alternatives for all x:

$$|P(T_n^{(1)*} \leq x | Y_1, \dots, Y_n) - P(\int_{\mathbb{R}^m} |Z^0(0, \mathbf{u})|^2 w(\mathbf{u}) \, du \leq x)| \to^p 0,$$

 $\{Z^0(s, \mathbf{u}), s \in [0, 1], \mathbf{u} \in \mathbb{R}^m\}$  is a Gaussian process with expectation zero and covariance  $(0 \le s_1 \le s_2 \le 1)$ 

$$cov\{Z^0(s_1,\boldsymbol{u}_1),Z(s_2,\boldsymbol{u}_2)\} = \lim_{n\to\infty}\frac{1}{n}\sum_{j=1+m}^{\lfloor ns_1\rfloor} E\Big(Y_j^2h(\boldsymbol{Y}_j,\boldsymbol{u}_1)h(\boldsymbol{Y}_j,\boldsymbol{u}_2)\Big), \ \boldsymbol{u}_1,\boldsymbol{u}_2.$$

• E • •

Statistical procedures based on empirical characteristic functions

Hlávka and Hušková



## Martingale difference hypothesis (MDH)

Most efficiency studies on financial markets focus on a weak form of market efficiency through the MDH, whereby the profit expected from an asset (which is forecasted to have its future price equal to its the current price) is equal to zero.

Apart of testing **MDH** in a given time period  $(H_0^{(1)})$ , we test also the hypothesis of **no change** in the martingale difference structure  $(H_0^{(2)})$ .

**Real data example:** Daily scaled log returns of S&P 500 from 1990 until 1997 (source: Yahoo! Finance) have been previously analyzed by EV2006 [Escanciano and Velasco: Generalized spectral tests for the martingale difference hypothesis. *J.Econometr.* 134 (2006) 151–185].

. . . . . . .





Daily scaled log returns of S&P 500. Dashed line denotes January 1st, 1994, solid line denotes December 8th, 1994.

Charles University, Prague

EV2006 conclude that MDH is not rejected for the first period (Jan1990–Dec1993) and it is rejected for the second period (Jan1994–Dec1997).

Statistical procedures based on empirical characteristic functions



# Change-point analysis

We obtain the change–point estimate  $\hat{k} = 1250$  corresponding to a change occurring on December 8th, 1994.

We obtain p-value 0.649 for data observed until December 7th, 1994, and p-value 0.000 for data observed from December 8th, 1994, which implies that the MDH is not rejected for the first period (Jan1990–Dec7, 1994), while it is rejected for the second perriod (Dec8, 1994–Dec1997).

To confirm that there is no further change in the first period we tested the change-point hypothesis  $H_0^{(2)}$  and obtained a p-value of 0.526.

Hlávka and Hušková



## Conclusions

The hypothesis of no change in the martingale difference structure between January 1990 and December 1997 is rejected. The change in the martingale difference structure of the S&P 500 log returns occurred in December 1994, almost one year later than the change-point considered previously in EV2006.

MDH is not rejected for log returns until December 7th, 1994, and it is rejected for log returns observed after December 8th, 1994.

The hypothesis of no change in the martingale difference structure is not rejected using the data between January 1990 and December 7th, 1994.

Hlávka and Hušková



### Economic crises in 1990s

- Japanese asset price bubble (1986–2003)
- Bank stock crisis (Israel 1983)
- Black Monday (1987)
- Savings and loan crisis of the 1980s and 1990s in the U.S.
- Early 1990s Recession
- 1991 India economic crisis
- Finnish banking crisis (1990s)
- Swedish banking crisis (1990s)
- 1994 Tequila crisis in Mexico
- 1997 Asian financial crisis
- 1998 Russian financial crisis
- Argentine economic crisis (1999–2002)

#### Source: wikipedia



### Economic crises in 1990s

- Japanese asset price bubble (1986–2003)
- Bank stock crisis (Israel 1983)
- Black Monday (1987)
- Savings and loan crisis of the 1980s and 1990s in the U.S.
- Early 1990s Recession
- 1991 India economic crisis
- Finnish banking crisis (1990s)
- Swedish banking crisis (1990s)
- 1994 Tequila crisis in Mexico
- 1997 Asian financial crisis
- 1998 Russian financial crisis
- Argentine economic crisis (1999–2002)

#### Source: wikipedia







### The Tequila crisis

The Tequila crisis was a currency crisis sparked by the Mexican government's sudden devaluation of the peso against the U.S. dollar in December 1994. The Mexican economy experienced hyperinflation of around 52% and mutual funds began liquidating Mexican assets as well as emerging market assets in general. The effects spread to economies in Asia and the rest of Latin America. Source: wikipedia

