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Motivation 1

Development of extreme value models with time-dependent parameters in
order to estimate (time-dependent) high quantiles of maximum daily air
temperatures over Europe in climate change simulations (1961-2100).

Kysely, Picek and Beranova (2010): Estimating extremes in climate change
simulations using the peaks-over-threshold method with a non-stationary
threshold, Global and Planetary Change, 72, 55-68

A significant trend is present in climate change simulations (1961-2100) for
different scenarios future climate.



Motivation 2 - L-moments

o L-moments are linear combinations of order statistics.

o The concept of L-moments originates from various disconnected results
on linear combinations of order statistics, e.g. (Sillitto, 1969, Chernoff et
al., 1967, Greenwood et al., 1979)

o J.R.M Hosking (1990) unified the theory of L-moments and provided
guidelines for the practical use.

o Since that many applications in hydrology, climatology, quality control
(parameter estimation — method L-moments).



Motivation 2 - L-moments

Advantages of method L-moments:

o With small and moderate samples the method L-moments is often more
efficient than maximum likelihood simulation study (Hosking, Wallis,
Wood): for all values k of GEV in the range —0.5 < k < 0.5 and for all
sample sizes up to 100, estimates (L-mom) have lower root-mean/square
error than the maximum likelihood estimates

o Usually computationally more tractable than method of maximum
likelihood

o Compared to the conventional moments, L-moments have lower sample
variances and are more robust against outliers

o The cases in which some of the higher moments fails to exist. f.e. GEV
for k < —1/3 the third and fourth moments



Motivation 1+2 - regression quantiles

Motivation 1 - a significant trend is present in climate change simulations
= a linear regression model

Motivation 2 - L-moments - linear combinations of order statistics
—> quantiles

linear regression model+ quantiles = regression quantiles



Regression quantiles

The advantage of this approach is that many aspects of usual quantiles and
order statistics are generalized naturally to the linear model.



L-moments

Let X3, X», ... X, are independent, identically distributed random variables
with a cumulative distribution function F'(x) and a quantile function Q(u).
Let Xq., < Xs., < X,,., are the order statistics.

Definition:
1 r—1
- EX, pr, r=1,2,...
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L-moments
The first four L-moments are
1
A =EX :/ Q(u)du
0
1 1
Ao = §E(X2:2 — Xi2) = / Q(u)(2u — 1)du
0
1 1
A3 = gE(Xg;g —2Xo3+ X13) = / Q(u)(6u* — 6u + 1)du
0

1 1
Ay = ZE(X4:4—3X3;4+3X2:4—X1;4) = / Q(u) (20t —30u>+12u—1)du
0



L-moments

EXAMPLE: L-moments of some distribution:

Uniform (a, b)
Normal N (y, 02)
Gumbel

Generalized extreme
value
(GEV)

A= %(a—l—b),)\Q = é(b—a),Tg =0,74=0
AL =, e = 2,73 = 0,74 = 0.1226

F(x) = exp[—exp(—(z — §)/a)]

A =&+ avy, Ao = alog?2, 3 = 0.1699,
74 = 0.1504, v = 0.5772... const.

F(x) = exp[—(1 — k(z — £) /)]
AM=&+a(l-T1+k))/k,

Ao = a(l —27FI(1 + k) /k,
3=2(1-3%)/1-27F) -3, =...
k > —1, T'(.) denotes gamma function



L-moments

Estimations of L-moments — Sample L—moment:
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L-moments

Parameter estimation — method L-moments

Uniform (a, b) a=11 —3lo,b=1 +3ly
Normal N (p, 02) p=1,6 =2l
Gumbel F(r) = exp[—exp(—(z — §)/a)]

E=1 —ay,a=1ly/log?2
v = 0.5772... const.

= exp[—(1 — k(x — f)/a)%]

Generalized extreme x) =

2/(3+ t3) —log2/log 3,
7.
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Regression quantiles
Consider the linear regression model

Y =XB +E, (D

where Y is an (n x 1) vector of observations, X is an (n X (p + 1)) matrix, 8
is the ((p + 1) x 1) unknown parameter (p > 1)and E is an (n x 1) vector of
1.1.d. errors with a cumulative distribution function F'.

We assume that the first column of X is 1,,, i.e. the first component of 3 is an
intercept.

R. Koenker and G. Basset (1978) defined the a-regression quantile B ()
(0 < a < 1) for the model (1) as any solution of the minimization
(2

n
> palYi = xjt) :=min, te€ RPM, )
=1

where

pa (@) = Ta(2), € R" and o (x) = a — Ipeq, z € R (3)



Regression quantiles

o
o

o

IS

CM2.1, A1B, regression quantile CM2.1, A1B, stationary quantile

vvvvv CM2.1, A2, regression quantile ++-- CM2.1, A2, stationary quantile

Mean annual number of exceedances (POT events)
w

°

Mean annual number of exceedances (POT events)
w

2001
2006
2011
2016
2021
2026
2031
2036
2041
2046
2081
2086
061
2066
2071
2076
081
2086
2091
209
001
2006
201
2016

§8gggieget

TEEE

& |

2071

Mean annual number of exceedances above the threshold (averaged over
gridpoints) for the 95 regression quantile and the 95% quantile.



Regression quantiles

Computation of ,@ can be expressed as a parametric linear programming
problem with m,, distinct solutions as a goes from zero to one. That is, there
will be m,, breakpoints {7;}, fori = 1, - ,m,,. Each B\n(n) is characterized
by a specific subset of p 4+ 1 observations.

Portnoy (1991) — m,, = O(nlogn) in probability.

R — package quantreg



Regression quantiles
The dual linear program to the RQ-problem:
Y'a,(a) := max
X'a,(a) = (1 -a)X'1, 4
a,(a) €[0,1]", 0<a<l.
It defines the vector of regression rank scores

an(a,Y) = a,(a) = (dn1(a),...,ann()) in the linear model.
The regression rank scores are

@ continuous, piecewise linear in «, invariant with respect to the shift in
location and scale and also regression invariant, i.e.,

a(a, Y +Xb) =a,(a,Y) Vb € R?
o From the duality between 3(c) and &, (a): Voo € (0,1) fori =1,...,n

1 ifY; > 30 2i85(),

~

Qpy; (a) =

0 ifY; < Y7 _giifi(a)



Regression quantiles

Jureckové and Picek (2014) introduced the averaged regression quantile
_ ~ 1 &
Bu(0) =%, Bu(0),  Fn=-— 2; Xni 5)
1=

and studied its properties and relations to other statistics. Some properties of
By, («) are surprising: By, («) is asymptotically equivalent to the [na]-quantile
of the location model.

n1/2 }_(;Lr(//én(a) - 6) - E[na]:n = Op(n71/4) (6)

asn — oo, where F1.,, < ... < E,., are the order statistics corresponding to
By, ... By

So, the averaged regression c-quantile is asymptotically equivalent to the
location c-quantile.

—> we can generalize the method of L-moments in the regression context.



Generalization of L-moments in linear regression model

Substitution into

r—1
1 1
A== (- (T )EXr_,m, r=1,2,...
r k=0

of a standard expression for the expected value of an order statistic
(e.g. David and Nagaraja, 2003).

r!
=DUr—

yields a classical L-functional representation,

EXj, =

5 [ e @y =Py R

e = /0 P WP (u)du



Generalization of L-moments in linear regression model

1
no= [ PP (),
0

where

k
Py (u) = ZPZ,jUj»
=0

- () 7)

Py 1s the so-called shifted Legendre polynomial

with

L-moments is a special case of L-estimator = we can define
L-moments in linear regression model as special L-estimators.



Generalization of L-moments in linear regression model

Koenker and Portnoy (1987) and Gutenbrunner and Jureckova (1992)
generalized L-statistics to the linear model integrating the regression quantile
process with respect to a suitable signed measure v on (0, 1):

/,Bn Jd(a /ﬂn

and showed the L-statistic’s asymptotic normality. J is the density of v.

Taking for J the shifted Legendre polynomial P, (u) we get:

n

A= /01 By(a) Py (u) da = — ZYz ( /01 i (@) Py (u) da) -



Generalization of L-moments in linear regression model

Sample L —moments based on averaged regression quantiles:
First we create subsample

Then we plug averaged regression quantiles into the usual estimators of
L-moments statistics, i.e.,

- (1) EE TR ()

1< <12<...<tr <My,

r=1,2,....

®)



Generalization of L-moments in linear regression model

First sample averaged regression L-moments may be written as

1 mn * 1 m _1 k *
Wh=—> 7z, 1B%= 2( 2n> > 2 Zins = Zfma)-
n

i=1 i>7

-1
51 = ;(n;n) 2222 2 G = 2+ Zim,)

i>5>k

-1
i) S

i>5>k>1



Numerical illustration

The performance of the proposed sample averaged regression L-moments in
the regression model

Y;:BO+B1xZ+E17 7’217’”7 (9)
is studied on the simulated values.
@ The chosen values of the parameter (5 are 8y = —1, 81 = —2., the errors

were generated from the the normal and GEV distributions.

@ vector x1,...,T, was generated from the uniform distribution on the
interval (-5,30) and was fixed for all simulations.

@ 10000 replications of the linear regression model were simulated for
each case, and the sample averaged regression L-moments
l;f‘R, r =1, 2,3 were computed and used to estimate the parameters.

@ location parameter of errors F; were assumed to be known and equal to
Zero.



Numerical illustration

Case MSE mean median
o2
ARQ,n =100 0.3312 3.859 3.818

errors, n = 100 0.3320 4.019 3.970

Table: Mean, median and MSE of 10 000 estimated parameters based on the sample
L-moments for model (9) with errors simulated from the Normal distribution
N(p=0,0%=2)

Case MSE mean MSE mean
« k
ARQ,n =100 0.0234 1.0520 0.0176  -0.4417
errors,n = 100 0.0205 1.0160  0.0157 -0.4660

Table: Mean and MSE of 10000 estimated parameters based on the sample
L-moments for model (9) with errors simulated from GEV distribution
GEV({=0,a=1,k=-0.5)



Conclusions

@ We can use the proposed L-moments as tool for parametr estimation if a
significant trend is present in our dataset.

@ With small and moderate samples this method might be more efficient
than maximum likelihood method.

@ We can use the known results for L-estimators for statistical inference
(eg. construction confidence intervals).

o L-estimators (moments) based on regression rank scores (dual solution
of parametric linear programming problem - regression quantiles) could
be used for testing purposes - future work.



Thank you for your attention!
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