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Static and Dynamic optimal
portfolio selection problem

Static Markowitz optimal portfolio problem

Dynamic stochastic optimization problem statement

Bellman’s principle and Hamilton-Jacobi-Bellman equation



Example of optimal asset selection for German DAX30 stock index (2013)

Mathematical formulation of the Markowitz model

max
θ∈Rn

µTθ – maximize the mean return

s.t.
1

2
θTΣθ ≤ 1

2
σ2 – the variance is prescribed

n∑
i=1

θi = 1 – weights sum up to 100%

θ ≥ 0 – no short positions allowed

Here µ ∈ Rn, µi = E(X i ) is the vector of mean returns of stochastic

asset returns and Σ is their covariance matrix, Σij = cov(X iX j)



Motivation - Static optimal portfolio selection problem

its Lagrange function (corresponding to min(−µTθ))

L(θ, ϕ, λ, ξ) = −µTθ + ϕ
1

2
θTΣθ + λ1Tθ + ξTθ

ϕ ∈ R, λ ∈ R, ξ ∈ Rn, ξ ≥ 0 are Lagrange multipliers

The same Lagrange function corresponds to the minimization
problem:

min
θ∈Rn

−µTθ + ϕ
1

2
θTΣθ

n∑
i=1

θi = 1

θ ≥ 0

provided that the Lagrange multiplier ϕ > 0 is fixed.

ϕ can be viewed as a measure of investor’s risk-aversion



Motivation - Static optimal portfolio selection problem

ϕ ≈ 1 ϕ ≈ 4 ϕ ≈ 6 ϕ ≈ 8
Optimal asset selection for German DAX30 stock index for various ϕ > 0



Motivation - Dynamic optimal selection problem

Assumptions:

synthetic stochastic portfolio value Y θ
t at time t has the same

return as the weighted sum of returns of individual asset
returns on Y i

t

dY θ
t

Y θ
t

=
n∑

i=1

θit
dY i

t

Y i
t

each individual stochastic process satisfies Itō’s SDE:

dY i
t

Y i
t

= µidt +
n∑

j=1

σ̄jidW j
t , for all i = 1, ..., n,

of geometric Brownian motion with mean returns µi and
mutual covariances σ̄ji



Motivation - optimal selection problem

if the portfolio is allowed to have an exogenous non-negative
inflow with inflow rate ε ≥ 0 and constant interest rate r ≥ 0
then Yt = Y θ

t satisfies SDE:

Stochastic differential equation (SDE) for the portfolio value

dY θ
t = (ε+ [r + µ(θ)]Y θ

t )dt + σ(θ)Y θ
t dWt

µ(θ) = µTθ,
σ(θ)2 = θTΣθ where Σ = Σ̄T Σ̄ with Σ̄ = (σ̄ij)

for logarithmic variable X θ
t = ln(Y θ

t ) we obtain by Itō’s lemma

SDE for logarithmic variable

dX θ
t =

(
εe−X

θ
t + r + µ(θ)− 1

2
(σ(θ))2

)
dt + σ(θ)dWt



Motivation - optimal selection problem

Individual weights of assets: θt = (θ1
t , ..., θ

n
t )T belong to the given

decision set ∆n:

∆n ⊂ {θ ∈ Rn |
n∑

i=1

θi ≤ 1},

Examples:

compact convex simplex

∆n = {θ ∈ Rn | θi ≥ 0,
n∑

i=1

θi = 1} (or ≤ 1)

convex simplex with short positions allowed

∆n = {θ ∈ Rn |
n∑

i=1

θi = 1}

discrete set (example of a Slovak pension fund system)

∆n = {(0.8, 0.2), (0.5, 0.5), (0, 1)}



Goal: Find the optimal response strategy

{θ} = {θt ∈ ∆n | t ∈ [0,T ]}

belonging to a set A = A0,T of admissible strategies,

At,T = {{θ} | θs ∈ ∆n, s ∈ [t,T ]},

and such that {θ} maximizes the expected terminal utility U(.)
from the portfolio:

Stochastic dynamic optimization problem

max
{θ}∈A0,T

E
[
U(X θ

T )|X θ
0 = x0

]
,

where U is e.g. ARA terminal utility function U(x) = − exp(−ax)
representing an investor with constant coefficient a > 0 of absolute
risk aversion



Bellman’s principle - Stochastic variant

It is known from the theory of stochastic dynamic programming
that the so-called value function

V (x , t) := sup
{θ}∈At,T

E
[
U(X θ

T ) | X θ
t = x

]
subject to the terminal condition V (x ,T ) := U(x) can be used for
solving the stochastic dynamic optimization problem

Bellman’s principle
(using tower law of conditioned expectations)

V (x , t) := sup
{θ}∈At,t+dt

E
[
V (X θ

t+dt , t + dt) | X θ
t = x

]
response {θ} is optimal on the entire interval [0,T ]
iff {θ} is optimal on each subinterval [t, t + dt]



Bellman’s principle - Stochastic variant, a sketch

Stochastic dynamic optimization problem for Y θ
t = exp(X θ

t )
variable:

find a non-anticipative strategy {θ} maximizing

max
{θ}

E(U(YT) | Y0 = y)

t T 

t

Y
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Important tool: Itō’s lemma

Kiyoshi Itō (1915–2008)

Let V (x , t) be a C 2 smooth function of x , t variables. Suppose that
the process {Xt , t ≥ 0} satisfies SDE:

dXt = µ(Xt , t)dt + σ(Xt , t)dWt ,

Then the differential dVt = V (Xt+dt , t + dt)− V (Xt , t) is given by

dVt =

(
∂V

∂t
+

1

2
σ2(x , t)

∂2V

∂x2

)
dt +

∂V

∂x
dXt ,



Hamilton-Jacobi-Bellman equation

The Bellman principle can be rewritten as:

0 = sup
{θ}∈At,t+dt

E
[
V (X θ

t+dt , t + dt)− V (X θ
t , t) | X θ

t = x
]

Apply Itō’s lemma for differential
dVt = V (X θ

t+dt , t + dt)− V (X θ
t , t) of the process X θ

t

Taking into account dWt = Wt+dt −Wt and X θ
t are

independent we have E
[
∂xV (X θ

t , t)dWt

]
= 0

⇓

Hamilton-Jacobi-Bellman PDE

∂tV + max
θ∈∆n

{(
µ(θ)− 1

2
σ(θ)2

)
∂xV +

1

2
σ(θ)2∂2

xV

}
= 0



Riccati transformation of the
HJB equation

Riccati transformation

Transformation of the Hamilton-Jacobi-Bellman equation to a
quasi-linear parabolic PDE

The role of the value function of a quadratic optimization
problem



Introduce Riccati transformation

ϕ(x , t) = 1− ∂2
xV (x , t)

∂xV (x , t)
.

notice that the function a(x , t) ≡ ϕ(x , t)− 1 can be viewed as the

coefficient of absolute risk aversion for the intermediate utility

function V (x , t)

HJB equation (if ∂xV > 0)

∂tV + max
θ∈∆n

{(
µ(θ)− 1

2
σ(θ)2

)
∂xV +

1

2
σ(θ)2∂2

xV

}
= 0

can be rewritten as:

0 = ∂tV − α(ϕ) ∂xV , V (x ,T ) := U(x),

where α(ϕ) is the value function of the

Parametric optimization problem:

α(ϕ) = min
θ∈∆n
{−µ(θ) +

ϕ

2
σ(θ)2} .



Quasilinear parabolic equation for Riccati transformation

Theorem (S. Kilianová & D.Š., 2013 )

Suppose that the value function V satisfies HJB Then the Riccati
transform function ϕ is a solution to the Cauchy problem for the
quasi-linear parabolic equation:

∂tϕ+ ∂2
xα(ϕ) + ∂x f (ϕ) = 0, x ∈ R, t ∈ [0,T ),

ϕ(x ,T ) = 1− U ′′(x)/U ′(x), x ∈ R.

where f (ϕ) := εe−xϕ+ r + (1− ϕ)α(ϕ)



Parametric quadratic
optimization problem

Value function α(ϕ) as a minimizer of a parametric quadratic
optimization problem

Qualitative properties of the value function α(ϕ)

Counting discontinuities of α′′(ϕ)

Generalizations for the case of worst case scenario



Parametric quadratic programming problem

The function α(ϕ) entering quasilinear HJB equation is a value
function to the parametric quadratic convex programming problem

Value function

α(ϕ) = min
θ∈∆n
{−µTθ +

ϕ

2
θTΣθ}

over a compact (convex) set ∆n, e.g.:

∆n = {θ ∈ Rn | θi ≥ 0,
n∑

i=1

θi = 1}

or

∆n = {θ ∈ Rn | θi ≥ 0,
n∑

i=1

θi ≤ 1}

Merton model with a risk free asset with interest rate r > 0



Properties of the value function α(ϕ)

For optimal portfolio selection problem we have

α(ϕ) = min
θ∈∆n
{−µTθ +

ϕ

2
θTΣθ}

Theorem (S. Kilianová & D.Š., 2013 )

If Σ � 0 (typical for a covariance matrix) and
∆n is compact, convex
then the function: ϕ 7→ α(ϕ) is:

C 1,1 continuous in ϕ > 0;

strictly increasing in ϕ for ϕ > 0



What do we know about α(ϕ)?

Example: German DAX index, 30 assets:
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Figure : The function α and its first derivative for the German DAX30
stock index, based on historical data Aug 2010 - Apr 2012.



Properties of the value function α(ϕ)

Quadratic parametric optimization problem

α(ϕ) = min
θ∈∆n
{−µTθ +

ϕ

2
θTΣθ}

Idea of the proof:

α′(ϕ) it is the diffusion coefficient of the PDE for ϕ

α′(ϕ) = 1
2 θ̂

TΣθ̂ where θ̂ = θ̂(ϕ) is the unique minimizer

0 < λ− ≤ α′(ϕ) ≤ λ+ <∞ for all ϕ > 0 and t ∈ [0,T ]

Tools:

Milgrom-Segal envelope theorem (give C 1 smoothness of α)

Klatte’s results on Lipschitz continuity of the minimizer θ̂(ϕ)

(S. Kilianová & D.Š., 2013 )



Role of discontinuities of α′′(ϕ)

Points of discontinuity of the second derivative:
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Intervals of ϕ: (0, 0.23) (0.23, 1.27) (1.27, 3.15) (3.15, 6.62)
Assets with θi 6= 0: {23} {23, 30} {16, 23, 30} {16, 23, 27, 30}

We know which assets have nonzero weights, without solving PDE

Recall the static Markowitz optimal selection problem for different ϕ:

ϕ ≈ 1 ϕ ≈ 4 ϕ ≈ 6 ϕ ≈ 8



Explanation of discontinuities of α′′(ϕ)
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α(ϕ) = min
θ∈∆n
{−µTθ +

ϕ

2
θTΣθ}

Minimizer θ̂ = θ̂(ϕ) is only Lipschitz

continuous in ϕ and α′(ϕ) = 1
2
θ̂T Σθ̂

Increasing ϕ from ϕ = 0 to ϕ→∞

small values of ϕ: only one asset with maximal mean return is
active,
θ1 > 0, θ2 = θ3 = 0

intermediate values of ϕ: two assets are active,
θ1 > 0, θ2 > 0, θ3 = 0

large values of ϕ: all assets are active,
θ1 > 0, θ2 > 0, θ3 > 0



Extensions of the model with different α(ϕ)

ROBUST portfolio optimization

α(ϕ) = min
θ∈∆n

max
(µ,Σ)∈K

{−µTθ +
ϕ

2
θTΣθ}

K is a convex subset or a convex cone of mean return vectors
and positive semidefinite covariance matrices

it corresponds to the ”worst case” variance optimization
problem

takes into account uncertainty in the covariance matrix and
the mean return

Different behavior of the value function

For a nontrivial connected set K the value function α(ϕ) can be a
linear function on some subintervals (Kilianová & Trnovská (2016))



Qualitative properties
of solutions of the HJB
equation



Qualitative properties of a solution

Theorem (Kilianová & Ševčovič 2013)

Assume that the terminal condition ϕT (x), x ∈ R, is positive and
uniformly bounded for x ∈ R and belongs to the Hölder space
H2+λ(R) for some 0 < λ < 1/2 and α is C 1,1 smooth.

Then there exists a unique classical solution ϕ(x , t) to

∂tϕ+ ∂2
xα(ϕ) + ∂x f (ϕ) = 0, x ∈ R, t ∈ [0,T ),

ϕ(x ,T ) = ϕT (x).

Moreover, ∂tϕ, ∂xϕ is λ/2-Hölder continuous and Lipschitz
continuous, and α(ϕ(., .)) ∈ H2+λ,1+λ/2(R× [0,T ]).

By the parabolic comparison principle we have:
0 < ϕ(x , t) ≤ supϕ(.,T ), for all t, x

Existence of a unique classical solution to the Cauchy problem follows from
Ladyzhenskaya, Solonnikov and Uralceva theory. It is based on regularization of
the diffusion function α and solving the equation for η = α(ϕ)



Numerical approximation scheme



Idea of finite volumes numerical discretization

General form of PDE to be solved (backward in time):

∂tϕ+ ∂2
xA(ϕ, x , t) + ∂xB(ϕ, x , t) + C (ϕ, x , t) = 0,

function values ϕ(xi , τ
j) are approximated at grid points xi by

ϕj
i where τ j = T − jk (k is the time step)

the first derivative is approximated at the dual mesh point
xi+ 1

2
= mid point of [xi , xi+1],

(h = xi+1 − xi is the spatial step)

PDE equation is integrated over the dual volume [xi− 1
2
, xi+ 1

2
]



Semi-implicit scheme: tridiagonal system

− k

h2
D j

i+ 1
2

ϕj+1
i+1 + (1 +

k

h2
(D j

i+ 1
2

+ D j

i− 1
2

))ϕj+1
i − k

h2
D j

i− 1
2

ϕj+1
i−1︸ ︷︷ ︸

A(ϕj )ϕj+1

=
k

h
(I ji + E j

i+ 1
2

− E j

i− 1
2

+ F j

i+ 1
2

− F j

i− 1
2

)︸ ︷︷ ︸
B(ϕj )

+ϕj
i ,

D j

i± 1
2

= A′ϕ(ϕ, x , τ)|
ϕj

i± 1
2

,x
i± 1

2
,τ j

E j

i± 1
2

= A′x(ϕ, x , τ)|
ϕj

i± 1
2

,x
i± 1

2
,τ j

F j

i± 1
2

= B(ϕ, x , τ)|
ϕj

i± 1
2

,x
i± 1

2
,τ j

I ji = hC (ϕj
i , xi , τ

j)

Tridiagonal system of linear equations

Aϕj+1 = B(ϕj) + ϕj A = A(ϕj)

for the unknown vector ϕ = (ϕj+1
1 , · · · , ϕj+1

N ) ∈ RN



Computational results
and applications to portfolio
optimization

Optimal portfolio selection problem for

DAX30 index with a compact simplex ∆n

Slovak pension system with

discrete decision set ∆n, n = 2



Example: investment problem for the DAX 30 Index

Utility function: U(x) = 1
1−ae(1−a)x , with risk aversion a = 9,

inflow and interest rate ε = 1, r = 0, time horizon T = 10
ϕ(x ,T ) = 1− U ′′(x)/U ′(x) ≡ a ⇒ 0 < ϕ(x , t) ≤ 9 for all
(x , t)
Decision set: ∆n = {θ ∈ Rn | θi ≥ 0,

∑n
i=1 θ

i = 1} n = 30.
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Fresenius
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y=expHxL

Θ�
Hy
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t=
T

ϕ ∈ (0, 9]: ϕ ∈ active assets
1 - Adidas (0, 0.23) {23}
15 - Fresenius (0.23, 1.27) {23, 30}
16 - Fres Medical (1.27, 3.15) {16, 23, 30}
21 - Linde (3.15, 6.62) {16, 23, 27, 30}
23 - Merck (6.62, 7.96) {16, 21, 23, 27, 30}
27 - SAP (7.96, 8.98) {15, 16, 21, 23, 27, 30}
30 - Volkswagen (8.98, ...) {1, 15, 16, 21, 23, 27, 30}

Kilianová & Ševčovič (2013)



In case of n = 2 assets the asymptotic analysis of PDE yields the
first order approximation of the optimal stocks θ1 to bonds
θ2 = 1− θ1 proportion :

θ̂1(x , t) = C0 + C1
1

a

[
1 + ε exp(−x)

1− e−δ(T−t)

δ

]
+ O(ε2).

it means that the optimal stock to bonds proportion θ is a
decreasing function with respect to time t as well as to the amount
y = exp(x) > 0 of yearly saved salaries, i.e.

Practical conclusions for policy makers

higher amount of saved yearly salaries y

closer time t to retirement T

higher saver’s risk aversion a
⇒ lower amount of risky assets (stocks) in the portfolio

higher defined yearly contribution ε
⇒ higher amount of risky assets (stocks) in the portfolio



Slovak pension system - Second pillar limitations

Optimal weight decision set n = 2

∆n is the three element discrete set of funds

growth fund θ(s) = 0.8, θ(b) = 0.2
balanced fund θ(s) = 0.5, θ(b) = 0.5
conservative fund θ(s) = 0, θ(b) = 1

∆n = { (0.8, 0.2), (0.5, 0.5), (0, 1) }

In general, if ∆n is a discrete set then the function α(ϕ)

α(ϕ) = min
θ∈∆n
{−µTθ +

ϕ

2
θTΣθ}

need not be even C 1 smooth, and θ(ϕ) is not continuous

Example: n = 1,µ = 1,Σ = 1,∆ = {0, 1}
=⇒ α(ϕ) = min{−1 + ϕ/2, 0} is only Lipschitz continuous !!!



Computational results
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risk aversion a = 9 for utility function U(x) = 1
1−ae(1−a)x

n = 2 (Stocks and Bonds) with
∆n = {(0.8, 0.2), (0.5, 0.5), (0, 1)} for the Slovak pension
system
Conservative – F3, Balanced – F2, Growth – F1 fund
Results of 10000 Monte-Carlo simulations of the path yt .
Mean E (yt) and ±σ(yt)



Dynamic stochastic accumulation model
Computational results – Various risk aversions
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Higher risk aversion ⇒ earlier transition to less risky funds and
lower expected terminal value of savings

Kilianová, Melicherč́ık, Ševčovič (2006)



Conclusions

HJB equation arises dynamic stochastic portfolio selection problem
HJB equation can be transformed to a quasilinear PDE and solved
numerically
important role is played by smoothness properties of the value
function of a convex quadratic optimization problem
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