Introduction	Our problem	Idea	Summary and references

Interval data and sample variance

Ondřej Sokol Elena Kuchina

University of Economics, Prague

ROBUST 2016

•0	000000	000		
Interval data and statistics				

- One-dimensional dataset of exact values is unobservable.
- Observable is a collection of intervals.
- There is no other information about data but the lower and upper bound.
- Under these weak assumptions, the only information we can infer about statistics from the observable data is the lower and upper bound.
- In this work we deal with the upper bound of sample variance.

Introduction	Our problem	ldea	Summary and references
⊙●	0000000	000	
Intervals			

Interval

Given a *center* $x^c \in \mathbb{R}$ and a *radius* $x^{\Delta} \in \mathbb{R}^+$, the *interval* \mathbf{x} is the set $\{\xi : x^c - x^{\Delta} \le \xi \le x^c + x^{\Delta}\}$.

Iterval with lower bound \underline{x} and upper bound \overline{x} will be written as $[\underline{x}, \overline{x}]$.

Narrowed interval

Given a center x^c and radius x^{Δ} of interval x and positive real α , the α -narrowed interval x, denoted x^{α} is interval with center x^c and radius αx^{Δ} , i.e. $[x^c - \alpha x^{\Delta}, x^c + \alpha x^{\Delta}]$.

In this talk, we need only $\alpha \leq 1$ – this explains the term "narrowing".

Introduction	Our problem	Idea	Summary and references
00	●000000	000	
Problem for	rmulation		

Our problem

- **Input:** intervals x_1, \ldots, x_n , given as centers x_1^c, \ldots, x_n^c and radii $x_1^{\Delta}, \ldots, x_n^{\Delta}$.
- **Output:** minimal and maximal variance among samples of crisp values (x_1, \ldots, x_n) chosen from $x_1 \times \cdots \times x_n$.

It consists of solving

optimize
$$\sigma^2 := \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \frac{1}{n} \sum_{j=1}^n x_j \right)^2$$

subject to $x_i \in \mathbf{x}_i$ for $i = 1, \dots, n$.

- Sample variance σ^2 is convex in x_i , the set of all x_i is a convex set.
- The lower bound of sample variance over interval data can be found in polynomial time.
- Computation of the upper bound of sample variance over interval data is known to be **NP-hard problem**.
- We studied the behaviour of specialized algorithms (by Ferson (2005) and Xiang (2007)) on "common" randomly generated instances of this problem, exploiting their polynomial behaviour on "good" instances.
- Experiments show that random instances are usually solvable in reasonable time.

We focus on behaviour of Ferson's algorithm.

- If the the $\frac{1}{n}$ -narrowed intervals do not intersect, the algorithm computes $\overline{\sigma^2}$ in quadratic time in *n*.
- If the ¹/_n-narrowed intervals have a common point, then the computational complexity of the algorithm is O(2^kn²), where k is the maximal number of the narrowed intervals that have at least one common point.
- Formally, define $G_n = (\{1, \ldots, n\}, E)$, where

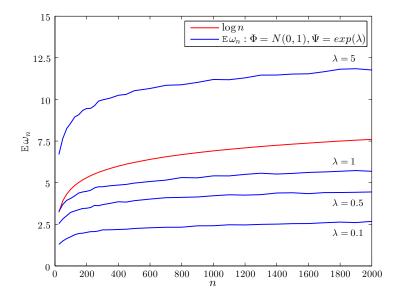
$$E := \{\{i,j\} : \mathbf{x}_i^{\frac{1}{n}} \cap \mathbf{x}_j^{\frac{1}{n}} \neq \emptyset\}.$$

- Let ω_n be the size of the largest clique in G_n , then $k = \omega_n$.
- The instances with **"small"** *k* are of interest. But how frequent are these instances?

Introduction	Our problem	ldea	Summary and references
00	ooo●ooo	000	
Experiments			

- The experiments tested the size of $k(=\omega_n)$ on randomly generated intervals.
 - $\bullet\,$ Denote by Φ the distribution of centers of the intervals.
 - Denote by Ψ the (nonnegative) distribution of radii of the intervals.
 - The samples were independent.
- The experiments suggest that if the intervals come from reasonable distributions Φ and Ψ, the size of the largest clique of the average case can be approximated by function of log n.

Results for $\Phi = N(0, 1)$ and various λ of $\Psi = \text{Exp}(\lambda)$



Introduction	Our problem	ldea	Summary and references
00	00000●0	000	
Conjecture			

The conclusions of the experiments is formalized in the following:

Conjecture

If Φ is a continuous distribution with finite first and second moments and its density function is limited from above and Ψ has finite first and second moments, then $E\omega_n = O(\log n)$ and $Var(\omega_n) = O(1)$.

Introduction	Our problem	ldea	Summary and references
00	000000●	000	
Our goal			

- If the conjecture is true, then *the algorithm runs in polynomial time on the random data*.
- Our goal is to decide the conjecture.

ъ

- It appears to be hard in its full generality. We restrict ourselves to the following stochastic setup:
 - centers are uniformly distributed on [0, 1],
 - radii are constant and equal to 1.

Introduction	Our problem	ldea	Summary and references
00	0000000	●00	
ldea			

- We subdivide the whole domain [0,1] by $\lfloor \frac{n}{2} \rfloor + 1$ equidistant points $t_0, \ldots, t_{\lfloor \frac{n}{2} \rfloor}$.
- In every such point, say point t, we express the distribution of the (random) number $A_n(t)$ of $\frac{1}{n}$ -narrowed intervals containing t.
- It is sufficient to compute $\max_i A_n(t_i)$. Unfortunately, random variables $A_n(t_i)$ are not independent, however, they have negative covariance vanishing with $n \to \infty$.
- Now, it is sufficient to overcome the dependency we suggest to approximate $A_n(t_i)$ with (independent) Poisson variables, however, we are not able to do this yet.

Introduction	Our problem	ldea	Summary and references
00	0000000	o●o	
Transformation			

• Define the indicator variable

$$Z_i^{rac{1}{n}}(t)=\left\{egin{array}{cc} 1, & ext{if } t\in oldsymbol{x}_i^{rac{1}{n}},\ 0, & ext{otherwise.} \end{array}
ight.$$

- Let $A_n(t)$ denote the number of $\frac{1}{n}$ -narrowed intervals intersecting t.
- As $Z_i^{\frac{1}{n}}(t)$ for i = 1, ..., n has alternative distribution and $Z_i^{\frac{1}{n}}(t)$ and $Z_j^{\frac{1}{n}}(t)$ are independent for $i \neq j$, then $A_n(t)$ has binomial distribution $Bi(n, \frac{2}{n})$ as $A_n(t) = \sum_{i=1}^n Z_i^{\frac{1}{n}}(t)$.
- Now, $A_n(t)$ has approximately Poisson distribution with parameter 2.

Introduction	Our problem	Idea	Summary and references
		00•	

• Let choose $\lfloor \frac{n}{2} \rfloor + 1$ equidistant points on interval [0, 1].

Lemma

For every k such that i < k < j and $|i - j| \le \frac{2}{n}$ it follows that $A_n(k) \le A_n(i) + A_n(j)$.

- With this placement of points, the covariance of $A_n(t)$ and $A_n(s)$ for $t \neq s$ is diminishing with $n \to \infty$ as $cov(A_n(t), A_n(s)) = -\frac{4}{n}$.
- Now, we need to compute the distribution of the maximum of $\lfloor \frac{n}{2} \rfloor + 1$ correlated variables with identical binomial (Poisson?) distribution.

Lemma (Kimber (1983))

Let $X_n(j) \sim Pois(\lambda)$, are independent for j = 1, ..., n, $\lambda > 0$ and $M = max(X(j) : j \in \{1, ..., n\})$. Then for $n \to \infty$, $M \approx \log n / \log \log n$.

Introduction	Our problem	Idea	Summary and references
00	0000000	000	
Summary			

- We deal with computation of maximal variance over interval data an NP-hard problem in general.
- Computational experiments suggest that **Ferson's algorithm** runs in **polynomial time** for most instances.
- We propose an approache to provide theoretical reasoning for what we observed empirically.
- However, some open "hard" steps remain unresolved.

Thank you for your attention.

- FERSON, Scott; GINZBURG, Lev; KREINOVICH, Vladik; AVILES, Monica. Exact Bounds on Sample Variance of Interval Data. *Reliable Computing*. 2005, Vol. 11, No. 3, pp. 207–233.
- KIMBER, Alan C. A note on Poisson maxima. *Probability Theory and Related Fields.* 1983, Vol. 63, No. 4, pp. 551–552. ISSN 0044-3719, 1432–2064.