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Interval data and statistics

One-dimensional dataset of exact values is unobservable.
Observable is a collection of intervals.
There is no other information about data but the lower and
upper bound.
Under these weak assumptions, the only information we can
infer about statistics from the observable data is the lower
and upper bound.
In this work we deal with the upper bound of sample variance.
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Intervals

Interval
Given a center x c ∈ R and a radius x∆ ∈ R+, the interval x is the
set {ξ : x c − x∆ ≤ ξ ≤ x c + x∆}.

Iterval with lower bound x and upper bound x will be written as
[x , x ].

Narrowed interval
Given a center x c and radius x∆ of interval x and positive real α,
the α-narrowed interval x, denoted xα is interval with center x c

and radius αx∆, i.e. [x c − αx∆, x c + αx∆].

In this talk, we need only α ≤ 1 – this explains the term
“narrowing”.
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Problem formulation

Our problem
Input: intervals x1, . . . , xn, given as centers x c

1 , . . . , x c
n and

radii x∆
1 , . . . , x∆

n .
Output: minimal and maximal variance among samples of crisp

values (x1, . . . , xn) chosen from x1 × · · · × xn.

It consists of solving

optimize σ2 := 1
n − 1

∑n
i=1

(
xi −

1
n
∑n

j=1
xj

)2

subject to xi ∈ x i for i = 1, . . . , n.
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Properties of our problem

Sample variance σ2 is convex in xi , the set of all xi is a convex
set.
The lower bound of sample variance over interval data can be
found in polynomial time.
Computation of the upper bound of sample variance over
interval data is known to be NP-hard problem.
We studied the behaviour of specialized algorithms (by Ferson
(2005) and Xiang (2007)) on “common” randomly generated
instances of this problem, exploiting their polynomial
behaviour on “good” instances.
Experiments show that random instances are usually
solvable in reasonable time.
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Complexity of Ferson’s algorithm

We focus on behaviour of Ferson’s algorithm.
If the the 1

n -narrowed intervals do not intersect, the
algorithm computes σ2 in quadratic time in n.
If the 1

n -narrowed intervals have a common point, then the
computational complexity of the algorithm is O(2kn2), where
k is the maximal number of the narrowed intervals that have
at least one common point.
Formally, define Gn = ({1, . . . , n},E ), where

E := {{i , j} : x
1
n
i ∩ x

1
n
j 6= ∅}.

Let ωn be the size of the largest clique in Gn, then k = ωn.
The instances with “small” k are of interest. But how
frequent are these instances?
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Experiments

The experiments tested the size of k(= ωn) on randomly
generated intervals.

Denote by Φ the distribution of centers of the intervals.
Denote by Ψ the (nonnegative) distribution of radii of the
intervals.
The samples were independent.

The experiments suggest that if the intervals come from
reasonable distributions Φ and Ψ, the size of the largest
clique of the average case can be approximated by
function of log n.



Results for Φ = N(0, 1) and various λ of Ψ = Exp(λ)
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Conjecture

The conclusions of the experiments is formalized in the following:

Conjecture
If Φ is a continuous distribution with finite first and second
moments and its density function is limited from above and Ψ has
finite first and second moments, then Eωn = O(log n) and
Var(ωn) = O(1).
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Our goal

If the conjecture is true, then the algorithm runs in
polynomial time on the random data.
Our goal is to decide the conjecture.
It appears to be hard in its full generality. We restrict
ourselves to the following stochastic setup:

centers are uniformly distributed on [0, 1],
radii are constant and equal to 1.
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Idea

We subdivide the whole domain [0, 1] by bn
2c+ 1 equidistant

points t0, . . . , tb n
2 c.

In every such point, say point t, we express the distribution of
the (random) number An(t) of 1

n -narrowed intervals
containing t.
It is sufficient to compute maxi An(ti ). Unfortunately, random
variables An(ti ) are not independent, however, they have
negative covariance vanishing with n→∞.
Now, it is sufficient to overcome the dependency – we suggest
to approximate An(ti ) with (independent) Poisson variables,
however, we are not able to do this yet.
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Transformation

Define the indicator variable

Z
1
n

i (t) =
{

1, if t ∈ x
1
n
i ,

0, otherwise.

Let An(t) denote the number of 1
n -narrowed intervals

intersecting t.

As Z
1
n

i (t) for i = 1, . . . , n has alternative distribution and
Z

1
n

i (t) and Z
1
n

j (t) are independent for i 6= j , then An(t) has

binomial distribution Bi(n, 2n ) as An(t) =
∑n

i=1 Z
1
n

i (t).
Now, An(t) has approximately Poisson distribution with
parameter 2.
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Let choose bn
2c+ 1 equidistant points on interval [0, 1].

Lemma
For every k such that i < k < j and |i − j | ≤ 2

n it follows that
An(k) ≤ An(i) + An(j).

With this placement of points, the covariance of An(t) and
An(s) for t 6= s is diminishing with n→∞ as
cov(An(t),An(s)) = − 4

n .
Now, we need to compute the distribution of the maximum of
bn
2c+ 1 correlated variables with identical binomial (Poisson?)

distribution.
Lemma (Kimber (1983))

Let Xn(j) ∼ Pois(λ), are independent for j = 1, . . . , n, λ > 0 and
M = max(X (j) : j ∈ {1, . . . , n}). Then for n→∞,
M ≈ log n/ log log n.
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Summary

We deal with computation of maximal variance over
interval data – an NP-hard problem in general.
Computational experiments suggest that Ferson’s algorithm
runs in polynomial time for most instances.
We propose an approache to provide theoretical reasoning for
what we observed empirically.
However, some open “hard” steps remain unresolved.

Thank you for your attention.
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