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Definition of the scalar fractional Brownian motion

Definition
R-valued Gaussian process (B > 0) on a probability space
(Q, F,P) is called (scalar) fractional Brownian motion with Hurst
parameter H € (0, 1), if this process satisfies

e (1)EBH =0 forany t € R,
(2) R(t,s) =EBIB! = 3(s?H + t2H — |t —s?H) s, te Ry,
(3) (BH,t > 0) has continuous paths P — a.s.

From (1) and (2) follows that B”(0) =0 P — a.s.
(FBm) with H = % is the standard Brownian motion.



Riemann—Liouville operators

Let (V.| -, (-,-)) be a separable Hilbert space.

If o € L([0, T], V), then for a > 0 the left-side and the
right-side fractional (Riemann-Liouville) integrals of ¢ are
defined by

(5.9 = 0 [ o le(s)ds ()

and
)
(/%so)(t):r(la) / (s— ) tp(s)ds,  (2)

respectively, where I'(-) is the gamma function.



Fractional derivatives

e For a € (0,1) the inverse operators of these fractional
integrals are called fractional derivatives and can be given by
the following representations

(Dg,)(t) = r(11_a) <wt(of) ta st> (3)
and
o _ 1 ¥(t) T (s) — (1)
000 = iy (g o e ).
(4)

where ¢ € [§.(L}([0, T], V)) and ¢ € I¢_(LY([0, T], V)),
respectively.



Kernel Ky(t,s)

o Let Ky(t,s) for0<s<t<T and H € (0,1/2) be the
real-valued kernel function

Ku(t,s) = ‘N:Hr(zfl;j);)_é
+ EFI((EI—I_—;) /st(u — s)H_% (1 — (fj)%_H) du.
(5)
e If He (1/2,1), then Ky has a simpler form as
Ki(t,s) = I_(He’ié)s%_H/st(u—s)H_guH_é du.  (6)

e The terms ¢y and ¢y are constants that depend only on H.



Integral operator Ky

e Define the integral operator Ky induced from the kernel Ky
by

Ky h(t) = /0  Ku(t, s)h(s) ds (7)

for h € L2([0, T], V).
e It is known that

Ky : L2([0, T], V) — /”*2 (L%([0, T], V)) (8)

is a bijection.



Integral operator Ky

e For H € (0,1/2] one may describe Ky as

Kyh(s) = eulgt <“§—Hlo§+_H (”H—;h>> (s)- 9)

e For H €[1/2,1) one may describe Ky as
1

Kph(s) = culg, <UH;/(:12 <U§Hh>> (s).  (10)

where .
2HI(H+ 33 — H)|?
(2 —2H)

EH = CHr(2H)

and for s >0and ae R

cH =

)

us(s) = s?1.



~1
Inverse operator K,

e The inverse operator
KL 72 (12(0, T, V) — L2(0, T], V)
is given by
K o(s) = gts2 Dz, (uH_%D§f<p> (s), He(0,1/2]

_ _ _1
Ki'o(s) = cgtsH2D) 2 (u%_HDcp) (s), He1/21).

1
for g € 2 (L2([0, T], V).



-1
Inverse operator K,

o If o € HY([0, T], V), the Sobolev space, then

_ -1 H_1,i-H
Kngo(S) = cHlsH 21y, (U%_Hsf?,) (s) (11)

for H € (0,1/2].



Operator KJ,

e Family of linear operators (K3, H € (0,1)) is provides an
isometry between Wiener-type integrals of a fractional
Brownian motion and L2([0, T], V).

o Let K3, : € — L([0, T], V) be the linear map given by
* T 8I'(H
Cirp(t) = e(OR(T.0) + [ (pls) — o(0) “5 (s, 1) ds
t
(12)
for p € €, where £ is the linear space of V-valued step
functions on [0, T].



Definition of the stochastic integral

e pelif
n—1
o(t) = Xilp (1), (13)
i=1

where x; € V foriel,...,n—1 and
O=ti<b<..<tg=T.

e Define the stochastic integral as

)
/O pdBi= Y5 (Blt1) - B(t)). (14)



Definition of the stochastic integral

It follows that

= oo

where | - [;2((0,77,v) is the norm in L?([0, T], V) induced by the
inner product.

Let (H, |- |3 (-, -)5) be the Hilbert space obtained by the
completion of the pre-Hilbert space £ with the inner product

(@, Vg = (Ko, KEY) 12(0, 7,19 (16)

for ¢, € £. The stochastic integral is extended to an
arbitrary ¢ € H by the isometry (15).

2
= |K*H(p‘%2([O7T],V)7 (15)




Definition of the stochastic integral

e H is a linear space of integrable functions.
o If He (1/2,1), then 1 D L ([0, T], V) D L2([0, T], V).
o If He (0,1/2), then H D C([0, T], V) for each 3 > % —H.



Cylindrical fractional Brownian motion

Definition
Let (Q, F,P) be a complete probability space. A cylindrical
process (B,-) : Q x Ry x V — R on (Q, F,P) is called a standard
cylindrical fractional Brownian motion with the Hurst parameter
H e (0,1) if
e (1) for each x € V\{0}, W (B(-),x) is a standard scalar
fractional Brownian motion with the Hurst parameter H

e (2)fora,f €R and x,y € V

(B(t),ax + fy) = a(B(t),x) + B (B(t),y) P—as. (17)



Cylindrical fractional Brownian motion

e For a complete orthonormal basis (e,, n € N) of V/, letting
Bn(t) = (B(t), en) for n € N, the sequence of scalar processes
(Bn, n € N) is independent and B can be represented by the
formal series

B(t) = Ba(t)en (18)
n=1

that does not converge a.s. in V.



Definition of the stochastic integral

e For x € V\{0}, let Bx(t) = (B(t),x). There is a scalar
Wiener process (wy(t),t > 0) such that

Bu(t) = /Ot Ku(t,5) dwi(s) (19)

for t € Ry,.
e Dually wy(t) = B (Kjy) Mpop) if V=R
e Note that for any ¢ € H and x € V/, there is the equality

T T
| edse= [ Kig ame (20)
0 0



Definition of the stochastic integral

Definition

Let G : [0, T] — L(V) be Borel measurable, let (e,, n € N) be a
complete orthonormal basis in V, let G(-)e, € H for each n € N
and let B be a standard cylindrical fractional Brownian motion for
some fixed H € (0,1). The stochastic integral fOT G dB is defined

3 T 0 T
/ GdB ::Z/ Gen df3n, (21)
0 T 1J0

provided the infinite series converges in L%(2, V).



Girsanov theorem

Theorem
Let H e (0,1) and T > 0 be fixed and let (u(t),t € [0, T]) be a
V-valued, (F¢)-adapted process such that

- () )
/0 lu(t)]| dt < 0o P— as. (22)

° (2

U() := /0 u(s) ds € /OH:% (L3([0,T],V)) P—as. (23)



Girsanov theorem

Theorem
Furthermore, it is assumed that

Eér =1,

where

)
fT—eXP[/ (KM U)(0). dW (1)) — - /0 K U))2 dt |
(24)

where (We, t € [0, T)) is a standard cylindrical Wiener process in
V associated with (BH,t € [0, T]).



Girsanov theorem

Theorem y
Then the process (By, t € [0, T]) given by

ét = B,_{—I—Ut

is a standard cylindrical fractional Brownian motion in V' with the
Hurst parameter H on the probability space (2, F,IP), where

dp
— = . 2
qp —oT 2s (25)



Many cases...

e We can be interested in the following cases

dX; = (AX; + 0F(X;)) dt + & dB!!
dX; = 0F(X;) dt + & dB!

dX; = AX, dt + o dBH

dX: = 0 (AX; + F(X;)) dt + & dBH
dX: = (AAX: + F(X;)) dt + o dB!!
dX: = (AX: + pF(Xy)) dt + & dBH,

with X(0) = xp € V in all equations.



Statistical inference in general case

e Consider the following stochastic differential equation

dXe = (AX; +0F (X)) dt +®dBI  Xo=x0, t>0, (32)

where
e deL(V)
e A:Dom(A) — V, Dom(A) C V and A is the infinitesimal

generator of a strongly continuous semigroup (S(t), t > 0) on
v,

e F:V — V is nonlinear function.

e Denote G := & 1F.



Ornstein—Uhlenbeck process

e Let us begin with this helpful equation

dZ; = AZ, dt + ¢ dBl
Zo = X0.

e The solution of this equation is the fractional
Ornstein—Uhlenbeck process

t
Zt:5(t)xo+/ S(t— ry® dBH
0

== S(t)XO + ZNt.

(34)



Construction of weak solution

e Define the process
t
BH = Bl —/ G(Zs)ds (35)
0

e Using Girsanov theorem, we get that B, is a fractional
Brownian motion on some probability space.

e We can make the following calculation

t
BH = BH +/ & 1F(Z) ds
0

dBH = dé” + o7 1F(Z,) dr
S(t—r)® dBH —r)®dBH + S(t — r)od1F(Z,) dr

/St—rcbds” /St—rcdeH /St—r Z,)dr.



Construction of weak solution
e On the other hand
t
/ S(t—r)®dB" = Z, — S(t)x.
0

e Together we have

t)xp = /t S(t—r)ddBH + /t S(t—r)F(Z)dr

Z, = S(t xo+/5t—r)<deH

/St—r »)dr.

e It implies that Z is a weak (also mild) solution of semilinear
equation (32) on the probability space (2, F,P).



MLE estimator

e The obtained MLE estimator of the parameter 6 has a form

foT <Qtv th>

01 = : (36)
o 1Qe|1? dt

e We also have ~
fOT <Qt7 th>
= T—7
Jo 1Q:[12 dt
where Wt = Wt —0 fot QS ds.

e To prove consistency of the estimator 61 we need only to
show that

Or — (37)

t
Iim/ |Qs|Pds =00 P —as. (38)
t—o0 0



. ?
lims_ oo fot | Qs|]?ds = oo
e In the case H € (0,1/2) we have

t to t
JIedras = [Tl ds+ [ Qs
0 0

to
t
> / 1Qul? ds.
to

e Now we can compute

@l =it ([ ezyar) o

cus™ %/oi”( H6(z, ))() :




. ?
lims_ oo fot | Qs|]?ds = oo

1
|Qsll = cus =2

/(s—r —2—H %*HG(Zr)dr
Zapst [(s=nHHH6(z) o
0
H-—1L %0 Ll il H
= st d [ (s— AR 6(Z) dr+
0
H-t [° ~i-H L1-H
+tens' 2 | (s—r)2 1G(Z:)|| dr
%0
> cyst= 1(s—so %H /||G )|| dr
HC

%(5—50) 2 55

> clsH_



' ?
lim; o0 fOt HQsH2dS = 00

o We get

| Qell > cos™ 3 (s — s9) 27"

1
s 3+H
= C2 )
S— 50
e Hence we obtain

t ‘ s\ 1+2H
[t [4(:2) "o 0
to % s— 5 =
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