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Point processes

Definition Consider N the system of locally finite subsets of R? with
the o-algebra N = oc({x € N : f§(xNA)=m}: A€ B,m e Ny).
A point process X defined on R? is a measurable mapping from some

probability space (2, F, P) to (N, N).

Definition A locally finite, diffusion measure p on B satisfying u(A) =
EX(A) for all A € B is called the intensity measure.

Definition If there exists a function p(z) for x € R? such that u(A) =
[, p(z)dx, then p(x) is called the intensity function.

Definition If p(x) = p is constant then the constant p is called inten-
sity.




Poisson point process

Definition The Poisson process Y is the process which satisfies:

e for any finite collection {A,} of disjoint sets in R?, the numbers of
points in these sets, Y (A,), are independent random variables,

e for each A C R? such that u(A) < 0o, Y(A) has Poisson distribu-
tion with parameter u(A), i.e. P[Y(A) = k] = %‘?ke_k, where
is the intensity measure.




Point process given by the density
with respect to Poisson process

Let Y be the Poisson process with an intensity measure f.
For FF € N, denote TI(F') = P(Y € F).

Definition A point process X is given by density f with respect to the
Poisson process Y if

P(X € F) = /F F(x)TT(dx).
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Notation

e x = b(u,r) ... adisc with centre in u € R? and radius r € (0, 00)
e x ={xy,...,x,} ... finite configuration of n discs
e U, ... the union of discs from the configuration x

e Y ... random disc Boolean model (i.e. union of discs without any
interactions) with an intensity function of discs centers p(u) and
probability distribution of the discs radii ()

e X ... random disc process which is absolutely continuous with re-
spect to the process Y




Assumptions

e The intensity function is p(u) = p > 0 on a bounded set S and
p(u) = 0 otherwise, i.e. the centers of the reference Boolean model
form stationary Poisson process on S.

e For any finite configuration of discs x = {xy,...,x,}, the proba-
bility measure of X with respect to the probability measure of Y is
given by density

£(x) _exp{f- T(Ux)}7

Cy

where

— ¢y is the normalizing constant,
— 0 is m-dimensional vector of parameters,

— T(Uy) is a m-dimensional vector of geometrical characteristics
of the union U, of the discs from the configuration x.




Quermass-interaction process
The density is of the form

Fo(%) =~ expl{B1A(U) + 6:L(U) + O5x(Us)},

Co

o A= A(Uy) is the area,
e . = L(Uy) is the perimeter,

e \ = x(Uy) is the Euler-Poincaré characteristic (the number of con-
nected components minus the number of holes, i.e.

X(Ux) - Ncc<Ux) - Nh<Ux))

of the union Uk.




Interpretation of the parameters
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A realization of the reference random disc Boolean model on a rectangular region S = [0, 30] x [0, 30]
with @ the uniform distribution on the interval (0,2) and p = 0.2 (left), and A-interaction model
with parameters 0; = 0.1 (middle), resp. 61 = —0.1 (right).




Interpretation of the parameters

Quermass-interaction process with parameters (61, 62, 03) = (0.6, —1, 1) (left), (0.6, —1,2) (middle)
and (0.6, —1,5) (right).




Extended Quermass-interaction process

Mgller, Helisova (2008):
— In the density

£(x) _exp{f - T(Ux)}7

Cy

we have T'= (A, L, x, Ny, Ny, Niq), where
Ny, = Ny, (Uy) is the number of boundary vertices,
N;qy = N;y(Uy) is the number of isolated discs
of the union Us.
— Theory and simulations studied.

Mgller, Helisova (2010):
—T = (A, L, Nee, Nyp).
— Statistical analysis.
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Maximum likelihood method using
MCMC simulations (MCMC MLE)

e Denote fy(x) = ho(x)/cy (i.e. hy(x) = exp{f - T(Uy)} is the

unnormalized density).

e For an observation X, the log likelihood function is given by

[(0) =log hy(x) —logcy =0 - T'(Uy) — log cy.

Problem 1: ¢, has no explicit expression.




Maximum likelihood method using
MCMC simulations (MCMC MLE)

e Denote fy(x) = ho(x)/cy (i.e. hy(x) = exp{f - T(Uy)} is the
unnormalized density).

e For an observation X, the log likelihood function is given by

[(0) =log hy(x) —logcy =0 - T'(Uy) — log cy.

Problem 1: ¢, has no explicit expression.

Solution of problem 1 (Mgller, Waagepetersen (2004) applied by
Mgller, Helisova (2010)): We maximize the likelihood ratio fy/ fy, for a
fixed vector 6, instead.




MCMC MLE - problem 1

Solution of problem 1: For the fixed 6, the log likelihood ratio
[(8) — 1(00) = log(hy(x)/he,(x)) — log(co/cq,)

can be approximated by

[(0) — U(6o) = log(hy(x)/hg,(x)) — log — Zhe )/ oy (2 (1)

where z;, 1 = 1,..., M, are realizations from fy, obtained by MCMC
simulations.




MCMC MLE - problem 2

Problem 2: MCMC MLE is time-consuming, because
e quite a large number M of realizations is needed,

e the apprOX|mat|on is p055|b|e only for 0, close to 6 = bridge sampling

(6 — 00 — 6@ - = 0).




MCMC MLE - problem 2

Problem 2: MCMC MLE is time-consuming, because
e quite a large number M of realizations is needed,

e the apprOX|mat|on is p055|b|e only for 0, close to 6 = bridge sampling
(6 — 00 — 6@ . 0).

Solution of problem 2: Dimension reduction = estimating 6 by max-
imum likelihood method converts to looking for the maximum in lower-
dimensional space.




MCMC MLE - problem 3

Problem 3: Let Uy be the observed set, z;, i = 1,..., M, be the
realizations from (1) and 0 = (6, ..., 0,,) be the corresponding MCMC
maximum likelihood estimate of the parameter 0. Denote T} the j-th

item of the vector T'. Then for all j =1, ..., m, the following holds:
(i) If T;(Uyx) < T;(Uy,) foralli =1,...,M and T;(Uy) < T;(Uy,) for
at least one ¢, then 0, = —o0c.

(ii) If T;(Ux) = T3(U,,) for all i = 1,..., M and T;(Uyx) > T;(U,,) for

at least one ¢, then 0, = oo.




MCMC MLE - problem 3

Problem 3: Let Uy be the observed set, z;, i = 1,..., M, be the

realizations from (1) and 0 = (6, ..., 0,,) be the corresponding MCMC
maximum likelihood estimate of the parameter 0. Denote T} the j-th

item of the vector T'. Then for all j =1, ..., m, the following holds:
(i) If T;(Uyx) < T;(Uy,) foralli =1,...,M and T;(Uy) < T;(Uy,) for
at least one ¢, then 0, = —o0c.

(ii) If T;(Ux) = T3(U,,) for all i = 1,..., M and T;(Uyx) > T;(U,,) for

at least one ¢, then 0, = oo.

Solution of problem 3: Dimension reduction = transformation of used
geometrical characteristics.
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Principal components method

e Denote V = (07,)/",_, the variance matrix of T'(Uy).

e Suppose that V has r > 0 positive, mutually different eigenvalues
AL > XAy > ... > )\, — corresponding eigenvectors vi,...,V,.

e Looking for a vector u such that u’u = 1 and uT(U,) has the
largest possible variance — u = v; & var(v{T(Uy)) = A;.

e Denote C(Uy) = viT(Uy).

e Looking for a vector u such that u’u = 1, uT(Uy) has the largest
possible variance and cov(uT'(Uy), C1(Uy)) =0 — u = v».

e Denote Cy(Uy) = voT(Uy) — varCy(Uy) = Xs.
o C\(Uy),...,C.(Uy) — principal components of the vector T'(U,).
o vi(Uy),...,v,.(Ux) — principal directions.




Principal components method

e Usually in practice r = m.

e Denoting
=3 o,
i=1
it can be proved that varC, + ... +varC, = A\ + ...+ \, = 0%

I
For p < r, Ci(Uyx),...,C,(Uy) such that

Nt Ay L
ks

1
o

cover the variability of the data enough and can explain the be-
haviour of the vector T'(Uy) satisfactorily.




Principal components method

e Our aim: rewrite the density

_ exp{f - T(Uy)} _ exp{OT1(Uy) + ...+ 0,,T,,(Uy) }

fo(x) o o
to the form
£ = 22le OO} _ el Gl + -+ 9 G(U}
Cyp Cop
where

— 0 has lower dimension than 6 = its estimation is faster,

— items of C(Uy) can be both positive and negative — no under-
valuation or overvaluation of parameter estimates.




Principal components method

e Our aim: rewrite the density
exp{f-T(Ux)}  exp{0i/T1(Ux) + ... +0,T,(Ux)}

fo(x) G Co
to the form
£() = opip- CUJ} _ ep{piCi(ls) + -+ 9 GpUx)}
Co Co
where

— ¢ has lower dimension than 6 =- its estimation is faster,

— items of C(Uy) can be both positive and negative — no under-
valuation or overvaluation of parameter estimates.

e Different ways how to determine p described (Rencher 2002), e.g.
to take such p that the cumulative variance (A;+. ..+ \,) is greater
than 80% of total variance (A; + ... + ).




Numerical results - simulated data
N=100 realizations of the (A, L, N,., N}, N;;)-interaction process with
e centers in 10 X 10 square window,
e parameters 0 = (01,605, 05,0,,05) = (1.5, —1,1,—0.25, —0.5),
e reference process with

— the intensity of the disc centers p =1,
— radii of discs uniformly distributed in the interval [0.2,0.7].
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Numerical results - simulated data

N | eigenvalues corresponding eigenvectors cumul.var

117.40 | (-0.41,0.82,0.28,-0.25,0.11) |  49%
104.15 | (-0.77,-0.55,0.22,-0.23,0.05)  93%
100| 8.35 (0.06, -0.02,0.64,0.63,0.44) 97%
5.71 (0.43,-0.15,0.30,-0.69,0.47) 99%
1.57 (0.20,-0.05,0.61,-0.11,-0.75) 100%




Numerical results - simulated data

N | eigenvalues corresponding eigenvectors cumul.var
117.40 | (-0.41,0.82,0.28,-0.25,0.11) 49%
104.15 |(-0.77,-0.55,0.22,-0.23,0.05) 93%

100 8.35 (0.06, -0.02,0.64,0.63,0.44) 97%

5.71 (0.43,-0.15,0.30,-0.69,0.47) 99%

1.57 (0.20,-0.05,0.61,-0.11,-0.75) 100%

98.53 | (0.61,-0.47,-0.52,0.29,-0.21) 63%
46.70 (0.61,0.78,0.01,0.09,0.11) 93%

10 7.16 (0.06,0.09,-0.43,-0.88,-0.19) 98%
2.58 (-0.49,0.39,-0.60,0.37,-0.34) 99%

0.78 (-0.10,-0.04,-0.43,0.02,0.89) 100%
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Comparing a realization of the original data (left) with a realization of fitted model for N = 10

input sets (right).




Model checking - CDF

e For a random set Z and a compact convex set B C R?, define
D=inf{r>0:ZnNrB #0}.

If P(D > 0) > 0 and B is the unit disc b(0, 1), then the spherical
contact distribution function of the random set Z is defined as

Hgp(r)=P(D <r|D > 0).

e Estimator for stationary Z:

P]B (’I“) _ ZueG H[ugZZ,u—i—rBCVV, (u+rB)NZ#0)]
ZUEG H[u%Z, u+rBCW]

where (G is a lattice in observation window W .




Model checking - covariance

e The covariance function of a motion invariant (i.e. stationary and
isotropic) random set Z is defined as

C(r)=Pue€ZveZ),
where ||[u — v|| = 7.
e Estimator for motion invariant Z:

Cl(r) = ZumeG Iju—o=r, {uv}cz]
(r) = .
> wec Tju—vl=r]

provided the denominator is non-zero.




Model checking - shape characteristics

e Denote
7] = A(2)
Zo, = {u€R*:b(u,r) CZ} for r >0,
Ze, = Uuezb(u,r) for r > 0.

e Dilation d, erosion e, opening o and closing ¢ of Z by the disc b(0, )
are defined by

’Z@r M W@T| ‘Z9r|
d(r) = , e(r)=——,
() W (r) W
o ‘(Zer)@r M W@2r| L |<Z@r>6r N W@Zr’
0(T> ; |W62r| 7 C(T) a |W@2r| .




Model checking
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Contact distribution function, covariance function, dilatation, erosion, opening and closing averaged
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from 10 input realizations (full lines) and 95%-envelopes build from 39 simulations of the fitted

model.




Numerical results - real data

Left: Data from Mrkvitka, Mattfeldt (2011) - cells of mammary cancer.
Right: Realization of fitted model obtained by principal component method using 10 sets on the in-

put - two principal directions appeared significant.




Numerical results - real data
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Contact distribution function, covariance function, dilatation, erosion, opening and closing averaged
from 10 input realizations (full lines) and 95%-envelopes build from 39 simulations of the fitted

model.
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Thank you for your attention!
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