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Point processes

Definition Consider N the system of locally finite subsets of Rd with
the σ-algebra N = σ({x ∈ N : ](x ∩ A) = m} : A ∈ B,m ∈ N0).
A point process X defined on Rd is a measurable mapping from some
probability space (Ω,F , P ) to (N,N ).

Definition A locally finite, diffusion measure µ on B satisfying µ(A) =
EX(A) for all A ∈ B is called the intensity measure.

Definition If there exists a function ρ(x) for x ∈ Rd such that µ(A) =∫
A ρ(x)dx, then ρ(x) is called the intensity function.

Definition If ρ(x) = ρ is constant then the constant ρ is called inten-
sity.



ROBUST 2014

Kateřina
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Poisson point process

Definition The Poisson process Y is the process which satisfies:

• for any finite collection {An} of disjoint sets in Rd, the numbers of
points in these sets, Y (An), are independent random variables,

• for each A ⊂ Rd such that µ(A) <∞, Y (A) has Poisson distribu-

tion with parameter µ(A), i.e. P [Y (A) = k] = µ(A)k

k!
e−k, where µ

is the intensity measure.
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Point process given by the density
with respect to Poisson process

Let Y be the Poisson process with an intensity measure µ.

For F ∈ N , denote Π(F ) = P (Y ∈ F ).

Definition A point process X is given by density f with respect to the
Poisson process Y if

P (X ∈ F ) =

∫
F

f (x)Π(dx).
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Kateřina
Helisová

Dimension
reduction

in extended
Quermass-
interaction

process

JJ
II
J
I

Back

Close

Outline

1. Point processes

2. Quermass-interaction process and its extension

3. Maximum likelihood method using MCMC

4. Dimension reduction



ROBUST 2014

Kateřina
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Dimension
reduction

in extended
Quermass-
interaction

process

JJ
II
J
I

Back

Close

Notation

• x = b(u, r) ... a disc with centre in u ∈ R2 and radius r ∈ (0,∞)

• x = {x1, . . . , xn} ... finite configuration of n discs

• Ux ... the union of discs from the configuration x

• Y ... random disc Boolean model (i.e. union of discs without any
interactions) with an intensity function of discs centers ρ(u) and
probability distribution of the discs radii Q

• X ... random disc process which is absolutely continuous with re-
spect to the process Y
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Assumptions

• The intensity function is ρ(u) = ρ > 0 on a bounded set S and
ρ(u) = 0 otherwise, i.e. the centers of the reference Boolean model
form stationary Poisson process on S.

• For any finite configuration of discs x = {x1, . . . , xn}, the proba-
bility measure of X with respect to the probability measure of Y is
given by density

fθ(x) =
exp{θ · T (Ux)}

cθ
,

where

– cθ is the normalizing constant,
– θ is m-dimensional vector of parameters,
– T (Ux) is a m-dimensional vector of geometrical characteristics

of the union Ux of the discs from the configuration x.
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Quermass-interaction process
The density is of the form

fθ(x) =
1

cθ
exp{θ1A(Ux) + θ2L(Ux) + θ3χ(Ux)},

where

• A = A(Ux) is the area,

• L = L(Ux) is the perimeter,

• χ = χ(Ux) is the Euler-Poincaré characteristic (the number of con-
nected components minus the number of holes, i.e.
χ(Ux) = Ncc(Ux)−Nh(Ux))

of the union Ux.
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Interpretation of the parameters

A realization of the reference random disc Boolean model on a rectangular region S = [0, 30]×[0, 30]
with Q the uniform distribution on the interval (0, 2) and ρ = 0.2 (left), and A-interaction model

with parameters θ1 = 0.1 (middle), resp. θ1 = −0.1 (right).
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Interpretation of the parameters

Quermass-interaction process with parameters (θ1, θ2, θ3) = (0.6,−1, 1) (left), (0.6,−1, 2) (middle)

and (0.6,−1, 5) (right).



ROBUST 2014

Kateřina
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Extended Quermass-interaction process
• Møller, Helisová (2008):

– In the density

fθ(x) =
exp{θ · T (Ux)}

cθ
,

we have T = (A,L, χ,Nh, Nbv, Nid), where

Nbv = Nbv(Ux) is the number of boundary vertices,
Nid = Nid(Ux) is the number of isolated discs

of the union Ux.

– Theory and simulations studied.

• Møller, Helisová (2010):

– T = (A,L,Ncc, Nh).

– Statistical analysis.
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Maximum likelihood method using
MCMC simulations (MCMC MLE)

• Denote fθ(x) = hθ(x)/cθ (i.e. hθ(x) = exp{θ · T (Ux)} is the
unnormalized density).

• For an observation x, the log likelihood function is given by

l(θ) = log hθ(x)− log cθ = θ · T (Ux)− log cθ.

Problem 1: cθ has no explicit expression.
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Maximum likelihood method using
MCMC simulations (MCMC MLE)

• Denote fθ(x) = hθ(x)/cθ (i.e. hθ(x) = exp{θ · T (Ux)} is the
unnormalized density).

• For an observation x, the log likelihood function is given by

l(θ) = log hθ(x)− log cθ = θ · T (Ux)− log cθ.

Problem 1: cθ has no explicit expression.

Solution of problem 1 (Møller, Waagepetersen (2004) applied by
Møller, Helisová (2010)): We maximize the likelihood ratio fθ/fθ0 for a
fixed vector θ0 instead.
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MCMC MLE - problem 1

Solution of problem 1: For the fixed θ0, the log likelihood ratio

l(θ)− l(θ0) = log(hθ(x)/hθ0(x))− log(cθ/cθ0)

can be approximated by

l(θ)− l(θ0) ≈ log(hθ(x)/hθ0(x))− log
1

M

M∑
i=1

hθ(zi)/hθ0(zi), (1)

where zi, i = 1, . . . ,M , are realizations from fθ0 obtained by MCMC
simulations.
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MCMC MLE - problem 2

Problem 2: MCMC MLE is time-consuming, because

• quite a large number M of realizations is needed,

• the approximation is possible only for θ0 close to θ⇒ bridge sampling
(θ0 → θ̂(1) → θ̂(2) → · · · → θ̂).
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Dimension
reduction

in extended
Quermass-
interaction

process

JJ
II
J
I

Back

Close

MCMC MLE - problem 2

Problem 2: MCMC MLE is time-consuming, because

• quite a large number M of realizations is needed,

• the approximation is possible only for θ0 close to θ⇒ bridge sampling
(θ0 → θ̂(1) → θ̂(2) → · · · → θ̂).

Solution of problem 2: Dimension reduction⇒ estimating θ by max-
imum likelihood method converts to looking for the maximum in lower-
dimensional space.
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MCMC MLE - problem 3

Problem 3: Let Ux be the observed set, zi, i = 1, . . . ,M , be the
realizations from (1) and θ̂ = (θ̂1, . . . , θ̂m) be the corresponding MCMC
maximum likelihood estimate of the parameter θ. Denote Tj the j-th
item of the vector T . Then for all j = 1, . . . ,m, the following holds:

(i) If Tj(Ux) ≤ Tj(Uzi) for all i = 1, . . . ,M and Tj(Ux) < Tj(Uzi) for

at least one i, then θ̂j = −∞.

(ii) If Tj(Ux) ≥ Tj(Uzi) for all i = 1, . . . ,M and Tj(Ux) > Tj(Uzi) for

at least one i, then θ̂j =∞.
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MCMC MLE - problem 3

Problem 3: Let Ux be the observed set, zi, i = 1, . . . ,M , be the
realizations from (1) and θ̂ = (θ̂1, . . . , θ̂m) be the corresponding MCMC
maximum likelihood estimate of the parameter θ. Denote Tj the j-th
item of the vector T . Then for all j = 1, . . . ,m, the following holds:

(i) If Tj(Ux) ≤ Tj(Uzi) for all i = 1, . . . ,M and Tj(Ux) < Tj(Uzi) for

at least one i, then θ̂j = −∞.

(ii) If Tj(Ux) ≥ Tj(Uzi) for all i = 1, . . . ,M and Tj(Ux) > Tj(Uzi) for

at least one i, then θ̂j =∞.

Solution of problem 3: Dimension reduction⇒ transformation of used
geometrical characteristics.
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Principal components method
• Denote V = (σ2

i,j)
m
i,j=1 the variance matrix of T (Ux).

• Suppose that V has r ≥ 0 positive, mutually different eigenvalues
λ1 > λ2 > . . . > λr → corresponding eigenvectors v1,...,vr.

• Looking for a vector u such that uTu = 1 and uT (Ux) has the
largest possible variance → u = v1 & var(v1T (Ux)) = λ1.

• Denote C1(Ux) = v1T (Ux).

• Looking for a vector u such that uTu = 1, uT (Ux) has the largest
possible variance and cov(uT (Ux), C1(Ux)) = 0 → u = v2.

• Denote C2(Ux) = v2T (Ux) → varC2(Ux) = λ2.

• C1(Ux), . . . , Cr(Ux) → principal components of the vector T (Ux).

• v1(Ux), . . . ,vr(Ux) → principal directions.
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Principal components method
• Usually in practice r = m.

• Denoting

σ2 =
m∑
i=1

σ2
ii,

it can be proved that varC1 + . . . + varCr = λ1 + . . . + λr = σ2.

⇓

For p < r, C1(Ux), . . . , Cp(Ux) such that

λ1 + . . . + λp
σ2

.
= 1

cover the variability of the data enough and can explain the be-
haviour of the vector T (Ux) satisfactorily.
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Principal components method
• Our aim: rewrite the density

fθ(x) =
exp{θ · T (Ux)}

cθ
=

exp{θ1T1(Ux) + . . . + θmTm(Ux)}
cθ

to the form

fϕ(x) =
exp{ϕ · C(Ux)}

cϕ
=

exp{ϕ1C1(Ux) + . . . + ϕpCp(Ux)}
cϕ

,

where

– ϕ has lower dimension than θ ⇒ its estimation is faster,

– items of C(Ux) can be both positive and negative → no under-
valuation or overvaluation of parameter estimates.
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Principal components method
• Our aim: rewrite the density

fθ(x) =
exp{θ · T (Ux)}

cθ
=

exp{θ1T1(Ux) + . . . + θmTm(Ux)}
cθ

to the form

fϕ(x) =
exp{ϕ · C(Ux)}

cϕ
=

exp{ϕ1C1(Ux) + . . . + ϕpCp(Ux)}
cϕ

,

where

– ϕ has lower dimension than θ ⇒ its estimation is faster,
– items of C(Ux) can be both positive and negative → no under-

valuation or overvaluation of parameter estimates.

• Different ways how to determine p described (Rencher 2002), e.g.
to take such p that the cumulative variance (λ1+ . . .+λp) is greater
than 80% of total variance (λ1 + . . . + λr).
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Numerical results - simulated data
N=100 realizations of the (A,L,Ncc, Nh, Nid)-interaction process with

• centers in 10× 10 square window,

• parameters θ = (θ1, θ2, θ3, θ4, θ5) = (1.5,−1, 1,−0.25,−0.5),

• reference process with

– the intensity of the disc centers ρ = 1,

– radii of discs uniformly distributed in the interval [0.2, 0.7].
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Numerical results - simulated data

N eigenvalues corresponding eigenvectors cumul.var
117.40 (-0.41,0.82,0.28,-0.25,0.11) 49%
104.15 (-0.77,-0.55,0.22,-0.23,0.05) 93%

100 8.35 (0.06, -0.02,0.64,0.63,0.44) 97%
5.71 (0.43,-0.15,0.30,-0.69,0.47) 99%
1.57 (0.20,-0.05,0.61,-0.11,-0.75) 100%
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Numerical results - simulated data

N eigenvalues corresponding eigenvectors cumul.var
117.40 (-0.41,0.82,0.28,-0.25,0.11) 49%
104.15 (-0.77,-0.55,0.22,-0.23,0.05) 93%

100 8.35 (0.06, -0.02,0.64,0.63,0.44) 97%
5.71 (0.43,-0.15,0.30,-0.69,0.47) 99%
1.57 (0.20,-0.05,0.61,-0.11,-0.75) 100%

98.53 (0.61,-0.47,-0.52,0.29,-0.21) 63%
46.70 (0.61,0.78,0.01,0.09,0.11) 93%

10 7.16 (0.06,0.09,-0.43,-0.88,-0.19) 98%
2.58 (-0.49,0.39,-0.60,0.37,-0.34) 99%
0.78 (-0.10,-0.04,-0.43,0.02,0.89) 100%
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Model checking

Comparing a realization of the original data (left) with a realization of fitted model for N = 10

input sets (right).
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Model checking - CDF
• For a random set Z and a compact convex set B ⊂ R2, define

D = inf{r ≥ 0 : Z ∩ rB 6= ∅}.

If P (D > 0) > 0 and B is the unit disc b(0, 1), then the spherical
contact distribution function of the random set Z is defined as

HB(r) = P (D ≤ r|D > 0).

• Estimator for stationary Z:

ĤB(r) =

∑
u∈G I[u6∈Z, u+rB⊂W, (u+rB)∩Z 6=∅]∑

u∈G I[u6∈Z, u+rB⊂W ]

where G is a lattice in observation window W .
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Model checking - covariance
• The covariance function of a motion invariant (i.e. stationary and

isotropic) random set Z is defined as

C(r) = P (u ∈ Z, v ∈ Z),

where ‖u− v‖ = r.

• Estimator for motion invariant Z:

Ĉ(r) =

∑
u,v∈G I[‖u−v‖=r, {u,v}⊂Z]∑

u,v∈G I[‖u−v‖=r]

provided the denominator is non-zero.
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Model checking - shape characteristics
• Denote
|Z| = A(Z),
Z	r = {u ∈ R2 : b(u, r) ⊆ Z} for r > 0,
Z⊕r = ∪u∈Zb(u, r) for r > 0.

• Dilation d, erosion e, opening o and closing c of Z by the disc b(0, r)
are defined by

d(r) =
|Z⊕r ∩W	r|
|W	r|

, e(r) =
|Z	r|
|W	r|

,

o(r) =
|(Z	r)⊕r ∩W	2r|

|W	2r|
, c(r) =

|(Z⊕r)	r ∩W	2r|
|W	2r|

.
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Model checking
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Contact distribution function, covariance function, dilatation, erosion, opening and closing averaged

from 10 input realizations (full lines) and 95%-envelopes build from 39 simulations of the fitted

model.
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Numerical results - real data

Left: Data from Mrkvička, Mattfeldt (2011) - cells of mammary cancer.

Right: Realization of fitted model obtained by principal component method using 10 sets on the in-

put - two principal directions appeared significant.
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Numerical results - real data
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model.
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Kateřina
Helisová
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Thank you for your attention!
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