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Robust guys
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Overview

I Motivated by claims reserving in non-life insurance
I Joint work with Ostap Okhrin (HU Berlin)
I Triangular data models

Triangular data models M. Pešta



Data structure 4 | 31

Triangular data

i\j 1 2 · · · n− 1 n

1 Y1,1 Y1,2 · · · Y1,n−1 Y1,n
2 Y2,1 Y2,2 · · · Y2,n−1

. . .
.
.
.

...
... Yi,n+1−i

n− 1 Yn−1,1 Yn−1,2
n Yn,1

I n copies of stochastic process
I The first realization consists of n observations
I The last one has only one observation
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Terminology and goals

I Yi,j . . . cumulative payments in origin year i after j
development periods (accounting year i + j)

I n . . . current year – corresponds to the most recent accident
year and development period

I Our data history consists of right-angled isosceles
triangles Yi,j, where i + j ≤ n + 1

I Predict Yi,n and Ri = Yi,n − Yi,n+1−i (claims reserve)
I Estimate distribution of the reserves
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Conditional mean and variance (CMV) model

I CMV model

Yi,j = µ(Yi,j−1, α, j) + σ(Yi,j−1, β, j)εi,j(α, β)

I α and β are unknown parameters, which dimensions do
not depend on n

I µ is a continuous function in α

I σ is a positive and continuous function in β

I Errors εi,j(α, β)

Triangular data models M. Pešta



CMV Model 7 | 31

CMV model’s errors

I Disturbances {εi,j(α, β)}n+1−i
j=1 are independent sample

copies of a stationary first-order Markov process for all i
I All εi,j(α, β) have the common true invariant distribution

Gα,β which is absolutely continuous with respect to
Lebesgue measure on the real line

I Filtration Fi,j = σ(Yk,l : l ≤ j, k ≤ i + 1− j) denotes the
information set generated by that trapezoid

E[εi,j(α, β)|Fi,j−1] = 0

var[εi,j(α, β)|Fi,j−1] = s(α, β)
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Properties of the CMV model

I Unknown true values [α∗>, β∗>]> of parameters [α>, β>]>

set (due to identifiability purposes): s(α∗, β∗) = 1
I Model’s name come from the fact that

E[Yi,j|Fi,j−1] = µ(Yi,j−1, α, j)

var[Yi,j|Fi,j−1] = σ2(Yi,j−1, β, j)s(α, β)

I Conditional mean models: types of ARMA models, vector
autoregressions, linear and nonlinear regressions, . . .

I Conditional variance models: ARCH and any of its
numerous parametric extensions (GARCH, EGARCH,
GJR-GARCH, etc.), stochastic volatility models, . . .
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Candidates for the mean and variance function

I From the nature of data: Yi,j ↗ Ci ∈ R+ almost surely as
j→ ∞, ∀i (stabilizing property)

I One may propose, e.g.,

µ(Yi,j−1, α, j) = η(α, j)Yi,j−1

σ(Yi,j−1, β, j) = ν(β, j)
√

Yi,j−1

I η(α, j) should be decreasing in j with limit 1 as j→ ∞
I ν(β, j) should be decreasing in j with limit 0 as j→ ∞
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Dependence modeling

I Since the mean and variance trends are removed by the
CMV model, the rest of the relationship among claim
amounts Yi,j can be additionally captured by modeling
dependent errors

I {εi,j(α, β)}n+1−i
j=1 are independent sample copies of

a stationary first-order Markov process for all i generated
from (Gα,β(·), C(·, ·; γ))

I C(·, ·; γ) is the true parametric copula for
[εi,j−1(α, β), εi,j(α, β)], which is given and fixed up to
unknown parameter γ
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Copula-based model

I It is believed that there exist a kind of information overlap
between the claims from consecutive development periods

I Joint bivariate distribution of [εi,j−1(α, β), εi,j(α, β)] has
distribution function

H(e1, e2) = C(Gα,β(e1), Gα,β(e2); γ)

I Conditional copula density can be derived as

h(e2|e1) = gα,β(e2)c(Gα,β(e1), Gα,β(e2); γ)

where c is the copula density and gα,β is the marginal
density corresponding to Gα,β

I Play an important role in “making" the dependent errors
conditionally independent
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Parameter estimation

I CMV model with copula assume three vector parameters
to be estimated

I Estimation process consists of two stages
I In the first one, mean and variance parameters α and β are

estimated in a distribution-free fashion, since no specific
distributional assumptions are proposed nor required for
the claims

I The second stage concerns estimation of the dependence
structure, mainly the copula parameter γ, in a likelihood
based way
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Conditional least squares (CLS)

I Denote

Mn(α, β) =
1

n− 1

n

∑
j=2

1
n + 1− j

n+1−j

∑
i=1[

Yi,j − µ(Yi,j−1, α, j)
]2

σ2(Yi,j−1, β, j)

Vn(α, β) =
1

n− 1

n

∑
j=2

1
n + 1− j

n+1−j

∑
i=1{[

Yi,j − µ(Yi,j−1, α, j)
]2 − σ2(Yi,j−1, β, j)

}2
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CLS estimates

I CLS estimate of the mean parameter α for a fixed value of
parameter β ∈ Θ2 is defined as

α̂(β) = arg min
α∈Θ1

Mn(α, β)

and CLS estimate of the variance parameter β for a fixed
value of parameter α ∈ Θ1 is defined as

β̂(α) = arg min
β∈Θ2

Vn(α, β)

I Computationally not feasible to find the global minimum
of Mn and Vn with respect to [α>, β>]> simultaneously

Triangular data models M. Pešta



Nonlinear generalized semiparametric regression 15 | 31

Consistency

I Under regularity conditions

α̂(β)
P−−−→

n→∞
α∗(β), ∀β; β̂(α)

P−−−→
n→∞

β∗(α), ∀α

I Mixingales are to mixing processes as martingale
differences are to independent processes
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Iterative CLS

I What is the connection between the true unknown
parameter values α∗ and β∗ of the CMV model and true
unknown parameter values α∗(β) and β∗(α) ?[

α̂(β∗)

β̂(α∗)

]
P−−−→

n→∞

[
α∗

β∗

]
I Iteratively estimate α given the fixed value of β and,

consequently, estimate β given the fixed value of α
(obtained from previous step)

I Repeat in turns until almost no change in consecutive
estimates of [α>, β>]>
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Estimation of dependence structure

I Estimate the unknown marginal distribution function
Gα,β of CMV model errors εi,j(α, β) non-parametrically by
the empirical distribution function

Ĝn(e) =
1

n(n− 1)/2 + 1

n−1

∑
i=1

n+1−i

∑
j=2
I{ε̂i,j(α̂, β̂) ≤ e}

of the fitted residuals

ε̂i,j(α̂, β̂) =
Yi,j − µ(Yi,j−1, α̂, j)

σ(Yi,j−1, β̂, j)

Triangular data models M. Pešta



Nonlinear generalized semiparametric regression 18 | 31

Likelihood for copula

I Full log-likelihood for copula parameter γ

L(γ) =
n−2

∑
i=1

n+1−i

∑
j=2

log gα,β(εi,j(α, β))

+
n−2

∑
i=1

n+1−i

∑
j=3

log c(Gα,β(εi,j−1(α, β)), Gα,β(εi,j(α, β)); γ)
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Psuedo (quasi) likelihood

I Ignoring the first term in L(γ) and replacing ε’s and Gα,β

by their estimated counterparts ε̂’s and Ĝn, parameter γ
can be estimated by the so-called canonical maximum
likelihood, i.e., maximizing the partial (pseudo)
log-likelihood

γ̂ = arg max
γ
L̃(γ)

L̃(γ) =
n−2

∑
i=1

n+1−i

∑
j=3

log c(Ĝn(ε̂i,j−1(α̂, β̂)), Ĝn(ε̂i,j(α̂, β̂)); γ)
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Prediction

I Predictor for reserve R(n)
i can be defined as

R̂(n)
i = Ŷi,n − Yi,n+1−i

I Prediction of unobserved claims may be done in
a telescopic way based on the CMV model formulation:
start with the diagonal element Yi,n+1−i and predict
Yi,j, j > n + 1− i stepwise in each row

Ŷi,j = Yi,j, i + j ≤ n + 1

Ŷi,j = µ(Ŷi,j−1, α̂, j) + σ(Ŷi,j−1, β̂, j)ε̃j, i + j > n + 1
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Semiparametric bootstrap

I Errors ε̃j are simulated from the fitted residuals

I Takes advantage of the fact that εi,j(α, β) = G−1
α,β(Xj) for

all i (due to the independent rows), where {Xj}n
j=2 is

a stationary first-order Markov process with the copula
C(x1, x2; γ) being the joint distribution of [Xj−1, Xj]
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Resampling algorithm

I Generate n− 1 independent Un(0, 1) rvs {Xj}n
j=2

I Repeat b = 1, . . . , B
I (b)U2 ← X2

I (b) ε̂2 ← Ĝ−n ((b)U2)

I (b)Uj ← C−1
2|1(Xj|(b)Uj−1; γ̂), j = 3, . . . , n

I (b) ε̂j ← Ĝ−n ((b)Uj), j = 3, . . . , n
I Center bootstrap residuals (b) ε̃j ← (b) ε̂j − 1

n−1 ∑n
l=2 (b) ε̂l

I (b)Ŷi,n+1−j ← Yi,n+1−i

I (b)Ŷi,j ← µ((b)Ŷi,j−1, α̂, j) + σ((b)Ŷi,j−1, β̂, j)(b) ε̃j,
j = n + 2− i, . . . , n

I (b)R̂
(n)
i ← (b)Ŷi,n − Yi,n+1−i
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Real data

I Data set from Zehnwirth and Barnett (2000)

µ(Yi,j−1, α, j) =
(

1 + α1α2j−1−α2 exp
{

α1j−α2
})

Yi,j−1

σ(Yi,j−1, β, j) = β1 exp{−β2j}
√

Yi,j−1

I CLS estimates:

α̂1 = 2.033, α̂2 = 1.106, β̂1 = 109.8, β̂2 = 0.4053
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I Still some slight pattern (trend) not captured by mean and
variance parametric part
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Copula godness-of-fit

I Kendall τ for the pairs of consecutive residuals
{[ε̂i,j−1(α̂, β̂), ε̂i,j(α̂, β̂)]}n−2,n+1−i

i=1,j=3 equals 0.43, which
indicates at least mild dependence

I Three Archimedean copulae (Clayton, Frank, and Gumbel)
together with Gaussian and Student t5-copula considered

I S(C)
n goodness-of-fit test proposed by Genest et al. (2009)

I Gumbel copula (γ̂ = 1.776) was chosen
I Exhibits strong right tail dependence and relatively weak

left tail dependence
I Transformed residuals (by the residuals’ marginal edf Ĝn;

having uniform margins) seem to be strongly correlated at
high values but less correlated at low values
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Results

I Benchmark: traditional bootstrapped chain ladder (BCL)
I Disadvantages, which can be overcome by our approach:

. Number of parameters depending on the sample size

. Some parameters estimated by just ratio of two numbers
(yielding zero sample variance)

. Questionable consistency of the estimates

. Non-realistic assumption of independence of the residuals
I Our approach:

. Slightly smaller predictions of reserves

. But even more important is that the estimates of the
reserves’ distribution are less volatile
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Summary

I Conditional mean and variance (CMV) time series model
for triangular data with innovations being a stationary
first-order Markov process

I Framework is demonstrated to be suitable for stochastic
claims reserving in general insurance

I Very flexible modeling approach, relatively smaller
number of model parameters not depending on the
number of development periods, and time series
innovations not considered as independent

I Increase in precision of the claims reserves’ prediction
I Theoretical justification of the proposed approached

shown
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Thank you !

Michal.Pesta@mff.cuni.cz
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