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Introduction

We deal with the problem of collaborative estima-
tion of unknown environmental parameter from noisy
measurements. We focus on a recently formulated dif-
fusion estimation problem, i.e., fully decentralized col-
laborative estimation in networks allowing the nodes
to communicate only with their adjacent neighbours.

In this field, a couple of non-Bayesian estimation algo-
rithms were proposed. However, these are mostly sin-
gle problem oriented, e.g., on least-squares estimation
[1], recursive least-squares (RLS, Cattivelli et al. [2]),
least mean squares (LMS, Lopes and Sayed [3], Cat-
tivelli and Sayed [4]), Kalman filters (Cattivelli et al.
[2]) etc. We propose a new method called dynamic
Bayesian diffusion estimation, which tackles the prob-
lem from the consistent and versatile Bayesian view-
point and yields rather a methodology applicable to a
much wider class of models, including, of course, the
mentioned traditional ones.

Bayesian recursive estimation
Let us consider a linear stochastic system with a real
input variable ut and a real output variable yt, ob-
served at discrete time instants t = 1, 2, . . . The
dependence of the output yt on the previous data
d(t− 1) = {y0, u0, . . . , yt−1, ut−1} and the current
input ut can be modelled by a conditional probability
density function (pdf)

f(yt|ut,d(t− 1),Θ),

where Θ is a random potentially multivariate model
parameter. By the assumption of natural conditions
of control [5] we have

g(Θ|ut,d(t− 1)) = g(Θ|d(t− 1)),

i.e., the information about parameter Θ at time t is
conditionally independent of the current input ut.
The Bayesian recursive estimation exploits the Bayes’
rule to incorporate new data into the prior pdf of Θ
as follows

g(Θ|d(t)) ∝ f(yt|ut,d(t− 1),Θ)g(Θ|d(t− 1)), (1)

where ∝ denotes equality up to a normalizing con-
stant. At the next time instant, the posterior pdf on
the left-hand side of (1) is used as the prior pdf. The
last relation is also known as the dynamic Bayesian
data update.

Dynamic Bayesian Diffusion Estimation

Let there be a distributed network consisting of a set
of nodes interacting with their neighbours, which col-
lectively estimate the common parameter of interest
using the same model structure. Furthermore, let us
impose the following constraint: the nodes are able to
communicate one-to-one only within their closed neigh-
bourhood. Closed neighbourhood Nk of the kth node,
1 ≤ k ≤ M , is defined as the set consisting of its ad-
jacent nodes and node k. An example of a network
including a closed neighbourhood N1 = {1, 2, 3, 5} of
node k = 1 is drawn in the end of this section.
The diffusion estimation involves two subsequent
steps, the former of which is optional but preferred:

Incremental update – also known as the data update,

is a diffusion alternative of (1). The nodes prop-
agate data within their closed neighbourhood
and incorporate them into their local statistical
knowledge;

Spatial update – the nodes propagate point parame-
ter estimates (i.e. mean values) or posterior pdfs
within their closed neighbourhood and correct
their local estimates.

Incremental update
To develop the incremental update we use tools such
as
– Bayesian decision theory,
– Kullback Leibler divergence,
– minimum cross entropy principle.
These yield a theoretically consistent incremental up-
date

gk(Θ|d(t)) ∝ gk(Θ|d(t− 1))

×
∏
l∈Nk

fl(yl,t|ul,t,dl(t− 1),Θ)cl,k , (2)

where d(t) stands for all data available from sources
in Nk and cl,k are given weights representing the
weight of lth node with respect to the kth one,∑
l∈Nk

cl,k = 1. The consistency of incremental up-
date is guaranteed by the principle of weighted like-
lihoods [6, 7].

Spatial update
The spatial update follows after the incremental up-
date. In this step, the nodes exchange information
about unknown model parameter Θ, either in the
form of its estimates or hyperparameters of its dis-
tribution. Formally, for fixed k, the information from
all nodes inNk describes the finite mixture density

gk(Θ|d(t)) =
∑
l∈Nk

al,kgl(Θ|d(t)),
∑
l∈Nk

al,k = 1,

(3)
where 0 ≤ al,k ≤ 1 is the weight of lth node’s esti-
mate from kth node’s viewpoint.
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abilistic method for dynamic determination of the
weighting coefficients al,k and cl,k, l ∈ Nk.
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Example – Gaussian linear regressive model

Given a regression vector ψt ∈ Rn, t = 1, 2, . . . and a
dependent random variable yt ∈ R, the Gaussian lin-
ear regressive model takes the form

yt = ψ
T
t θ + εt, (4)

where θ ∈ Rn is the regression coefficient and
εt ∼ N (0,σ2) is the Gaussian white noise. This makes
yt ∼ N (ψT

t θ, σ
2) and the regression model (4) can be

expressed by pdf f(yt|ψt,Θ). From the Bayesian
viewpoint, the model parameters Θ ≡ {θ, σ2} are also
random variables. Under ignorance of their values,
the proper conjugate prior distribution is the normal
inverse-gamma (N iΓ ) one [8] with pdf:

g(θ, σ2|V , ν) = σ−(ν+n+1)

I(V , ν) exp

{
− 1

2σ2

[
−1
θ

]T
V

[
−1
θ

]}

where I(·) is the normalization term,
V ∈ RN×N , N = n+ 1, is a symmetric positive def-
inite extended information matrix and ν ∈ R de-
notes the degrees of freedom. Both V and ν are
sufficient statistics [8] representing data d(t − 1) =

{yt−1, ψt−1, . . . , y0, ψ0}. The Bayesian estimation
(1) updates the sufficient statistics V ∈ RN×N and
ν ∈ R by real scalar realization yt and regression
vector ψt ∈ RN−1. The multivariate point estimator
θ̂t ∈ RN−1 of regression coefficient is the mean value
of theN iΓ distribution given by

θ̂t =

V22 . . . V2N

...
. . .

...
VN2 . . . VNN


−1

t

V21

...
VN1


t

In order to derive the dynamic Bayesian diffusion esti-
mator of Θ, we follow the principles given above. Let
us consider a network of M ∈ N distributed nodes.
Each node k ∈ {1, . . . ,M} evaluates a model

f(yk;t|ψk;t,Θ,Vk;t−1, νk;t−1)

and runs the diffusion Bayesian estimation (2) of its pa-
rameters in the form

gk(Θ|Vk;t, νk;t) ∝ gk(Θ|Vk;t−1, νk;t−1)

×
∏
l∈Nk

fl(yl;t|ψl;t,Θ,Vl;t−1, νl;t−1)
cl,k .

Here 0 ≤ cl,k ≤ 1 weights lth node’s data with respect
to kth node, l ∈ Nk, where

∑
l∈Nk

cl,k = 1. Simply put,
the kth node updates its prior pdf of Θ by data from
its closed neighbourhood Nk. The incremental update
of kth node’s prior N iΓ pdf of Θ by data [yl;t,ψl,t]

T,
weighted by cl,k, from its adjacent neighbours l ∈ Nk
has the following form:

Vk;t = Vk;t−1 +
∑
l∈Nk

cl,k

[
yl;t
ψl;t

] [
yl;t
ψl;t

]T
νk;t = νk;t−1 + 1,

The spatial update (3) of the point estimate θ̂k;t has the
form

θ̂k;t =
∑
l∈Nk

al,kθ̂l;t,

where 0 ≤ al,k ≤ 1,
∑
l∈Nk

al,k = 1, al,k denotes
the weight of lth node’s point estimate with respect to
kth node.


