Dynamic Bayesian estimation in diffusion networks

Vladimíra Sečkárová Kamil Dedecius

seckarov@karlin.mff.cuni.cz dedecius@utia.cas.cz

MFF UK, Sokolovská 83, Praha UTIA, Pod Vodárenskou věží 4, Praha

Introduction

We deal with the problem of collaborative estima- In this field, a couple of non-Bayesian estimation algotion of unknown environmental parameter from noisy rithms were proposed. However, these are mostly sinmeasurements. We focus on a recently formulated dif-gle problem oriented, e.g., on least-squares estimation fusion estimation problem, i.e., fully decentralized col- [1], recursive least-squares (RLS, Cattivelli et al. [2]), laborative estimation in networks allowing the nodes least mean squares (LMS, Lopes and Sayed [3], Catto communicate only with their adjacent neighbours.

tivelli and Sayed [4]), Kalman filters (Cattivelli et al. [2]) etc. We propose a new method called dynamic Bayesian diffusion estimation, which tackles the problem from the consistent and versatile Bayesian viewpoint and yields rather a methodology applicable to a much wider class of models, including, of course, the mentioned traditional ones.

Bayesian recursive estimation

Let us consider a linear stochastic system with a real input variable u_t and a real output variable y_t , observed at discrete time instants t = 1, 2, ... The dependence of the output y_t on the previous data $d(t-1) = \{y_0, u_0, \dots, y_{t-1}, u_{t-1}\}$ and the current input u_t can be modelled by a conditional probability density function (pdf)

$$f(y_t|u_t, \boldsymbol{d}(t-1), \boldsymbol{\Theta}),$$

where Θ is a random potentially multivariate model parameter. By the assumption of natural conditions of control [5] we have

$$g(\boldsymbol{\Theta}|u_t, \boldsymbol{d}(t-1)) = g(\boldsymbol{\Theta}|\boldsymbol{d}(t-1))$$

Dynamic Bayesian Diffusion Estimation

Let there be a distributed network consisting of a set of nodes interacting with their neighbours, which collectively estimate the common parameter of interest using the same model structure. Furthermore, let us impose the following constraint: the nodes are able to communicate one-to-one only within their closed neigh*bourhood*. Closed neighbourhood \mathcal{N}_k of the *k*th node, $1 \leq k \leq M$, is defined as the set consisting of its adjacent nodes and node k. An example of a network including a closed neighbourhood $\mathcal{N}_1 = \{1, 2, 3, 5\}$ of node k = 1 is drawn in the end of this section. The diffusion estimation involves two subsequent steps, the former of which is optional but preferred:

Incremental update – also known as the data update,

Incremental update

To develop the incremental update we use tools such as

- Bayesian decision theory,
- Kullback Leibler divergence,

is a diffusion alternative of (1). The nodes propagate data within their closed neighbourhood and incorporate them into their local statistical knowledge;

Spatial update – the nodes propagate point parameter estimates (i.e. mean values) or posterior pdfs within their closed neighbourhood and correct their local estimates.

Spatial update

The spatial update follows after the incremental update. In this step, the nodes exchange information about unknown model parameter Θ , either in the form of its estimates or hyperparameters of its dis-

i.e., the information about parameter Θ at time t is conditionally independent of the current input u_t . The Bayesian recursive estimation exploits the Bayes' rule to incorporate new data into the prior pdf of Θ as follows

 $g(\boldsymbol{\Theta}|\boldsymbol{d}(t)) \propto f(y_t|u_t, \boldsymbol{d}(t-1), \boldsymbol{\Theta})g(\boldsymbol{\Theta}|\boldsymbol{d}(t-1)),$ (1)

where \propto denotes equality up to a normalizing constant. At the next time instant, the posterior pdf on the left-hand side of (1) is used as the prior pdf. The last relation is also known as the dynamic Bayesian data update.

References

- [1] L. Xiao, S. Boyd, and S. Lall. A space-time diffusion scheme for peer-to-peer least-squares estimation. In Proceedings of the 5th international conference on Information processing in sensor networks, pages 168–176. ACM, 2006.
- [2] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed. Diffusion recursive Least-Squares for distributed estimation over adaptive networks. *IEEE Transactions on Signal Processing*, 56(5): 1865–1877, May 2008.
- [3] C. G. Lopes and A. H. Sayed. Diffusion Least-Mean squares over adaptive networks: Formulation and performance analysis. IEEE Transactions on Signal Processing, 56(7):3122–

minimum cross entropy principle. These yield a theoretically consistent incremental update

 $g_k(\boldsymbol{\Theta}|\boldsymbol{\overline{d}}(t)) \propto g_k(\boldsymbol{\Theta}|\boldsymbol{\overline{d}}(t-1))$

× $\int f_l(y_{l,t}|u_{l,t}, \boldsymbol{d}_l(t-1), \boldsymbol{\Theta})^{c_{l,k}},$ (2) $l \in \mathcal{N}_k$

where d(t) stands for all data available from sources in \mathcal{N}_k and $c_{l,k}$ are given weights representing the weight of *l*th node with respect to the *k*th one, $\sum_{l \in \mathcal{N}_k} c_{l,k} = 1$. The consistency of incremental update is guaranteed by the principle of weighted likelihoods [6, 7].

tribution. Formally, for fixed *k*, the information from all nodes in \mathcal{N}_k describes the finite mixture density

$$g_k(\boldsymbol{\Theta}|\overline{\boldsymbol{d}}(t)) = \sum_{l \in \mathcal{N}_k} a_{l,k} g_l(\boldsymbol{\Theta}|\overline{\boldsymbol{d}}(t)), \quad \sum_{l \in \mathcal{N}_k} a_{l,k} = 1,$$
(3)

where $0 \leq a_{l,k} \leq 1$ is the weight of *l*th node's estimate from *k*th node's viewpoint.

Future work

The foreseen research activities comprise the analysis of properties of the diffusion estimator and a probabilistic method for dynamic determination of the weighting coefficients $a_{l,k}$ and $c_{l,k}$, $l \in \mathcal{N}_k$.

3136, July 2008.

- [4] F. S. Cattivelli and A. H. Sayed. Diffusion LMS strategies for distributed estimation. IEEE Transactions on Signal Processing, 58(3):1035–1048, March 2010.
- [5] V. Peterka. Bayesian approach to system identification In P. Eykhoff (Ed.) Trends and Progress in System Identification, 1981.
- [6] X. Wang. Asymptotic properties of maximum weighted likelihood estimators. Journal of Statistical Planning and In*ference*, 119(1):37–54, January 2004.
- [7] X. Wang. Approximating Bayesian inference by weighted likelihood. *Can J Statistics*, 34(2):279–298, 2006.
- [8] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, 1st edition, January 1994.

Funding

The work was supported by the grant SVV 265 315.

Example – Gaussian linear regressive model

ear regressive model takes the form

$$y_t = \boldsymbol{\psi}_t^{\mathrm{T}} \boldsymbol{\theta} + \varepsilon_t,$$

Given a regression vector $\psi_t \in \mathbb{R}^n, t = 1, 2, ...$ and a $\{y_{t-1}, \psi_{t-1}, \dots, y_0, \psi_0\}$. The Bayesian estimation Here $0 \le c_{l,k} \le 1$ weights *l*th node's data with respect dependent random variable $y_t \in \mathbb{R}$, the Gaussian lin- (1) updates the sufficient statistics $V \in \mathbb{R}^{N \times N}$ and to kth node, $l \in \mathcal{N}_k$, where $\sum_{l \in \mathcal{N}_k} c_{l,k} = 1$. Simply put, $\nu \in \mathbb{R}$ by real scalar realization y_t and regression the kth node updates its prior pdf of Θ by data from vector $\psi_t \in \mathbb{R}^{N-1}$. The multivariate point estimator its closed neighbourhood \mathcal{N}_k . The incremental update (4) $\hat{\theta}_t \in \mathbb{R}^{N-1}$ of regression coefficient is the mean value of kth node's prior $\mathcal{N}i\Gamma$ pdf of Θ by data $[y_{l,t}, \psi_{l,t}]^T$, weighted by $c_{l,k}$, from its adjacent neighbours $l \in \mathcal{N}_k$

where $\theta \in \mathbb{R}^n$ is the regression coefficient and of the $\mathcal{N}i\Gamma$ distribution given by $\varepsilon_t \sim \mathcal{N}(0,\sigma^2)$ is the Gaussian white noise. This makes $y_t \sim \mathcal{N}(\boldsymbol{\psi}_t^{\mathrm{T}} \boldsymbol{\theta}, \sigma^2)$ and the regression model (4) can be expressed by pdf $f(y_t|\psi_t, \Theta)$. From the Bayesian viewpoint, the model parameters $\Theta \equiv \{\theta, \sigma^2\}$ are also random variables. Under ignorance of their values, the proper conjugate prior distribution is the normal inverse-gamma ($\mathcal{N}i\Gamma$) one [8] with pdf:

$$g(\boldsymbol{\theta}, \sigma^2 | \boldsymbol{V}, \nu) = \frac{\sigma^{-(\nu+n+1)}}{\mathcal{I}(\boldsymbol{V}, \nu)} \exp\left\{-\frac{1}{2\sigma^2} \begin{bmatrix} -1\\ \boldsymbol{\theta} \end{bmatrix}^{\mathrm{T}} \boldsymbol{V} \begin{bmatrix} -1\\ \boldsymbol{\theta} \end{bmatrix}\right\}$$

where $\mathcal{I}(\cdot)$ is the normalization term, $V \in \mathbb{R}^{N \times N}, N = n + 1$, is a symmetric positive definite extended information matrix and $\nu \in \mathbb{R}$ denotes the degrees of freedom. Both V and ν are sufficient statistics [8] representing data d(t - 1) =

$$\widehat{\boldsymbol{\theta}}_{t} = \begin{bmatrix} V_{22} & \dots & V_{2N} \\ \vdots & \ddots & \vdots \\ V_{N2} & \dots & V_{NN} \end{bmatrix}_{t}^{-1} \begin{bmatrix} V_{21} \\ \vdots \\ V_{N1} \end{bmatrix}_{t}$$

In order to derive the dynamic Bayesian diffusion estimator of Θ , we follow the principles given above. Let us consider a network of $M \in \mathbb{N}$ distributed nodes. Each node $k \in \{1, \ldots, M\}$ evaluates a model

 $f(y_{k;t}|\psi_{k;t}, \Theta, V_{k;t-1}, \nu_{k;t-1})$

and runs the diffusion Bayesian estimation (2) of its parameters in the form

$$g_k(\boldsymbol{\Theta}|oldsymbol{V}_{k;t},
u_{k;t}) \propto g_k(oldsymbol{\Theta}|oldsymbol{V}_{k;t-1},
u_{k;t-1})$$

 $\times \prod f_l(y_{l;t}|\boldsymbol{\psi}_{l;t},\boldsymbol{\Theta},\boldsymbol{V}_{l;t-1},\nu_{l;t-1})^{c_{l,k}}.$ $l \in \mathcal{N}_k$

has the following form:

$$egin{aligned} oldsymbol{V}_{k;t} &= oldsymbol{V}_{k;t-1} + \sum_{l \in \mathcal{N}_k} c_{l,k} egin{bmatrix} y_{l;t} \ oldsymbol{\psi}_{l;t} \end{bmatrix} egin{bmatrix} y_{l;t} \ oldsymbol{\psi}_{l;t} \end{bmatrix}^{\mathrm{T}} \
u_{k;t} &=
u_{k;t-1} + 1, \end{aligned}$$

The spatial update (3) of the point estimate $\hat{\theta}_{k;t}$ has the form

$$\hat{\boldsymbol{\theta}}_{k;t} = \sum_{l \in \mathcal{N}_k} a_{l,k} \hat{\boldsymbol{\theta}}_{l;t},$$

where $0 \le a_{l,k} \le 1$, $\sum_{l \in \mathcal{N}_k} a_{l,k} = 1$, $a_{l,k}$ denotes the weight of *l*th node's point estimate with respect to *k*th node.