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Introduction

We deal with the problem of collaborative estima-
tion of unknown environmental parameter from noisy
measurements. We focus on a recently formulated dit-
fusion estimation problem, i.e., fully decentralized col-
laborative estimation in networks allowing the nodes
to communicate only with their adjacent neighbours.

Dynamic Bayesian Diffusion Estimation

Let there be a distributed network consisting of a set
of nodes interacting with their neighbours, which col-
lectively estimate the common parameter of interest
using the same model structure. Furthermore, let us
impose the following constraint: the nodes are able to
communicate one-to-one only within their closed neigh-
bourhood. Closed neighbourhood N, of the kth node,
1 < k < M, is defined as the set consisting of its ad-
jacent nodes and node k. An example of a network
including a closed neighbourhood N; = {1,2,3,5} of
node k£ = 1 is drawn in the end of this section.

The diffusion estimation involves two subsequent
steps, the former of which is optional but preferred:

Incremental update —also known as the data update,

Incremental update

To develop the incremental update we use tools such
as

— Bayesian decision theory,

— Kullback Leibler divergence,

— minimum cross entropy principle.

These yield a theoretically consistent incremental up-
date
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where d(t) stands for all data available from sources
in Ny and ¢, are given weights representing the
weight of [th node with respect to the kth one,
> ien, Gk = 1. The consistency of incremental up-

date is guaranteed by the principle of weighted like-
lihoods [6, 7].
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In this field, a couple of non-Bayesian estimation algo-
rithms were proposed. However, these are mostly sin-
gle problem oriented, e.g., on least-squares estimation
[1], recursive least-squares (RLS, Cattivelli et al. [2]),
least mean squares (LMS, Lopes and Sayed [3], Cat-
tivelli and Sayed [4]), Kalman filters (Cattivelli et al.
2]) etc. We propose a new method called dynamic
Bayesian diffusion estimation, which tackles the prob-
lem from the consistent and versatile Bayesian view-
point and yields rather a methodology applicable to a
much wider class of models, including, of course, the
mentioned traditional ones.

is a diffusion alternative of (1). The nodes prop-
agate data within their closed neighbourhood
and incorporate them into their local statistical
knowledge;

Spatial update — the nodes propagate point parame-
ter estimates (i.e. mean values) or posterior pdfs
within their closed neighbourhood and correct
their local estimates.
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Spatial update

The spatial update follows after the incremental up-
date. In this step, the nodes exchange information
about unknown model parameter ®, either in the
form of its estimates or hyperparameters of its dis-
tribution. Formally, for fixed £, the information from
all nodes in N}, describes the finite mixture density

ge(®d(t) = > axq(®[d(t)), D  air =1,
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where 0 < a;r < 1 is the weight of /th node’s esti-
mate from kth node’s viewpoint.

Future work

The foreseen research activities comprise the analysis
of properties of the diffusion estimator and a prob-
abilistic method for dynamic determination of the
weighting coefficients a;  and ¢; x, | € N.

Example — Gaussian linear regressive model

Given a regression vector ¢y € R",t = 1,2,... and a
dependent random variable y; € R, the Gaussian lin-
ear regressive model takes the form

yr = 1y 0 (4)

where & € R" is the regression coefficient and
et ~ N (0,0%) is the Gaussian white noise. This makes
yr ~ N(¢; 0,0°) and the regression model (4) can be
expressed by pdf f(y:|v:,®). From the Bayesian
viewpoint, the model parameters ® = {0, 0} are also
random variables. Under ignorance of their values,
the proper conjugate prior distribution is the normal
inverse-gamma (NiI") one [8] with pdf:

Ehe

—(v4+n—+1) i 171 I 7))

2 L o) 1 —1 —1
A A { oz |le| Vel
- - - -/
where  Z(-) is the  normalization  term,

V e RY*N N =n+1, is a symmetric positive def-
inite extended information matrix and v € R de-
notes the degrees of freedom. Both V and v are
sufficient statistics [8] representing data d(t — 1) =

{fyt—1,0e—1,...,90,%0} The Bayesian estimation

(1) updates the sufficient statistics V' € R"*" and
v € R by real scalar realization y; and regression

vector ¢, € R"~'. The multivariate point estimator

0, € RN~ of regression coefficient is the mean value
of the NiI" distribution given by
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In order to derive the dynamic Bayesian diffusion esti-
mator of ®, we follow the principles given above. Let
us consider a network of M € N distributed nodes.
Eachnode k € {1,..., M} evaluates a model

F (Yt |k, Oy Vierr—1, Vit —1)

and runs the diffusion Bayesian estimation (2) of its pa-
rameters in the form

gk (O Vist, Vist) o< g (O Vit —1, Vst —1)
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Bayesian recursive estimation

Let us consider a linear stochastic system with a real
input variable u; and a real output variable y;, ob-
served at discrete time instants ¢t = 1,2,... The
dependence of the output y; on the previous data
d(t—1) = {yo,uo0,...,yt—1,us—1} and the current
input u; can be modelled by a conditional probability
density function (pdf)

f(Yelue, d(t = 1), ©),

where © is a random potentially multivariate model
parameter. By the assumption of natural conditions
of control [5] we have

9(®lus, d(t — 1)) = g(Old(t — 1)),

i.e., the information about parameter ® at time ¢ is
conditionally independent of the current input w;.
The Bayesian recursive estimation exploits the Bayes’
rule to incorporate new data into the prior pdf of ®
as follows

9(®ld(t)) o< f(yt|ut, d(t — 1),0)g(®ld(t — 1)), (1)

where o denotes equality up to a normalizing con-
stant. At the next time instant, the posterior pdf on
the left-hand side of (1) is used as the prior pdf. The
last relation is also known as the dynamic Bayesian
data update.
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Here 0 < ¢, < 1 weights [th node’s data with respect
to kthnode, I € Ny, where ) ", ,, Clk = 1. Simply put,
the kth node updates its prior pdf of ® by data from
its closed neighbourhood M. The incremental update
of kth node’s prior NiI" pdf of © by data [y;.¢, ¥1.¢] ",
weighted by ¢; i, from its adjacent neighbours | € N
has the following form:

[t [t

Vit = Vi1 + g Cl.k 5 o
’le;t ¢l;t
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Vig;t — Vit—1 + 1,

The spatial update (3) of the point estimate 6y.; has the

form
0.+ = E a; 0.+,
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where 0 < arr < 1, ZZENk arr = 1, a g denotes
the weight of /th node’s point estimate with respect to
kth node.



