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Calibration curve describes the relation between the errorless measurement results obtained by measuring the same object on two different measuring devises
(techniques). The problem of fitting a calibration curve is known as a calibration problem in the statistical literature. Here we will consider the measurement data
to be compositional. Compositional data are defined as quantitative descriptions of parts of some whole, thus as data carrying only relative information. This kind
of multivariate data require different treatment in sense of accomplishing standard statistical techniques, what is the case of the calibration. We will present here
the calibration line problem solved by the linear model with type-II constraints for compositional data. Further our aim is to preform statistical inference and also
to find analogy between the compositional variation array and the matrices of the predicted values and the matrix of the residual values.

COMPOSITIONAL DATA

• The sample space of D-part compositional data is the simplex,

SD = {x = (x1, . . . , xD)′, xi > 0,

D∑
i=1

xi = κ}.

– The closuring to the constant κ, usually chosen as 1 or 100 (for expressing in proportions or

percentages), is a consequence of the closure operation

C(x) =

(
κx1∑D
i=1 xi

, . . . ,
κxD∑D
i=1 xi

)′
.

– Aitchison geometry forms the Euclidean structure of the simplex, it is represented by the

operations of perturbation, power transformation and the Aitchison inner product

x⊕ y = C (x1y1, x2y2, ..., xDyD)′ ,α� x = C (xα1 , x
α
2 , ..., x

α
D)′ ,
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1

2D

D∑
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D∑
j=1

ln
xi
xj

ln
yi
yj
.

• Using the isometric log-ratio (ilr) transformation we obtain orthonormal coordinates on the

Euclidean real space

ilr(x) = z = (z1, . . . , zD−1)
′, zi =

√
i

i + 1
ln

i

√∏i
j=1 xj

xi+1
.

• Tool for exploratory compositional data analysis is the compositional variation array [1]
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 .

⇒ Log-ratio variances satisfy the symmetric property i.e. var ln
(
xi
xj

)
= var

(
− ln

(
xj
xi

))
.

⇒ For the log-ratio means holds the triangular equality i.e. E ln
(
xj
xk

)
= E ln

(
xj
xi

)
+ E ln

(
xi
xk

)
.

CALIBRATION PROBLEM FOR THE COMPOSITIONAL DATA

• For D-part compositional data the task is to split the calibration problem into D(D−1)
2 partial calibra-

tion problems.

⇒ This means that we will calibrate each of the 2-part subcompositions of the given compositional

data.

• Consider we have n different objects that have D properties which are measured on two different

measuring devices A and B, that measure with the same imprecision.

• Ilr transformed two-part subcompositions (xr, xs) resp. (yr, ys) corresponding to the measurement

results from A resp. B, multiplied by
√

2 create the data matrices,

(ZA
k ,Z

B
k )(r,s) =


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x1s
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ln x2r
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 , k = 1, . . . ,
D(D − 1)

2
.

• Linear model with type-II constraints is given by

(
zAk
zBk

)
=

(
µk
νk

)
+ ε, var(ε) = σ2I, (1)

νk = β1k1n + β2kµk, (2)

k = 1, . . . ,
D(D − 1)

2

– zik, i = A,B is n-dimensional random vector created by realization of the data Zi
k, i = A,B,

– µk = (µ1k, . . . , µnk)
′, νk = (ν1k, . . . , νnk)

′ are an errorless recording of zAk and zBk respectively,

– νk = β1k1n + β2kµk, is the calibration line,

⇒ µk and νk are independent and realized with an error σ > 0.

– β1k and β2k are unknown coefficients that specify the intercept and the slope of the calibration line.

• Formulas for BLUE of µ, ν, β1 and β2 in the linearized model are given in [2], [3], they need to be

estimated in an iterative manner.

• β̂1k and β̂2k converge to the orthogonal least squares estimates.

• The unbiased estimator of the unknown variance σ2 is

σ̂2 =

(
zAk − µ̂k

)′ (
zAk − µ̂k

)
+
(
zBk − ν̂k

)′ (
zBk − ν̂k

)
n− 2

. (3)

• Matrices of the predicted averages M(j), j = 1, 2 and the matrix of residual variances T
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T =
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– ln
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, r, s = 1, . . . , D is the predicted average for the model (1)-(2) i.e.
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, r, s = 1, . . . , D is the predicted average for the linear model with type II constraint(
zBk
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)
=
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– σ̂2rs r, s = 1, . . . , D is the estimate of the residual variance in the model (1)-(2) corresponding to

the log-ratios of the parts (xr, xs), calculated according to (3).

⇒M(j), j = 1, 2 are asymmetrical matrices and for their elements holds the triangular equality.

⇒ T is symmetrical matrix.

ILUSTRATIVE EXAMPLE

We consider the white blood cells data set of 30 samples obtained by two different methods: microscopic

inspection and image analysis. White blood cell compositional data consists of three parts: granulocytes

(= part x1), lymphocytes (= part x2) and monocytes (= part x3), [1].

• Data fulfill the normality assumption (Shapiro-Wilk).

• Calibration lines are estimated by the iterative algorithm described in [2], and they are determined

with a high precision.

k
calibration line

standard errors of (β̂1k, β̂2k)
iterations

1 z
(1,2)
2 = 0.1719 + 1.0232z

(1,2)
1 9

(0.0532, 0.0334)

2 z
(1,3)
2 = 0.0647 + 0.9972z

(1,3)
1 7

(0.0606, 0.0210)

3 z
(2,3)
2 = −0.1332 + 0.9971z

(2,3)
1 7

( 0.0458, 0.0228)

Figure 1. White blood cells data in orthonormal coordinates corresponding to k = 1, 2, 3 respectively,

together with their propriate calibration line.

• Testing hypothesis [3]:

– Both methods measure with the same precision of 0.2, i.e. H0: σ
2
rs = 0.22 v.s. HA: σ2rs 6= 0.22.

∗ Under H0: σ̂
2
rs

n− 2

σ2rs
∼ χ2

n−2.

⇒ In our example, on the significance level 0.05 we accept the H0 i.e. the both instruments measure

with the same precision 0.2.

– The results obtained from the both methods do not differ, i.e. H0: µrs = νrs v.s. HA: µrs 6= νrs.

∗ Under H0: T =
ln xr

xr
− ln yr

ys
− (µrs − νrs)√

(n− 1)s2
ln xr

xs
+ (n− 1)s2

ln yr
ys

√
n(n− 1) ∼ t2(n−1),

∗ s2
ln xr

xs
and s2

ln yr
ys

are sample variances.

⇒ Again we did not reject the H0 on the significance level 0.05, which means that the both methods

give us the same results.
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