SEKVENČNÍ TESTOVÁNÍ STABILITY VE FUNKCIONÁLNÍM MODELU CAPM

Marie Hušková

Charles University, Prague

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

2 Testing problem and test procedures

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

2 Testing problem and test procedures

3 Theoretical results

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretica results

2 Testing problem and test procedures

- 3 Theoretical results
- Application

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretica results

1 Introduction

2 Testing problem and test procedures

- 3 Theoretical results
- Application

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Introduction

joint work with A.Aue, S.Hörmann, L.Horváth, J.Steinebach

- Sequential testing
- Functional data
- Dependent observations
- Particular linear model

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Capital asset pricing (CAPM) model:

 $\mathbf{r}_k(t) = (\mathbf{1} - \boldsymbol{\beta}_k)\gamma + \boldsymbol{\beta}_k \mathbf{r}_{M,k}(t) + \mathbf{e}_k(t), \ k = 1, 2, \dots, \ t \in (0, 1)$

 $t\in(0,1)$ (usually one trading day)

 \mathbf{r}_k — vector of daily log-returns – vector of functions on an interval (0, 1)-corresponding to d risky assets (logaritmická míra výnosu d akcií)

 $r_{M,k}$ —log-return of observable market portfolio (logaritmická míra výnosu tržního portfolia akcií)

 γ – return on a risk free assets, scalar (unknown parameter)(míra výnosu bezrizikových akcií)

 β_k - d-dimensional unknown vector

original CAPM models considered by Sharpe (1964), Lintner (1965), Merton ((1973) etc. (not for functional data)

Marie Hušková (Charles University)

Huškov

Outline

Introduction

Testing problem and cest procedures

Theoretical results

Introduction

Here: functional data, weak dependence, sequential setup

k-th observations:

 $(\mathbf{r}_k(t_j), r_{M,k}(t_j)), 0 < t_1 < \ldots t_J < 1$ -k-th observation ((d+1)J dimensional random vectors)

 $k = 1, 2, \ldots, J$ large

 β_k , γ -unknown parameters (finite dimensional)

Training data of size m with no change in parameters are assumed to be available

Sequential setup: portfolio manager has to decide on-line whether to hold to to sell assets in his portfolio

Sequential testing

Marie Hušková

Dutline

Introduction

Testing problem and test procedures

Theoretical results

2 Testing problem and test procedures

3 Theoretical results

Application

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretica results

Application

Marie Hušková (Charles University)

Testing problem and test procedures

 $H_0: \beta_1 = \ldots = \beta_k = \ldots$

against a change in β after $m + k^*$ observations

m - size of training data

k*- change point, structural break point (unknown)

to detect possible instability

Procedure based on a functionals of the difference of LSE of β based on the training data and based on " the new data"

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

LSE $\widehat{oldsymbol{eta}}_{\ell,\ell+k}$ of $oldsymbol{eta}$ based on observations $\ell+1,\ldots,\ell+k$

$$\widehat{\beta}_{\ell,\ell+k} = \Big(\sum_{i=\ell+1}^{\ell+k} \sum_{j=1}^{J} (r_{M,i}(s_j) - \overline{r}_{M,\ell,k}(s_j))^2 \Big)^{-1}$$

$$\times \sum_{i=\ell+1}^{\ell+k} \sum_{j=1}^{J} (r_{M,i}(s_j) - \overline{r}_{M,\ell,k}(s_j)(\mathbf{r}_i(s_j) - \overline{\mathbf{r}}_m(s_j))$$

$$\overline{r}_{M,\ell,k}(s_j) = \frac{1}{k} \sum_{i=\ell+1}^{\ell+k} r_{M,i}(s_j), \quad , \quad \overline{\mathbf{r}}_{\ell,k}(s_j) = \frac{1}{k} \sum_{i=\ell+1}^{\ell+k} \mathbf{r}_i(s_j)$$

Natural test procedures based on

$$V_{k} = \left(\widehat{\boldsymbol{\beta}}_{m,m+k} - \widehat{\boldsymbol{\beta}}_{0,m}\right)^{T} \widehat{\boldsymbol{\mathsf{Q}}}_{m}^{-1} \left(\widehat{\boldsymbol{\beta}}_{m,m+k} - \widehat{\boldsymbol{\beta}}_{0,m}\right)$$

 $\widehat{\mathbf{Q}}_m$ – suitable estimator of the respective variance matrix

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Equivalently:

$$V_k = \mathsf{R}_k^{\mathsf{T}} (\widehat{\mathsf{D}}_m)^{-1} \mathsf{R}_k$$

$$R_k = \frac{1}{J} \sum_{i=m+1}^{m+k} \sum_{j=1}^{J} (r_{M,i}(s_j) - \overline{r}_{M,m,k}(s_j)(\mathbf{r}_i(s_j) - \overline{\mathbf{r}}_m(s_j))$$

$$-\frac{U_{m,m+k}}{U_m}\sum_{i=m+1}^{m+k}\sum_{j=1}^J(r_{M,i}(s_j)-\bar{r}_{M,\ell,k}(s_j)(\mathbf{r}_i(s_j)-\bar{\mathbf{r}}_m(s_j))$$

$$U_m = \frac{1}{J} \sum_{i=1}^{m} \sum_{j=1}^{J} (r_{M,i}(s_j) - \overline{r}_{M,m}(s_j))^2$$

 $\widehat{\mathbf{D}}_{m}$ - a suitable standardization matrix

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Stopping rule

$$\tau_m(T) = \min\left\{k \le mT, \ V_k > cw(k/m)\right\}$$

 $au_m(T) = \infty$ if $V_k \leq cw(k/m)$ $k \leq mT$

- c- suitably chosen constant
- w(t) positive weight function, boundary function
- T -typically large, max number of possible observations is m(T+1)

We wish: to test with asymptotic level α and consistency, i.e.,

$$\lim_{m\to\infty} P_{H_0}(\tau_m(T)<\infty)=\alpha,$$

$$\lim_{m\to\infty}P_{H_1}(\tau_m(T)<\infty)=1.$$

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

2 Testing problem and test procedures

3 Theoretical results

Application

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Application

Marie Hušková (Charles University)

Sequential testing

ROBUST 2012 12 / 25

Theoretical results

Assumptions:

Ass. 1: For any $i \in \mathbb{Z}$, $r_{M,i}(s) = h(\xi_i(s), \xi_{i-1}(s), \ldots)$, $s \in [0, 1]$, $h(\cdot)$ is a measurable real valued functional, $\{\xi_i\}_i$ is sequence of i.i.d. random functions.

Ass. 2: For any $i \in \mathbb{Z}$, $\varepsilon_i = \mathbf{g}(\zeta_i, \zeta_{i-1}, \ldots)$, where $\mathbf{g}(\cdot)$ is a measurable *d*-dimensional functional, $\{\zeta_i\}_i$ is sequence of i.i.d. random functions $E\varepsilon_i = 0$

Ass.3: $\{\boldsymbol{\xi}_i\}_i$ and $\{\boldsymbol{\zeta}_i\}_i$ are independent.

Ass. 4:

$$|\sup_{s\in[0,1]}|r_{M,i}(s)|||_4<\infty,\quad \max_{1\leq j\leq d}||\sup_{s\in[0,1]}|\varepsilon_{i,\ell}(s)|||_4<\infty,$$

where $||V||_q = (E|V|^q)^{1/q}$, additionally some properties on a kind of continuity.

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Theoretical results

- Ass.5: $\lim_{h\to 0} (||\omega(r_{M,i},h)||_4 + ||\omega(\varepsilon_{i,\ell},h)||_4) = 0$
- $1 \leq \ell \leq d$, $i \in \mathbb{Z}$ smoothness
- $\omega(x; h) = \sup_{0 \le t \le 1-h} \sup_{0 \le s \le h} |x(t+h) x(t)|$
- Ass. 6: For any $i \in \mathbb{Z}$

$$\sum_{L=1}^{\infty} ||r_{iM} - r_{iM}^{(L)}||_4 < \infty$$

where

$$r_{iM}^{(L)} = h(\xi_i, \xi_{i-1}, \dots, \xi_{i-L+1}, \xi_{i-L}^{(L)}, \xi_{i-L-1}^{(L)}, \dots),$$

with

$$\boldsymbol{\xi}_{i-L}^{(L)}, \boldsymbol{\xi}_{i-L-1}^{(L)}, \dots$$

being i.i.d. with the same distribution as $\pmb{\xi}_i$ and independent of $\{\pmb{\xi}_i\}_i$

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Ass. 7: For any $i \in \mathbb{Z}$, $j = 1, \ldots, d$

00

$$\sum_{L=1}^{\infty} ||arepsilon_i - arepsilon_i^{(L)}||_4 < \infty$$

$$\boldsymbol{\varepsilon}_i^{(L)} = \mathbf{g}(\boldsymbol{\zeta}_i, \boldsymbol{\zeta}_{i-1}, \dots \boldsymbol{\zeta}_{i-L+1}, \boldsymbol{\zeta}_{i-L}^{(L)}, \boldsymbol{\zeta}_{i-L-1}^{(L)}, \dots)$$

with

$$\zeta_{i-L}^{(L)}, \zeta_{i-L-1}^{(L)}, \ldots$$

being i.i.d.with the same distribution as ζ_i and independent of $\{\zeta_i\}_i$.

Ass. 8. : $J = J_m \rightarrow \infty$, as $m \rightarrow \infty$

Ass. 9. : weight function w is positive continuous on [0, 1].

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Then it can be proved:

$$\frac{1}{J}\sum_{j=1}^{J}(r_{M,i}(s_j)-\bar{r}_{M,\ell,k}(s_j)\varepsilon_i(s_j)$$

has approximately distribution as

$$\mathbf{z}_i = \int_0^1 (r_{M,i}(s) - Er_{M,i}(s)) \varepsilon_i(s) ds$$

with dependence structure

$$\mathbf{D} = E(\mathbf{z}_0 \mathbf{z}_0^T) + \sum_{i=1}^{\infty} E(\mathbf{z}_0 \mathbf{z}_i^T) + \mathbf{z}_i \mathbf{z}_0^T)$$

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

It can be shown also that under no change

$$\max_{1\leq k\leq mT}\{V_k/w(k/m)\}$$

behaves approximately as

$$\sup_{0 < t \le T} \frac{\sum_{j=1}^d W_j^2(t)}{w(t)}$$

 $\{W_j(t), t \in (0, \infty)\}$ are independent Gaussian processes with zero mean and $var(W_j(t_1), W_j(t_2)) = \min(t_1, t_2) + t_1t_2$.

• Constant *c* can be obtained from simulation of the limit distribution or via bootstrap (block bootstrap), $c = c_{\alpha}$:

$$P(\sup_{0 < t \le T} rac{\sum_{j=1}^d W_j^2(t)}{w(t)} > c_lpha) = lpha$$

Marie Hušková (Charles University)

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Theoretical results

 \bullet For properly chosen c the level of the test is asymptotically $\alpha,$ test is consistent.

• Matrix

$$\mathbf{D} = E(\mathbf{z}_0 \mathbf{z}_0^T) + \sum_{i=1}^{\infty} E(\mathbf{z}_0 \mathbf{z}_i^T) + \mathbf{z}_i \mathbf{z}_0^T)$$

is estimated by Bartlett type estimators based on training sample only.

$$\widehat{\mathbf{D}}_{m} = \widehat{\mathbf{S}}_{m}(0) + \sum_{k=1}^{m} h(k/q(m))(\widehat{\mathbf{S}}_{m}(k) + \widehat{\mathbf{S}}_{m}(-k))$$
$$\widehat{\mathbf{S}}_{m}(k) = \frac{1}{m} \sum_{i=1}^{m-k} \widehat{\mathbf{z}}_{i} \widehat{\mathbf{z}}_{i}^{T}$$

h(.) — Bartlett kernel

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

$$\widehat{\mathbf{z}}_i = \frac{1}{J} \sum_{j=1}^J (r_{M,i}(s_j) - \widehat{r}_{M,m}(s_j)) \widehat{\varepsilon}_i(s_j)$$

$$\widehat{\varepsilon}_i(s_j) = (r_i(s_j) - \widehat{r}_{i,m}(s_j)) - \widehat{\beta}_m(r_{M,i}(s_j) - \widehat{r}_{M,m}(s_j))$$

Andrews (1991)

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Introduction

2 Testing problem and test procedures

3 Theoretical results

Application

Sequential testing

> Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Application

Marie Hušková (Charles University)

Sequential testing

ROBUST 2012 20 / 25

Data

Monitoring portfolios beta in several stocks in the S&P 100 index 2001 and 2002.

Stocks in the S&P 100 index and the S&P 100 index market itself

5 stocks (Boeing, Exxon Mobile, AT& T Bank of America, Mircrosoft)

(a) 120 training days starting on January 29, 2001– July 19, 2001 (stable period)

(b) 80 training days starting on October 9, 2001 - February 2002

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Application

2 boundary functions — one for earlier changes (2), one for later changes (1) (test statistics is compared after each new observation with the value of boundary function at that point, large values indicate a change)

$$w_1(t) = (1+t)^2$$

$$w_2(t) = t\sqrt{3(1+t^2)+t} + 0.1$$

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

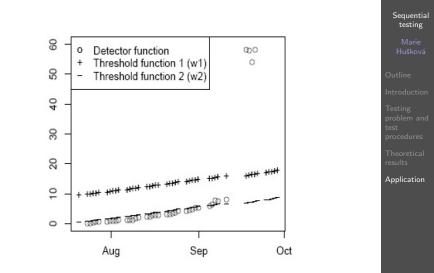


Figure 1: Detector V_k ($\circ \circ \circ$) and threshold functions w_1 (+++) and w_2 (---) for the monitoring procedure commencing on July 20, 2001. The significance level is set to $\alpha = 0.05$.

Application

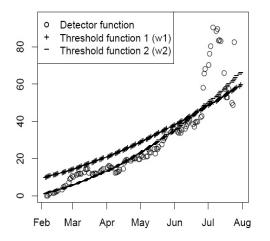


Figure 2: Detector V_k ($\circ \circ \circ$) and threshold functions w_1 (+ + +) and w_2 (- - -) for the monitoring procedure commencing on February 5, 2002. The significance level is set to $\alpha = 0.05$.

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Sequential testing

Marie Hušková

Outline

Introduction

Testing problem and test procedures

Theoretical results

Application

THANK YOU!!!!!