Multi-way Data Analysis for Advanced Physiological Estimation of Cognitive Status

Roman Rosipal

Department of Theoretical Methods Institute of Measurement Science, SAS Bratislava, Slovak Republic & Pacific Development and Technology, LLC Palo Alto, CA

イロト イポト イヨト イヨト

Robust 2012, September, 8.-14., Nemcicky, Czech Republic

Results 000000000

Estimation of Cognitive Status

Introduction	
0000000	c

Results 000000000 Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Useful Definitions

• Engagement: selection of a task as the focus of attention and effort

Introduction	
0000000	c

Results 000000000 Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Useful Definitions

- Engagement: selection of a task as the focus of attention and effort
- Workload: significant commitment of attention and effort to task

Introduction	
0000000	c

Results 000000000 Conclusions

Useful Definitions

- Engagement: selection of a task as the focus of attention and effort
- Workload: significant commitment of attention and effort to task
- Overload: task demands outstrip performance capacity

Introduction	
000000	

Results 000000000 Conclusions

Useful Definitions

- Engagement: selection of a task as the focus of attention and effort
- Workload: significant commitment of attention and effort to task
- Overload: task demands outstrip performance capacity
- Mental Fatigue: desire to withdraw attention and effort from a task

Introduction	Methods	Results	Conclusions
0000000			

Why to monitor cognitive status?

• Critical safety, high workload, stressful, etc., environments

Introduction	Methods	Results	Conclusions
00000000			

Experiments - (A) Cognitive Workload Monitoring

• Uninhabited Air Vehicle (UAV) control

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Methods	Results	Conclusions
00000000			

Experiments - (A) Cognitive Workload Monitoring

Uninhabited Air Vehicle (UAV) control

• Trained subjects were monitoring several UAVs as they flew a preplanned mission; processing SAR images (synthetic aperture radar), vehicle health control, etc.

Introduction	Methods	Results	Conclusions
00000000			

Experiments - (A) Cognitive Workload Monitoring

Uninhabited Air Vehicle (UAV) control

- Trained subjects were monitoring several UAVs as they flew a preplanned mission; processing SAR images (synthetic aperture radar), vehicle health control, etc.
- Different task conditions were used to control cognitive workload levels

Introduction

Methods 00000000000 Results 000000000 Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Experiments - (B) Mental Fatigue Monitoring

• Continuos performance of mental arithmetic for up to three hours

Results 000000000

Data - Electroencephalogram (EEG)

Cerebral Cortex

- · the outermost layers of brain
- · 2-4 mm thick (human)

Structure of a Typical Neuron

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Results 000000000

Data - EEG Sources

Results 000000000

Data - EEG Sample

mm ŝ man montant many many s mmmmmmmmmmm ~~ MARIN MANNAMMANNAM M hand and the marked and the second a m MMMMM Mandahamanahamanananahanahaman An \mathcal{M} www.www. monter

◆ロ▶ ◆□▶ ◆国▶ ◆国▶ ○国・ ∕の≪⊙

is	Results	Cc
0000000	00000000	
	ds 00000000	25 Hesults 00000000 00000000

nclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data - Multi-modal Multi-Sensor

- ECG hear rate, heart rate variability
- EOG and eyes control hEOG, vEOG movements, blinks, pupil diameter
- EMG
- Skin conductance, SCR, GCR
- Videotaped recordings
- Response time, Correctness of responses
- Subjective responses and questionnaires
- etc.

Introduction	Methods	Results	Conclusions
	000000000		

Spectral EEG Data Representation

• Data were segmented into epochs (usually 2 sec long)

Introduction	Methods	Results	Conclusions
	000000000		

Spectral EEG Data Representation

- Data were segmented into epochs (usually 2 sec long)
- Spectral representation: Thompson multitaper estimate of the power spectrum density; that is the distribution of power per unit frequency

$$P_{xx}(f) = F_x(f)F_x^*(f)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

where $F_x(f)$ is the Fourier transform of the signal x and * indicates the complex conjugate

Introduction	Methods	Results	Conclusions
	000000000		

Spectral EEG Data Representation

- Data were segmented into epochs (usually 2 sec long)
- Spectral representation: Thompson multitaper estimate of the power spectrum density; that is the distribution of power per unit frequency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Methods	Results	Conclusions
	000000000		

Coherence EEG Data Representation

• Coherence representation: Cross power spectra density $P_{xy}(f)$,

$$P_{xy}(f) = F_x(f)F_y^*(f)$$

or magnituted squared (coherence)

$$C_{xy}(f) = rac{|P_{xy}(f)|^2}{P_{xx}(f)P_{yy}(f)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction

Methods

Results 000000000

・ロン ・四 と ・ ヨ と ・ ヨ と

æ.

Data Structure

EEG Frequency

- Data matrix construction: $\mathbf{X}_{(I \times J \times K)}$
 - I time segments
 - J electrodes or electrode pairs
 - K PSD or CSD (coherences)

Results 000000000 Conclusions

Bilinear Unfolding

- Representing all experimental factors in one dimension & observations (trials) in second dimension
- Contrast each dimension vs. pair of the other two

Introduction 000000000 Methods

Results 000000000 Conclusions

Bilinear Unfolding - Modelling

Factor Analysis

Principal Component Analysis (PCA)

 $e_{ii} = 0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Methods	Results	Conclusions
	0000000000		

Bilinear Unfolding - Regression/Classification

Partial Least Squares

- P,Q matrices of loadings
- E,F matrices of residuals (errors)

> Criterion:

 $\begin{aligned} \max_{|\mathbf{r}|=|\mathbf{s}|=1}[cov(\mathbf{X}\mathbf{r}, \mathbf{Y}\mathbf{s})]^2 &= [cov(\mathbf{X}\mathbf{w}, \mathbf{Y}\mathbf{c})]^2 \\ &= var(\mathbf{X}\mathbf{w})[corr(\mathbf{X}\mathbf{w}, \mathbf{Y}\mathbf{c})]^2 var(\mathbf{Y}\mathbf{c}) \\ &= [cov(\mathbf{t}, \mathbf{u})]^2 \end{aligned}$

Results 000000000

Bilinear Unfolding - (Kernel) PLS - Regression

Rosipal,R & Trejo, LJ (2001). Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research, 2(Dec):97-123.

Introduction	Methods	Results	Conclusions
00000000	00000000000	00000000	

Bilinear Unfolding - (Kernel) PLS - Classification

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introduction

Methods

Results 000000000 Conclusions

Multi-way Analysis

PARAFAC

 $x_{ijk} = \sum_{i=1}^{F} a_{if} b_{jf} c_{kf} + e_{ijk}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Introduction	Methods	Results	Conclusions
	00000000000		

• The PARAFAC model with *F* factors: decomposition of the data matrix **X** using three loading matrices, **A**, **B**, and **C** with elements a_{if} , b_{jf} , and c_{kf}

$$x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + \epsilon_{ijk}$$

• The criterion:

PARAFAC model

$$\min_{a_{it},b_{jt},c_{kt}} = \|x_{ijk} - \sum_{f=1}^{F} a_{if}b_{jf}c_{kf}\|^2$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Results 000000000

Multi-way PLS

Multi-way PLS (n-PLS)

Software: proprietary m-codes developed by PDT, LLC, and subroutines from the N-way toolbox for Matlab (Andersson and Bro, 2000)

Introduction	Methods	Results	Conclusions
		0000000	

Mental Fatigue - PLS analysis

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Introduction	Methods	Results	Conclusio
		0000000	

Mental Fatigue - PLS analysis

000000000 000000					
Mantal Estimate DLO seclusio					

Signal-to-noise Ratio (dB)

Introduction	Methods	Results	Conclusio
		00000000	

Mental Fatigue - Spectrum Analysis - PARAFAC

Figure 33. Atomic decomposition of EEG from participant GSD of the NASA-C study. EEG recordings from 30 channels were processed using PARAFAC decomposition to yield a model consisting of four atoms, each have dimensions of space (electrodes), frequency (power spectral density) and time (time on task). *Graphical conventions are the same as in Figure 32*. This participant performed the task for three hours, or 12 15-minute blocks. The time axis measures seconds as multiples of 2-second long EEG epochs which were not all contiguous, due to rejection of EEG segments containing movement or other artifacts. Some blocks have fewer epochs than others because the incidence of EEG artifacts increased during those blocks.

Results

Conclusions

Mental Fatigue - Coherence Analysis - PARAFAC

Figure 45. Coherence analyses for participant GSD. Graphing conventions are explained in Figure 44.

Page A4-3

Introduction	Methods	Results	Conclusions
		000000000	

Workload - UAV - PARAFAC

• Subjects E,G,I, K (plotted subject E)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Introduction	
000000000	

Results

Conclusions

Workload - UAV - PARAFAC

Subjects E - coherence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	
00000000	c

Results ○○○○○○●○○

Workload - UAV - PARAFAC

Subjects E - coherence

We found the similar decomposition for subjects B, G, I, K

(日)

Introduction	Methods	Results	Conclusions
000000000	0000000000	○○○○○○○●○	

Workload - UAV - PARAFAC

• Subjects B,E,G,I, K - coherence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Introduction
000000000

Results

Workload - UAV - Coherence Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Introduction	Methods	Results	Conclusions
00000000	0000000000	00000000	
Canalusiana			

- Results show that mental workload may be tracked by EEG components isolated using PARAFAC
- On UAV data set, the workload related atoms was remarkably stable in 5 out of the 6 subjects
- The short-and long range coherence related atoms are more stable across the subjects, provide higher discrimination of the low and high workload levels and seem to be less susceptible to the movement related artifacts
- We observed similarly promising and remarkable results on additional two data sets monitoring cognitive status

Results 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Detailed Results

References:

- Trejo L.J., Rosipal R., Nunez P.L. Advanced Physiological Estimation of Cognitive Status (APECS). Final project report, U.S. Army Research Offfice, Research Triangle Park, NC, September 2009.
- Trejo L.J., Rosipal R., Nunez P.L. Advanced Physiological Estimation of Cognitive Status. The 27th Army Science Conference, Orlando, Florida, November 29 - December 2, 2010.
- Rosipal, R., Trejo, L. J., Nunez, P. L. (2009). Application of Multi-way EEG Decomposition for Cognitive Workload Monitoring. In Proceedings of the 6th International Conference on Partial Least Squares and Related Methods, Vinzi V.E, Tenenhaus M., Guan R. (eds.), Beijing, China, pp. 145-149, 2009.
- Trejo L.J., Knuth K., Prado R., Rosipal R., et al. (2007). EEG-based Estimation of Mental Fatigue: Convergent Evidence

for a Three-State Model. In Proceedings HCII 2007, Beijing, China, Springer, pp. 201-211.

&

Results 000000000 Conclusions

Work carried out with:

• Leonard J Trejo

Paul Nunez

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you !!!