
Second-Order Inference for Gaussian Random
Curves

With Application to DNA Minicircles

Victor Panaretos David Kraus John Maddocks

Ecole Polytechnique Fédérale de Lausanne

Panaretos, Kraus, Maddocks (EPFL) Second-Order Inference for Gaussian Random Curves 1 / 48



Are they different?
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Geometry of DNA molecules, base-pairs sequences

Goal: study of mechanical properties of DNA molecules
(via their geometry)
Question: influence of base pair sequences

158 base-pairs, 18 bp fragment different (TATA vs CAP)
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Electron microscope images

50 nm layer of ice at −170 ◦C, images tilted ±15 ◦

Minicircles diam ∼ 17 nm
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Original data
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Each curve 200 xyz-coordinates
Curves not directly comparable
Adjustment

Centering (center of mass = 0)
Scaling (length = 1)

Not sufficient, further alignment necessary
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Registration of functional data

Standard alignment methods
1 Landmark alignment
2 Warping

Standard methods cannot be used
Landmark alignment not applicable:
no landmarks available
Warping inappropriate:
don’t want to change the shape, need a rigid method
Curves have no beginning/end, no orientation

Rotate each curve to make them as close as possible
Global optimization over n = 99 orthogonal transformations
would be difficult

Instead, rotate each curve separately
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Moments of inertia tensor

Consider an object in R3 with distribution of mass µ
For DNA minicircles, µ is the uniform measure supported
on the curve
Consider an axis given by a unit vector u ∈ R3 (‖u‖ = 1)
Moment of inertia tensor defined as

J (u) =

∫
R3

r2(u, x)µ(dx) =

∫
R3
‖(I − uuT)x‖2µ(dx)

(integrated squared distance from the axis given by u)
Interpretation: J (u) measures how difficult it is to rotate
the object around the axis u
In matrix form

J (u) = uTJu, where J =

∫
R3

(xTxI − xxT)µ(dx)
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Principal axes of inertia

J (u) = uTJu is positive semidefinite, hence it possesses
nonnegative eigenvalues and orthonormal eigenvectors
The first eigenvector w1 determines the axis around which
the curve is most difficult to rotate
(J (u) = uTJu is maximized at u = w1)
↪→ The projection of the curve on the plane orthogonal to
w1 is most spread
The second eigenvector w2 determines the axis within the
first principal plane around which the projected curve is
most difficult to rotate
↪→Within the first principal plane, the projection on the line
orthogonal to w2 is most spread
The axes given by w1,w2,w3 are called principal axes of
inertia (PAI1, PAI2, PAI3)
PAI3 carries the most spatial information, PAI1 contains the
smallest amount of information
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Moments of inertia alignment

Each curve aligned separately (no averaging over the
sample)
For each curve, the principal axes of inertia are determined
and the curve is rotated so that the PAI’s agree with the
axes of the coordinate system (i.e., the curves are
projected on PAI’s)
The procedure is similar to the balancing of a tyre
(adjusting the distribution of mass of a wheel such that its
PAI is aligned with the axle)
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Aligned DNA minicircles
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From curves to functions

Curves have no starting point
↪→ The intersection of the
projection on the first principal
plane and the horizontal
(PAI2) positive semi-axis
Curves have no orientation
↪→ Counterclockwise in the
first principal plane
No correspondence between
points on the curves
↪→ Parametrization by arc
length
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PAI coordinates of aligned DNA minicircles
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Functional data

Each minicircle curve is modelled as the realisation of
a stochastic process indexed by [0,1],

X = {X (t), t ∈ [0,1]}

taking values in R3

X is seen as a random element of the Hilbert space
L2[0,1] of coordinate-wise square-integrable R3-valued
functions with the inner product

〈f ,g〉 =

∫ 1

0
〈f (t),g(t)〉dt

Wlog assume that the mean function

µ(t) = E X (t)

is zero
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Covariance operator

Denote the covariance function (kernel)

R(s, t) = cov(X (s),X (t)) = E(X (s)X (t)T)

The covariance operator is defined as

R : L2[0,1]→ L2[0,1]

R(f ) = cov(〈X , f 〉X ) =

∫ 1

0
R(·, t)f (t)dt ,

Equivalently
R = E(X ⊗ X )

The tensor product of a,b ∈ L2[0,1] is defined as the
operator

(a⊗b) : L2[0,1]→ L2[0,1], (a⊗b)(f ) =

∫ 1

0
a(·)〈b(t), f (t)〉dt

Multivariate analog: a⊗ b = abT for a,b ∈ Rp
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Karhunen–Loève decomposition

The covariance kernel admits the representation

R(s, t) =
∞∑

k=1

λkϕk (s)ϕk (t)T,

where λk ≥ 0 are nonincreasing eigenvalues and ϕk
orthonormal eigenfunctions of R, i.e., R(ϕk ) = λkϕk

The process X can be represented as

X (t) =
∞∑

k=1

〈X , ϕk 〉ϕk (t) =
∞∑

k=1

λ
1/2
k ξkϕk (t)

where the Fourier coefficients ξk = λ
−1/2
k 〈X , ϕk 〉 are

uncorrelated random variables with zero mean and unit
variance
If the process is Gaussian, the scores ξk , k ≥ 1 are
iid standard Gaussian
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Truncated KL decomposition, dimension reduction

The first K eigenelements λk , ϕk , k = 1, . . . ,K provide the
optimal rank K approximation in the sense

min
ϕ1,...,ϕK

orthonormal

E
∥∥∥X −

K∑
k=1

〈X , ϕk 〉ϕk

∥∥∥2

2

min
ϕ1,...,ϕK

orthonormal,
λ1,...,λK≥0

E
∥∥∥X ⊗ X −

K∑
k=1

λk (ϕk ⊗ ϕk )
∥∥∥2

HS

max
ϕ1,...,ϕK

orthonormal

K∑
k=1

var(〈X , ϕk 〉)
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Functional Principal Component Analysis

Functional Principal Component Analysis is the empirical
version of the Karhunen–Loève decomposition
Empirical covariance operator

R̂ =
1
n

n∑
i=1

(Xi − X̄ )⊗ (Xi − X̄ )

Functional eigenproblem

R̂ϕ̂k = λ̂k ϕ̂k

Usually, observations are represented in a basis,

Xi(t) =
∞∑

j=1

cijψj(t)

If the basis {ψj} is orthonormal (such as the Fourier basis
for periodic data like minicircles), then functional PCA is
usual PCA of the coefficient matrix C = (cij)
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Means of PAI coordinates
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Means on the principal plane
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Covariance functions
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Testing problem

Situation: X1, . . . ,Xn1 , Y1, . . . ,Yn2 independent samples of
Gaussian stochastic processes with means µX , µY and
covariance operators RX ,RY

Mean functions appear to be equal
↪→ Focus on covariance operators
Hypothesis testing problem

H0 : RX = RY vs H1 : RX 6= RY

Use of a statistic like R̂−1
X R̂Y impossible (noninvertibility)

Instead, use the difference

R̂X − R̂Y

which should be close to the zero operator under the null
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Hilbert–Schmidt operator norm

Need to measure the distance of R̂X − R̂Y from a zero
operator
↪→ Need an operator norm
The Hilbert–Schmidt operator norm is defined as

‖A ‖2HS =
∑

i

‖A ei‖22 =
∑
i,j

〈ei ,A ej〉2

(multivariate analog: ‖A‖2F =
∑

i,j a2
ij for a matrix A)

The distribution of

‖R̂X − R̂Y‖2HS

intractable
↪→ Perform dimension reduction, focus on the projected
operators
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Projection, truncation of the HS norm

Let f1, . . . , fK be some orthonormal L2 functions
Let

πK =
K∑

k=1

fk ⊗ fk

be the projection operator onto the span of f1, . . . , fK
The test will based on

‖R̂K
X − R̂K

Y ‖2HS

where R̂K
X = πK R̂XπK , R̂K

Y = πK R̂YπK
Need a common basis (the same πK for X ,Y )
(a common reference coordinate system)
We use πK = π̂K projecting on

ϕ̂XY
1 , . . . , ϕ̂XY

K

(eigenfunctions of the pooled-sample estimator
R̂ = n1

n R̂X + n2
n R̂Y )
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Test statistic

The statistic is

‖R̂K
X − R̂K

Y ‖2HS =
K∑

k=1

K∑
j=1

〈ϕ̂XY
k , (R̂X − R̂Y )ϕ̂XY

j 〉2

The terms

λ̂X ,XY
kj = 〈ϕ̂XY

k , R̂X ϕ̂
XY
j 〉, λ̂Y ,XY

kj = 〈ϕ̂XY
k , R̂Y ϕ̂

XY
j 〉

are empirical var/cov of the X and Y scores w.r.t. the
common basis
Their asymptotic var/cov under H0 is 2δkjλkλj

The test statistic based on standardized components is

T =
n1n2

2n

K∑
k=1

K∑
j=1

(λ̂X ,XY
kj − λ̂Y ,XY

kj )2

λ̂k λ̂j
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Asymptotics

Under H0 and Gaussian assumption,

T D−−−→
n→∞

χ2
K (K+1)/2

Sketch of the proof
Using consistency of ϕ̂XY

k , replace π̂K by πK
By the Hilbert space CLT,

R̂X =
1
n1

n1∑
i=1

Xi with Xi = Xi ⊗ Xi

is asymptotically a Gaussian random operator (random
element in the space of operators with Gaussian fdd’s)
Investigation of the covariance operator of the limit (an
operator on operators on L2) yields that the components of
T are asymptotically independent Gaussian
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Modifications of the test statistic

Diagonal statistic

T1 =
n1n2

2n

K∑
k=1

(λ̂X ,XY
kk − λ̂Y ,XY

kk )2

λ̂2
k

(compares only eigenvalues, might be good when
eigenfunctions equal)
Variance-stabilizing transformations

log of the diagonal (variance) terms
Fisher’s z-transformation of the off-diagonal (covariance)
terms
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Selection of K

1 Scree plots, cumulative explained proportion of
variance, . . .

2 Minimization of the penalized fit criterion

PFC(K ) = GOFX (K )+GOFY (K )+n1
n PENX (K )+n2

n PENY (K )

(no formal result on the post-selection test)
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Simulations: design

Simulated processes are combinations of Fourier basis
functions with independent Gaussian coefficients
Mimicking the ‘elbow effect’:
3 or 4 dominating components and several components
with smaller variance
n1 = n2 = 50
Nominal level 5 %
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Simulations: level

Scenario A
Equal covariance operators

K
Test 1 2 3 4 K ∗

off-diag 0.051 0.056 0.057 0.056 0.059
diag 0.051 0.054 0.056 0.061 0.061

The tests maintain the nominal level when K ≤ rank
This is true also for K ∗. The selection criterion aims at
estimating the effective complexity of the distributions, it
does not optimize the power, does not reflect validity or
invalidity of H0.
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Simulations: power

Scenario B
The same sequence of eigenfunctions (in the same order)
The first eigenvalues differ

K
Test 1 2 3 4 K ∗

off-diag 0.443 0.315 0.223 0.174 0.175
diag 0.443 0.350 0.306 0.267 0.267

The power decreases (difference only in the first
component)
Diagonal better (the same eigenfunctions)
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Simulations: power

Scenario E
The same set of eigenfunctions in a different order
(permuted)
The first eigenfunctions equal
The same eigenvalues

K
Test 1 2 3 4 K ∗

off-diag 0.055 0.267 0.686 0.976 0.975
diag 0.055 0.250 0.509 0.620 0.617

No power with K = 1 (equal first eigenelements)
Lower power for the diagonal test (the same eigenvalues)
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Simulations: power

Scenario F
Completely different eigenfunctions (sines vs time-shifted
sines)
Equal eigenvalues

K
Test 1 2 3 4 K ∗

off-diag 0.273 0.706 0.916 1.000 1.000
diag 0.273 0.496 0.544 0.594 0.655

Lower power for the diagonal test
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Outliers?
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Spatial median, outlier detection

The functional spatial median is defined as the solution to

min
m∈L2

n∑
i=1

‖Xi −m‖2 or
n∑

i=1

m − Xi

‖m − Xi‖2
= 0

The solution m̂ can be written as the weighted sum

m̂ =
n∑

i=1

wiXi , wi ≥ 0,
n∑

i=1

wi = 1

Outliers have small weights wi , large values of 1/wi
indicate outliers
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Inverse spatial median weights
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Outliers
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Joint PCA of PAI2,3: coordinates of eigenfunctions
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Joint PCA of PAI2,3: eigencircles
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Joint PCA of PAI2,3: eigenvalues
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Selection of K (joint analysis of PAI2,3)

Scree plot w.r.t. the common (pooled sample) eigenbasis
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Test results

Test statistic: off-diagonal, transformed, χ2 approximation

p-value
K PAI3 PAI2 PAI1 PAI2,3
1 0.252 0.313 0.976 0.167
2 0.001 0.118 0.823 0.005
3 0.000 0.087 0.782 0.025
4 0.001S 0.022 0.886 0.051
5 0.001A 0.053S 0.555 0.009
6 0.010 0.087 0.327 0.005S

7 0.019 0.098A 0.360 0.023A

8 0.046 0.173 0.148 0.094

(S = Selection based on scree plots, A = Automatic selection)
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Outline

1 DNA minicircles

2 Functional Data Analysis background

3 Testing procedures

4 Analysis of DNA minicircles

5 Summary
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Summary

DNA minicircle data, alignment, . . .
Functional data approach
Tests based on an approximation of the Hilbert–Schmidt
distance between empirical covariance operators,
asymptotics, simulations, . . .
Minicircle data analaysis (outlier detection, order selection,
testing, . . . )

Outlook
Robustification
Normality testing
. . .
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