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Plan

• Likelihood & contrast: parametric model
• Likelihood & contrast: moment condition model

• Estimating Equations
• Empirical Estimating Equations (E3)
• Which contrast?
• Existence problems of the E3 approach



Likelihood and contrast:
parametric model



Setup

Setting:

Chance: r.v. X ∈ X ⊆ Rd , with cdf Qr (x)

Model: Φ(Θ) = {Q(x ;θ) : θ ∈Θ};
parametric space: Θ⊆ RK , K finite.

Data: X n
1 = X1, . . . ,Xn, iid Qr .



Contrast, Generalized Minimum Contrast estimators

Contrast (f -divergence):

Dφ(Q ||Qr ) = EQr
φ

�

dQ(x ;θ)

dQr

�

,

where φ(·) is a convex function, with minimum at 1.

The Generalized Minimum Contrast (GMC) estimator

θ̂ = arg inf
θ∈Θ

Dφ(Q || Q̃r ).

where Q̃r is a nonparametric estimator of Qr .



Likelihood, Maximum Likelihood as GMC

1) Let φ(x) =− log(x).

2) Let Q̃r be the empirical cdf Q̂r (x) =
∑n

i=1 I (Xi≤x)

n .

Then Dφ(Q || Q̂r ) is the log-likelihood function and

θ̂ML = arg inf
θ∈Θ

Dφ(Q || Q̂r )

is the Maximum Likelihood estimator θ̂ML of θ .



Hellinger contrast, Beran estimator

Other choices of φ(·) require a smooth nonparametric estimate
Q̃r of Qr (e.g., kernel density).

If φ(x) =−2(
p
x − 1), then the GMC estimator is

θ̂ = arg inf
θ∈Θ

2
�

1− E
p

q(x ;θ)
p

q̃r (x)
�

,

i.e., Beran’s minimum Hellinger distance estimator.



Likelihood Ratio Test

Partition Θ into Θ0 and Θc
0.

Test of H0 : θ ∈Θ0.
Log-Likelihood Difference Statistic:

λ(θ ;X n
1 ) = inf

θ∈Θ0
D(Q || Q̂r )− inf

θ∈Θ
D(Q || Q̂r )

Wilks Thm: Under some regularity conditions, asymptotically

−2λ(θ ;X n
1 )∼ χ2

K .

Other discrepancies, cf. eg. Broniatowski & Keziou (2009).



Likelihood and contrast:
moment condition model



Estimating Equations

Setup:
Chance: r.v. X ∈ X ⊆ Rd , with cdf Qr ∈Q(X ), where Q(X ) is
the set of all cdf’s on X .

Model:
Estimating functions: u(X ;θ) :X ×Θ→ RJ , where θ ∈Θ⊆ RK ;
K can be, in general, different than J.
Estimating equations (EE):

Φ(θ) = {Q ∈Q(X ) : EQu(X ;θ) = 0}.

Model: Φ(Θ) =
⋃

θ∈Θ Φ(θ).



Estimating Equations: examples

Examples:

Ex. 1: X = R, Θ = [0,∞), u(X ;θ) = X − θ .

Ex. 2: (Brown & Chen) X = R, Θ = R,
u(X ;θ) = {X − θ , sgn(X − θ)}.

Ex. 3: (Qin & Lawless) X = R, Θ = R,
u(X ;θ) = {X − θ ,X 2− (2θ2 + 1)}.



Empirical Estimating Equations

To connect the model Φ(Θ) with the data X n
1 , replace the model

Φ(Θ) by its empirical, data-based analogue
Φn(Θ) =

⋃

θ∈Θ Φn(θ), where

Φn(θ) =
¦

Qn ∈Q(X n
1 ) : EQn

u(X ;θ) = 0
©

are the empirical estimating equations.

Empirical Estimating Equations (E3) approach to estimation and
inference replaces the set Φ(Θ) of cdf’s supported on X by the
set Φn(Θ) of cdf’s that are supported on the data X n

1 .

An estimate θ̂ of θr is obtained by means of a rule (e.g., GMC)
that selects Q̂n(x ; θ̂) from Φn(Θ).



E3-GMC estimator

Data: X n
1 = X1, . . . ,Xn ∼Qr .

Use GMC to select Q̂n(x ; θ̂) from Φn(Θ):

Q̂n(x ; θ̂) = arg inf
Qn(x ;θ)∈Φn(Θ)

Dφ(Qn || Q̂r ) (1)

GMC rule is used to select a member of the E3 model set Φn(θ),
that is closest to the empirical cdf Q̂r , in the sense of Dφ(· || ·).

Other rules: Cressie Read class of divergences –
Generalized Empirical Likelihood class of estimators.



E3-GMC estimator: convex dual form

The θ part of the optimization problem (1):

θ̂ = arg inf
θ∈Θ

inf
Qn(x)∈Φn(θ)

EQ̂r
φ

�

dQ

dQ̂r

�

, (2)

The convex dual form of (2):

θ̂ = arg inf
θ∈Θ

sup
µ∈R,λ∈RJ

h

µ− EQ̂r
φ∗(µ+λ′u(x ;θ))

i

, (3)

where φ∗(y) = supx xy −φ(x) is the Legendre Fenchel
transformation of φ∗(x).



Maximum Empirical Likelihood as E3-GMC estimator

To get Maximum Empirical Likelihood (MEL) use
φ(x) =− log x

θ̂MEL = arg inf
θ∈Θ

sup
λ∈RJ

EQ̂r
log(1+λ′u(x ;θ)).

MEL selects among the data-supported cdf’s from the model
Φn(Θ) the one with the highest value of the likelihood.
MEL = ML on Φn(Θ).



Asymptotic properties of MEL

Qin & Lawless ’94: Under some regularity conditions, which
include the assumption that the model is correctly specified (i.e.,
Qr ∈ Φ(Θ))

n1/2(θ̂EML− θr )→d n(0, Σ),

where

Σ =

�

E
∂ u
∂ θ

′

(Euu′)−1E
∂ u
∂ θ

�

,

and θr solves EQr
u(X ;θ) = 0.



Empirical Likelihood Ratio

A GMC test of the null hypothesis H0 : θ = θ0 against the
alternative H1 : θ = θ1 is based on the GMC statistic

λ(θ ;X n
1 ) = inf

Q∈Φn(θ0)
Dφ(Q || Q̂r )− inf

Q∈Φn(θ1)
Dφ(Q || Q̂r ).

Thm: If θ0 satisfies Eu(X ;θ0) = 0, then under some regularity
conditions,

kn(φ)λ(X n
1 ;θ0)→ χ2

K .

Empirical Likelihood Ratio test: take φ(·) =− log(·) and
kn(φ) = 2.



E3 & MEL: ’engineering’ form

E3 model Φq(Θ) =
⋃

θ∈Θ Φq(θ) where

Φq(θ) = {q(x ;θ) :
n
∑

i=1
q(xi ;θ)u(xi ;θ) = 0;

n
∑

i=1
q(xi ;θ) = 1;

1≥ q(·;θ)≥ 0
	

;

i.e., the set of probability mass functions that are supported on
the data, and satisfy the estimating equations.

MEL selects:

q̂(·; θ̂)MEL = arg sup
q(·;θ)∈Φq(Θ)

1
n

n
∑

i=1
logq(xi ,θ).



Random selection of recent works on EL
• Adjusted Empirical Likelihood and its properties

• Efficient nonparametric estimation of causal effects in
randomized trials with noncompliance

• Using Empirical Likelihood to combine data: application to food
risk assessment

• Optimally combined censored and uncensored datasets

• Extending the scope of Empirical Likelihood

• Generalized Empirical Likelihood-based model selection criteria
for moment conditions models

• Adjusted Exponentially Tilted Likelihood with applications to
brain morphology

• Combining quantitative trait loci analyses and microarray data:
an empirical likelihood approach

• Empirical Likelihood based diagnostics for heteroscedasticity in
partial linear models



Questions

1) Are all the MEL-like methods equal?
2) How to extend MEL and MEL-like methods into a Bayesian
method?

Answer: Bayesian infinite dimensional consistency under
misspecification.



Bayesian infinite dimensional consistency

A prior Π is put on Φ(Θ); (it induces a prior Π(θ) over Θ). The
prior Π combines with the data X n

1 to define the posterior:

Πn(A |X n
1 ) =

∫

A e−ln(Q)Π(dQ)
∫

Φ
e−ln(Q)Π(dQ)

,

where ln(Q)¬−EQ̂r
log dQ

dQ̂r
, and A⊆ Φ.

Bayesian infinite-dimensional consistency: the objective – to
determine the distribution(s) on which the posterior Π
concentrates as n gets large.



Bayesian consistency under misspecification

If the model is not correctly specified, i.e., Qr /∈ Φ(Θ),
then θr can be defined as the value corresponding to the
distribution Q̂(Qr ) on which the posterior concentrates.



Bayesian Law of Large Numbers

BLLN. (g & Judge, 09) Under some regularity conditions the
posterior concentrates on the union of weak ε-balls that are
centered at the L-projections Q̂ of Qr on Φ.

—————

The L-projection Q̂ of Qr on Φ

Q̂ = arg inf
Q∈Φ

L(Q ||Qr ),

where L(Q ||Qr ) is the L-divergence of Q wrt Qr

L(Q ||Qr ) =−EQr
log

dQ
dQr

.

The BLLN is an extension of Schwartz’ consistency theorem, to
the case of misspecified model.



Answers

Recall that E3-GMC is

θ̂ = arg inf
θ∈Θ

inf
Qn(x)∈Φn(θ)

EQ̂r
φ

�

dQ

dQ̂r

�

.

1) BLLN implies that MEL (i.e., φ(x) =− log x) is consistent
under misspecification; other GMC and GEL methods are not.

2) MEL and Bayesian Maximum A-Posteriori (MAP) estimator
asymptotically coincide.



Existence problems of E3

• Convex hull problem
• Empty Set Problem (g & Judge, 09)



Convex hull constraint

Test of hypothesis H0 : θ = θ0.
For any sample X n

1 such that Φn(θ0) = ; no EL test exists.
—————

Ex: X = R, Θ = R, u(X ;θ) = X − θ .
The MEL estimator is EQ̂r

X , i.e., the sample mean.
Test the point hypothesis Θ0 = {θ0}.
If θ0 lays outside the convex hull of the data
(i.e., MEL estimate q̂(·;θ0) does not exist under the restriction),
then no EL (or EL-like) test can be constructed.



A way out: Modified E3 (mE3)

Modification: the non-negativity constraints on q are dropped
out.

Modified Empirical Estimating Equations (mE3) model:
Φ(θ) is replaced with

Φm
q (θ) =

(

q(x ;θ) :
n
∑

i=1
q(xi ;θ)u(xi ;θ) = 0;

n
∑

i=1
q(xi ;θ) = 1

)

.

So that the model Φm
q (Θ) =

⋃

θ∈Θ Φm
q (θ).

Among others, the Euclidean Empirical Likelihood (i.e., GMC
with φ(x) = 1/2(x2− 1)) allows the negative weights q.



Empty Set Problem

Φn(Θ) is data-dependent.
—————

Empty Set Problem (ESP): There are E3 models for which the
set Φn(Θ) = ;, for some X n

1 .

Affine Empty Set Problem (aESP): There are the modified mE3

models for which the set Φm
q (Θ) = ;, for some X n

1 .



Some examples of models with ESP

QL = Qin & Lawless, ’94

• QL, Example 1
• QL, Example 2
• QL, Example 3
• restricted parameter space



QL, Example 1

Estimating functions:

u1(X ;θ) = X − θ ,

u2(X ;θ) = X 2− (2θ2 + 1).

So that

Φq(θ) =

(

q(x ;θ) :
n
∑

i=1
q(xi ;θ)u1(xi ;θ) = 0;

n
∑

i=1
q(xi ;θ)u2(xi ;θ) = 0;

n
∑

i=1
q(xi ;θ) = 1;q(xi ;θ)≥ 0, 1≤ i ≤ n

)

.



QL, Example 1, cont’d

Condition on data for which Φq(Θ) is empty:
if the data set X n

1 is such that the LHS in

n
∑

i=1
q(xi ; ·)x2

i − 2

 

n
∑

i=1
q(xi ; ·)xi

!2

= 1. (4)

can attain the RHS’ value 1 for no q.

The maximal value of LHS in Eq. (4) can be attained for such q
that the only non-zero elements of q(x ; ·) are q(1) ¬ q(x(1); ·) and
q(n) ¬ q(x(n); ·); there x(1) denotes the lowest, x(n) the largest
value in X n

1 .



QL, Example 1, cont’d

Without the non-negativity constraints the maximal value of the
LHS of Eq. (4), denoted v , is attained for

q̂m
(1)

=

x2
(1)
−x2

(n)

4(x(1)−x(n))
− x(n)

x(1)− x(n)
,

if x(1) 6= x(n). Then q̂m
(n)

= 1− q̂m
(1)

.

If the data X n
1 ∼ rX (x ;θ) are such that v is smaller than 1 (i.e.,

the RHS of Eq. (4)) then Φm
q (Θ) as well as Φq(Θ) is empty for

such data.
Consequently, for such data there is no mE3-based or E3-based
estimator.



QL, Example 1, cont’d

For a given rX (x ;θ) the probability of data set with ESP is
Pr(v < 1). It can be estimated by MC.

Q&L: Qr (x ;θ) = n(0,1), and n = 15. Then the probability is
0.0173 (estimated by 10000 MC runs). Thus, in 17 of 1000
samples of size n = 15 drawn from n(0,1) it is meaningless to
look for EL, or any other E3-based (or mE3-based) estimate.



QL, Example 2

Bivariate observations (X ,Y )n1, such that E(X ) = E(Y ) = θ ,
θ ∈Θ = R.
Bivariate estimating function u(x ,y ;θ) = (X − θ ,Y − θ).
Φq(Θ) will be empty for every sample, such that Xi −Yi > 0, or
Xi −Yi < 0, for all i = 1, . . . ,n, as Q&L note.
If X ∼ n(−0.3,0.1) and Y ∼ n(0,0.1), then for n = 10 the
probability that Φq(Θ) is empty is 0.056.



QL, Example 3

Θ = {a}, where a ∈ R is known.
Estimating function: u(X ) = X − a.
ESP: Φq(Θ) is empty for any data set that contains only values
greater (smaller) than a.
Illustration: rX (x) = [0.025, 0.025, 0.15, 0.8] is a pmf on
X = {1,2,3,4}. Let a = 2.0, n = 40. The probability that Φq(2)
is empty is 0.129.



Restricted parameter space

Example: u(X ;θ) = X − θ , where θ ∈Θ = [0,∞).

The set Φq(Θ) is empty for any data set X n
1 < 0.



A model without ESP

Brown & Chen, ’98: estimation of a location parameter by a
data-based combination of the mean and the median.
E3 model:

Φq(θ) =

(

q(x ;θ) :
n
∑

i=1
q(xi ;θ)(xi − θ) = 0;

n
∑

i=1
q(xi ;θ)sgn(xi − θ) = 0;

n
∑

i=1
q(xi ; ·) = 1;q(xi ; ·)≥ 0, 1≤ i ≤ n

)

,

and θ ∈Θ = R. No problem of the empty set. In this case MEL
always exists.
(However, EL c.i./test need not exist for every θ).



Summary

• There are E3 models that are subject to ESP.
• There are mE3 models with the affine ESP. For such models
the escape route of lifting up the non-negativity constraints
does not work.

• There are models which are free of ESP.



Implications of ESP for E3 based methods

• If the E3 and mE3-based methods are to be used also in the
future applications, the models should be checked on
case-by-case basis for ESP, aESP.
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