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Plan

e Likelihood & contrast: parametric model
o Likelihood & contrast: moment condition model
e Estimating Equations
e Empirical Estimating Equations (E?)
e Which contrast?
e Existence problems of the E3 approach



Likelihood and contrast:
parametric model



Setup

Setting:

Chance: rv. X € 2 CRY, with cdf Q,(x)

Model: ®(©) ={Q(x;0): 0 € ©};
parametric space: © CRX, K finite.

Data: X" = Xy,...,X,, iid Q,.



Contrast, Generalized Minimum Contrast estimators

Contrast (f-divergence):

Dy(Q11Q)) = Eq,¢ (%29))

where ¢ (-) is a convex function, with minimum at 1.
The Generalized Minimum Contrast (GMC) estimator

0 =arg inf Dy(QIl Q,).

where Q, is a nonparametric estimator of Q,.



Likelihood, Maximum Likelihood as GMC

1) Let ¢(x) = —log(x).
2) Let Q, be the empirical cdf Q,(x) = 2in [(Xi=).

n

Then Dy (QI Q,) is the log-likelihood function and
O = arggigf@ Dy (QIl Q)

is the Maximum Likelihood estimator Oy of 6.



Hellinger contrast, Beran estimator

Other choices of ¢(-) require a smooth nonparametric estimate
Q, of Q, (e.g., kernel density).

If ¢(x)=—-2(+/x—1), then the GMC estimator is
6 = arg jnf 2 (1 —Ev/q(x; 9)\/E]r(x)),
S

i.e., Beran's minimum Hellinger distance estimator.



Likelihood Ratio Test

Partition © into ©y and ©f.
Test of HO 10 e @0.

Log-Likelihood Difference Statistic:
A6:X7') = jinf D(QIIQ,) — inf D(QII Q)

Wilks Thm: Under some regularity conditions, asymptotically

—22(0; X]") ~ 1.

Other discrepancies, cf. eg. Broniatowski & Keziou (2009).



Likelihood and contrast:
moment condition model



Estimating Equations

Setup:

Chance: rv. X € Z CRY, with cdf Q, € 2(%), where 2(%) is
the set of all cdf's on %

Model:
Estimating functions: u(X;0):2 x © —R’, where § € © CRK;
K can be, in general, different than J.
Estimating equations (EE):
P(0)={Qe 2(X) :Equ(X;0)=0}

Model: ®(0) =|Jyeo ®(0).
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Estimating Equations: examples

Examples:

Ex. 1: & =R, ©=]0,00), u(X;0)=X—-6.

Ex. 2: (Brown & Chen) & =R, © =R,
u(X;0)={X—-0,sgn(X —0)}.

Ex. 3: (Qin & Lawless) =R, © =R,
u(X;0)={X—-6,X>—(260%+1)}.



Empirical Estimating Equations

To connect the model ®(©) with the data X7, replace the model
®(O©) by its empirical, data-based analogue
®,(0) =Upeo Pn(0), where

©,(0) ={Q,€2(X]):Eq,u(X;0)=0}

are the empirical estimating equations.

Empirical Estimating Equations (E®) approach to estimation and
inference replaces the set ®(©) of cdf's supported on & by the
set ®,(©) of cdf’s that are supported on the data X/

An estimateAé of 0, is obtained by means of a rule (e.g., GMC)
that selects Q,(x; 0) from ¢ ,(©).



E3-GMC estimator

Data: X{'=Xq,...,X,~ Q,.
Use GMC to select Q,(x; 8) from & ,(©):

~ ~

16) = inf D e 1
Q,(x;0) argQ,,(x;Gl?e%(@) 6 (Qnll Q) (1)

GMC rule is used to select a member of the E3 model set ¢,(0),
that is closest to the empirical cdf Q,, in the sense of Dy ().

Other rules: Cressie Read class of divergences —
Generalized Empirical Likelihood class of estimators.



E3-GMC estimator: convex dual form

The 6 part of the optimization problem (1):

A d
0 = arg inf inf Ep ¢ —9 ,
0€0 Q,(x)ed,(8) ~r dQ,
The convex dual form of (2):

A

O=arginf sup |u—Ep ¢"(u+2Au(x;0))],
0€0 | cr Aer/ [ @ ]

where ¢*(y) = sup, xy — ¢(x) is the Legendre Fenchel
transformation of ¢*(x).

(2)

(3)



Maximum Empirical Likelihood as E3-GMC estimator

To get Maximum Empirical Likelihood (MEL) use
¢(x) = —logx

GMELfarg |nf sup Ep log(1+ A'u(x; 0)).
© 2er/

MEL selects among the data-supported cdf's from the model

®,(©) the one with the highest value of the likelihood.
MEL = ML on ¢,(9©).



Asymptotic properties of MEL

Qin & Lawless '94: Under some regularity conditions, which
include the assumption that the model is correctly specified (i.e.,
Q, € %(9)) .

”1/2(9EML = 6,) =4 n(0,%),
where

ou’ 1.ou
Y= [ae(Euu) E%}

and 0, solves Eq u(X;0)=0.



Empirical Likelihood Ratio

A GMC test of the null hypothesis Hy : 6 = 6, against the
alternative H; : 6 = 6, is based on the GMC statistic

HOX) = i, PAQII2) - 0,@112)

EnO)

Thm: If 6y satisfies Eu(X; 6p) = 0, then under some regularity
conditions,

kn(@)A(XT: 60) = 22

Empirical Likelihood Ratio test: take ¢ (-) = —log(+) and
kn(¢) =2.



E* & MEL: ’engineering’ form

E* model ¢,(0) =Jyeq P4(0) where

D,(0) ={q(x;0): Zq u(x;; 0) OZq(x,-;G):l;
1>q(60)>0};
i.e., the set of probability mass functions that are supported on
the data, and satisfy the estimating equations.
MEL selects:

G(O)meL=arg  sup —Z|0gq (xi, 0).
q(-0 e¢q(®



Random selection of recent works on EL
Adjusted Empirical Likelihood and its properties

Efficient nonparametric estimation of causal effects in
randomized trials with noncompliance

Using Empirical Likelihood to combine data: application to food
risk assessment

Optimally combined censored and uncensored datasets
Extending the scope of Empirical Likelihood

Generalized Empirical Likelihood-based model selection criteria
for moment conditions models

Adjusted Exponentially Tilted Likelihood with applications to
brain morphology

Combining quantitative trait loci analyses and microarray data:
an empirical likelihood approach

Empirical Likelihood based diagnostics for heteroscedasticity in
partial linear models



Questions

1) Are all the MEL-like methods equal?
2) How to extend MEL and MEL-like methods into a Bayesian
method?

Answer: Bayesian infinite dimensional consistency under
misspecification.



Bayesian infinite dimensional consistency

A prior I is put on ®(©); (it induces a prior () over ©). The
prior 1 combines with the data X[ to define the posterior:
_/n Q
_ [, e n(dQ)
fcb e n(AN(dQ)

Ma(ALXT)

where /,(Q) = —Eg log :—gr, and AC o.

Bayesian infinite-dimensional consistency: the objective — to
determine the distribution(s) on which the posterior I
concentrates as n gets large.



Bayesian consistency under misspecification

If the model is not correctly specified, i.e., Q, & ®(O),
then 0, can be defined as the value corresponding to the
distribution Q(@,) on which the posterior concentrates.



Bayesian Law of Large Numbers

BLLN. (g & Judge, 09) Under some regularity conditions the
posterior concentrates on the union of weak e-balls that are
centered at the L-projections Q of @, on ®.

The L-projection Q of Q, on ®

Q=arg (5';1; L(QII@Qy),
where L(Q|| Q,) is the L-divergence of Q wrt Q,

d
L(QIIQ,) = —Eq, log ?

aQ,

The BLLN is an extension of Schwartz' consistency theorem, to
the case of misspecified model.




Answers

Recall that E3-GMC is
d
6 = arg inf inf Ep ¢ —? .
0€0 Q,(x)ed,(0) ~r dQ,

1) BLLN implies that MEL (i.e., ¢(x) = —logx) is consistent
under misspecification; other GMC and GEL methods are not.

2) MEL and Bayesian Maximum A-Posteriori (MAP) estimator
asymptotically coincide.



Existence problems of E

e Convex hull problem
e Empty Set Problem (g & Judge, 09)



Convex hull constraint

Test of hypothesis Hy : 6 = 6.
For any sample X[" such that ®,(6y) =0 no EL test exists.

Ex: & =R, ©=R, u(X;0)=X—-06.

The MEL estimator is Eg X i.e., the sample mean.

Test the point hypothe5|s O = {90}

If 6y lays outside the convex hull of the data

(i.e., MEL estimate §(-; 6y) does not exist under the restriction),
then no EL (or EL-like) test can be constructed.



A way out: Modified E* (mE?)

Modification: the non-negativity constraints on g are dropped
out.

Modified Empirical Estimating Equations (mE?®) model:
®(60) is replaced with

or(0) = {q<x; 8): > qlx;: 0)u(x: ) = 0; > q(x;: 0) = 1}.

i=1 i=1

So that the model ®7(0) = [ Jsee ®7(0).

Among others, the Euclidean Empirical Likelihood (i.e., GMC
with ¢ (x) = 1/2(x? — 1)) allows the negative weights g.



Empty Set Problem

®,(©) is data-dependent.

Empty Set Problem (ESP): There are E*> models for which the
set ¢,(©) =0, for some X

Affine Empty Set Problem (aESP): There are the modified mE?
models for which the set ®77(©) =0, for some X{'.



Some examples of models with ESP

QL = Qin & Lawless, '94
e QL, Example 1
e QL, Example 2
e QL, Example 3
e restricted parameter space



QL, Example 1

Estimating functions:

So that

n

(Dq(e) = {CI(X; 9) : Z Q(X,'; G)Ul(X,'; 9) =0;

i=1

Zq(x,'; 0)us(x;;0) = O;Zq(x,-; 0)=1,q(x;0)>0,1<i< n}'

=1 i=1



QL, Example 1, cont’d

Condition on data for which ®,(©) is empty:
if the data set X[ is such that the LHS in

n

. 2
D alxi)xF =2 (Z q(xi; ')Xi) =1 (4)
P

i=1
can attain the RHS' value 1 for no q.

The maximal value of LHS in Eq. (4) can be attained for such ¢
that the only non-zero elements of g(x;-) are g(1) = q(x(1);*) and
d(ny = q(X(ny; *); there x(1y denotes the lowest, x(,) the largest
value in X[



QL, Example 1, cont’d

Without the non-negativity constraints the maximal value of the
LHS of Eq. (4), denoted v, is attained for

2 2
X Xm X
~m 4(X(1)—X(,,)) (n)

91) =

X(1) ™ X(n)
if X(l) 75 X(,,). Then f](";) =1- CA]("{)

If the data X]" ~ rx(x;0) are such that v is smaller than 1 (i.e.,
the RHS of Eq. (4)) then ®7(©) as well as ®,(©) is empty for
such data.

Consequently, for such data there is no mE3-based or E3-based
estimator.




QL, Example 1, cont’d

For a given ry(x; 0) the probability of data set with ESP is
Pr(v < 1). It can be estimated by MC.

Q&L: Q,(x;60)=n(0,1), and n=15. Then the probability is
0.0173 (estimated by 10000 MC runs). Thus, in 17 of 1000
samples of size n =15 drawn from n(0,1) it is meaningless to
look for EL, or any other E3-based (or mE3-based) estimate.



QL, Example 2

Bivariate observations (X, Y){, such that E(X) =E(Y) =06,

0 € ©=R.

Bivariate estimating function u(x,y;0)=(X—-0,Y —0).
®,(©) will be empty for every sample, such that X; —Y; >0, or
X;i—Y: <0, foralli=1,...,n, as Q&L note.

If X ~n(—0.3,0.1) and Y ~ n(0,0.1), then for n=10 the
probability that ®,(©) is empty is 0.056.



QL, Example 3

© = {a}, where a€ R is known.

Estimating function: u(X) =X —a.

ESP: ¢,(©) is empty for any data set that contains only values
greater (smaller) than a.

lllustration: ry(x)=1[0.025, 0.025, 0.15, 0.8] is a pmf on
Z =1{1,2,3,4}. Let a=2.0, n=40. The probability that ®,(2)
is empty is 0.129.



Restricted parameter space

Example: u(X;0) =X -6, where 6 € © =[0,0).
The set ®,(©) is empty for any data set X]' <0.



A model without ESP

Brown & Chen, '98: estimation of a location parameter by a
data-based combination of the mean and the median.

E2 model:

n

g(6) = {q(x; 0): Y a(x;:0)(x — ) =0;

i=1
n n
a0 0)sgnlx; = 0) = 0: > 1q(xi) = Liqlx;i) 20, 1< < }
i=1 i=1

and 6 € © =R. No problem of the empty set. In this case MEL
always exists.
(However, EL c.i./test need not exist for every 0).



Summary

e There are E3 models that are subject to ESP.

e There are mE2 models with the affine ESP. For such models
the escape route of lifting up the non-negativity constraints
does not work.

e There are models which are free of ESP.



Implications of ESP for E3 based methods

o If the E® and mE3-based methods are to be used also in the

future applications, the models should be checked on
case-by-case basis for ESP, aESP.
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