Empirical Likelihood

marian.grendar@savba.sk^1 $\$

Robust 2010, Králíky.cz, 31.1.-5.2.2010

¹KM FPV UMB BB

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Plan

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

- Likelihood & contrast: parametric model
- Likelihood & contrast: moment condition model
 - Estimating Equations
 - Empirical Estimating Equations (E³)
 - Which contrast?
 - Existence problems of the $E^{\rm 3}$ approach

Likelihood and contrast: parametric model

Setup

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

Setting:

Chance: r.v. $X \in \mathscr{X} \subseteq \mathbb{R}^d$, with cdf $Q_r(x)$ Model: $\Phi(\Theta) = \{Q(x; \theta) : \theta \in \Theta\};$ parametric space: $\Theta \subseteq \mathbb{R}^K$, K finite.

Data: $X_1^n = X_1, \ldots, X_n$, iid Q_r .

Contrast, Generalized Minimum Contrast estimators

Contrast (*f*-divergence):

$$D_{\phi}(Q \parallel Q_r) = \mathbb{E}_{Q_r} \phi\left(\frac{dQ(x; \theta)}{dQ_r}\right),$$

where $\phi(\cdot)$ is a convex function, with minimum at 1.

The Generalized Minimum Contrast (GMC) estimator

$$\hat{\theta} = \arg \inf_{\theta \in \Theta} D_{\phi}(Q || \tilde{Q}_r).$$

where \tilde{Q}_r is a nonparametric estimator of Q_r .

Likelihood, Maximum Likelihood as GMC

1) Let $\phi(x) = -\log(x)$. 2) Let \tilde{Q}_r be the empirical cdf $\hat{Q}_r(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n}$. Then $D_{\phi}(Q \parallel \hat{Q}_r)$ is the *log-likelihood function* and $\hat{Q}_r(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n}$.

$$\hat{ heta}_{ ext{ML}} = rg \inf_{ heta \in \Theta} D_{\phi}(Q \parallel \hat{Q}_r)$$

is the Maximum Likelihood estimator $\hat{\theta}_{ML}$ of θ .

Other choices of $\phi(\cdot)$ require a smooth nonparametric estimate \tilde{Q}_r of Q_r (e.g., kernel density).

If $\phi(x) = -2(\sqrt{x}-1)$, then the GMC estimator is

$$\hat{\theta} = \arg \inf_{\theta \in \Theta} 2\left(1 - E\sqrt{q(x;\theta)}\sqrt{\tilde{q}_r(x)}\right),$$

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

i.e., Beran's minimum Hellinger distance estimator.

Likelihood Ratio Test

Partition Θ into Θ_0 and Θ_0^c . Test of $H_0: \theta \in \Theta_0$. Log-Likelihood Difference Statistic:

$$\lambda(\theta; X_1^n) = \inf_{\theta \in \Theta_0} D(Q || \hat{Q}_r) - \inf_{\theta \in \Theta} D(Q || \hat{Q}_r)$$

Wilks Thm: Under some regularity conditions, asymptotically

$$-2\lambda(\theta;X_1^n)\sim\chi_K^2.$$

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

Other discrepancies, cf. eg. Broniatowski & Keziou (2009).

Likelihood and contrast: moment condition model

Estimating Equations

Setup:

Chance: r.v. $X \in \mathscr{X} \subseteq \mathbb{R}^d$, with cdf $Q_r \in \mathscr{Q}(\mathscr{X})$, where $\mathscr{Q}(\mathscr{X})$ is the set of all cdf's on \mathscr{X} .

Model:

Estimating functions: $u(X; \theta) : \mathscr{X} \times \Theta \to \mathbb{R}^{J}$, where $\theta \in \Theta \subseteq \mathbb{R}^{K}$; *K* can be, in general, different than *J*. Estimating equations (EE):

 $\Phi(\theta) = \{Q \in \mathscr{Q}(\mathscr{X}) : \mathrm{E}_{Q}u(X;\theta) = 0\}.$

Model: $\Phi(\Theta) = \bigcup_{\theta \in \Theta} \Phi(\theta).$

Estimating Equations: examples

Examples:

Ex. 1:
$$\mathscr{X} = \mathbb{R}, \ \Theta = [0, \infty), \ u(X; \theta) = X - \theta.$$

Ex. 2: (Brown & Chen)
$$\mathscr{X} = \mathbb{R}, \Theta = \mathbb{R},$$

 $u(X; \theta) = \{X - \theta, \operatorname{sgn}(X - \theta)\}.$

Ex. 3: (Qin & Lawless)
$$\mathscr{X} = \mathbb{R}$$
, $\Theta = \mathbb{R}$,
 $u(X; \theta) = \{X - \theta, X^2 - (2\theta^2 + 1)\}.$

< ロ > < 母 > < 臣 > < 臣 > 三 = の < で</p>

Empirical Estimating Equations

To connect the model $\Phi(\Theta)$ with the data X_1^n , replace the model $\Phi(\Theta)$ by its empirical, data-based analogue $\Phi_n(\Theta) = \bigcup_{\theta \in \Theta} \Phi_n(\theta)$, where

$$\Phi_n(\theta) = \left\{ Q_n \in \mathscr{Q}(X_1^n) : \mathbb{E}_{Q_n} u(X; \theta) = 0 \right\}$$

are the empirical estimating equations.

Empirical Estimating Equations (E³) approach to estimation and inference replaces the set $\Phi(\Theta)$ of cdf's supported on \mathscr{X} by the set $\Phi_n(\Theta)$ of cdf's that are supported on the data X_1^n .

An estimate $\hat{\theta}$ of θ_r is obtained by means of a rule (e.g., GMC) that selects $\hat{Q}_n(x; \hat{\theta})$ from $\Phi_n(\Theta)$.

E³-GMC estimator

Data:
$$X_1^n = X_1, \dots, X_n \sim Q_r$$
.
Use GMC to select $\hat{Q}_n(x; \hat{\theta})$ from $\Phi_n(\Theta)$:

$$\hat{Q}_n(x;\hat{\theta}) = \arg \inf_{Q_n(x;\theta) \in \Phi_n(\Theta)} D_{\phi}(Q_n || \hat{Q}_r)$$
(1)

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

GMC rule is used to select a member of the E^3 model set $\Phi_n(\theta)$, that is closest to the empirical cdf \hat{Q}_r , in the sense of $D_{\phi}(\cdot || \cdot)$.

Other rules: Cressie Read class of divergences – Generalized Empirical Likelihood class of estimators.

E³-GMC estimator: convex dual form

The θ part of the optimization problem (1):

$$\hat{\theta} = \arg \inf_{\theta \in \Theta} \inf_{Q_n(x) \in \Phi_n(\theta)} \mathbb{E}_{\hat{Q}_r} \phi\left(\frac{dQ}{d\hat{Q}_r}\right), \quad (2)$$

- ロ ト - 4 目 ト - 4 目 ト - 4 目 - 9 9 9

The convex dual form of (2):

$$\hat{\theta} = \arg \inf_{\theta \in \Theta} \sup_{\mu \in \mathbf{R}, \lambda \in \mathbf{R}^J} \left[\mu - \mathbf{E}_{\hat{Q}_r} \, \phi^*(\mu + \lambda' u(x; \theta)) \right], \qquad (3)$$

where $\phi^*(y) = \sup_x xy - \phi(x)$ is the Legendre Fenchel transformation of $\phi^*(x)$.

Maximum Empirical Likelihood as E³-GMC estimator

To get *Maximum Empirical Likelihood* (MEL) use $\phi(x) = -\log x$

$$\widehat{ heta}_{ ext{MEL}} = rg \inf_{ heta \in \Theta} \sup_{\lambda \in \mathbb{R}^J} \mathbb{E}_{\widehat{ extsf{Q}}_r} \log(1 + \lambda' u(x; heta)).$$

MEL selects among the data-supported cdf's from the model $\Phi_n(\Theta)$ the one with the highest value of the likelihood. MEL = ML on $\Phi_n(\Theta)$.

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

Asymptotic properties of MEL

Qin & Lawless '94: Under some regularity conditions, which include the assumption that the model is correctly specified (i.e., $Q_r \in \Phi(\Theta)$)

$$n^{1/2}(\hat{\theta}_{\mathrm{EML}}-\theta_r) \rightarrow_d n(0,\Sigma),$$

where

$$\Sigma = \left[\mathrm{E} \frac{\partial u'}{\partial \theta} (\mathrm{E} u u')^{-1} \mathrm{E} \frac{\partial u}{\partial \theta} \right],$$

and θ_r solves $E_{Q_r}u(X;\theta) = 0$.

Empirical Likelihood Ratio

A GMC test of the null hypothesis $H_0: \theta = \theta_0$ against the alternative $H_1: \theta = \theta_1$ is based on the GMC statistic

$$\lambda(\theta; X_1^n) = \inf_{Q \in \Phi_n(\theta_0)} D_{\phi}(Q \parallel \hat{Q}_r) - \inf_{Q \in \Phi_n(\theta_1)} D_{\phi}(Q \parallel \hat{Q}_r).$$

Thm: If θ_0 satisfies $Eu(X; \theta_0) = 0$, then under some regularity conditions,

$$k_n(\phi)\lambda(X_1^n;\theta_0) \to \chi_K^2.$$

Empirical Likelihood Ratio test: take $\phi(\cdot) = -\log(\cdot)$ and $k_n(\phi) = 2$.

E^3 & MEL: 'engineering' form

 $\mathrm{E}^3 \, \mathrm{model} \, \Phi_q(\Theta) = \bigcup_{\theta \in \Theta} \Phi_q(\theta) \, \mathrm{where}$

$$\Phi_{q}(\theta) = \{q(x;\theta) : \sum_{i=1}^{n} q(x_{i};\theta)u(x_{i};\theta) = 0; \sum_{i=1}^{n} q(x_{i};\theta) = 1;$$

$$1 \ge q(\cdot;\theta) \ge 0\};$$

i.e., the set of probability mass functions that are supported on the data, and satisfy the estimating equations.

MEL selects:

$$\hat{q}(\cdot; \hat{ heta})_{\mathrm{MEL}} = \arg \sup_{q(\cdot; \theta) \in \Phi_q(\Theta)} \frac{1}{n} \sum_{i=1}^n \log q(x_i, \theta).$$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● � ● ◆

Random selection of recent works on EL

- Adjusted Empirical Likelihood and its properties
- Efficient nonparametric estimation of causal effects in randomized trials with noncompliance
- Using Empirical Likelihood to combine data: application to food risk assessment
- Optimally combined censored and uncensored datasets
- Extending the scope of Empirical Likelihood
- Generalized Empirical Likelihood-based model selection criteria for moment conditions models
- Adjusted Exponentially Tilted Likelihood with applications to brain morphology
- Combining quantitative trait loci analyses and microarray data: an empirical likelihood approach
- Empirical Likelihood based diagnostics for heteroscedasticity in partial linear models

Questions

1) Are all the MEL-like methods equal?

2) How to extend MEL and MEL-like methods into a Bayesian method?

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

Answer: Bayesian infinite dimensional consistency under misspecification.

Bayesian infinite dimensional consistency

A prior Π is put on $\Phi(\Theta)$; (it induces a prior $\Pi(\theta)$ over Θ). The prior Π combines with the data X_1^n to define the posterior:

$$\Pi_n(A \mid X_1^n) = \frac{\int_A e^{-l_n(Q)} \Pi(dQ)}{\int_\Phi e^{-l_n(Q)} \Pi(dQ)},$$

where $I_n(Q) \triangleq -E_{\hat{Q}_r} \log \frac{dQ}{d\hat{Q}_r}$, and $A \subseteq \Phi$.

Bayesian infinite-dimensional consistency: the objective – to determine the distribution(s) on which the posterior Π concentrates as *n* gets large.

- ロ ト - 4 回 ト - 4 □

Bayesian consistency under misspecification

If the model is not correctly specified, i.e., $Q_r \notin \Phi(\Theta)$, then θ_r can be defined as the value corresponding to the distribution $\hat{Q}(Q_r)$ on which the posterior concentrates.

Bayesian Law of Large Numbers

BLLN. (g & Judge, 09) Under some regularity conditions the posterior concentrates on the union of weak ϵ -balls that are centered at the L-projections \hat{Q} of Q_r on Φ .

The L-projection \hat{Q} of Q_r on Φ

$$\hat{Q} = \arg \inf_{Q \in \Phi} L(Q \mid\mid Q_r),$$

where $L(Q || Q_r)$ is the L-divergence of Q wrt Q_r

$$L(Q || Q_r) = -E_{Q_r} \log \frac{dQ}{dQ_r}.$$

The BLLN is an extension of Schwartz' consistency theorem, to the case of misspecified model.

Answers

Recall that E³-GMC is

$$\hat{\theta} = \arg \inf_{\theta \in \Theta} \inf_{Q_n(x) \in \Phi_n(\theta)} \mathbb{E}_{\hat{Q}_r} \phi\left(\frac{dQ}{d\hat{Q}_r}\right).$$

 BLLN implies that MEL (i.e., φ(x) = -log x) is consistent under misspecification; other GMC and GEL methods are not.
MEL and Bayesian Maximum A-Posteriori (MAP) estimator

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

asymptotically coincide.

Existence problems of E^3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Convex hull problem
- Empty Set Problem (g & Judge, 09)

Convex hull constraint

Test of hypothesis $H_0: \theta = \theta_0$. For any sample X_1^n such that $\Phi_n(\theta_0) = \emptyset$ no EL test exists.

Ex: $\mathscr{X} = \mathbb{R}$, $\Theta = \mathbb{R}$, $u(X; \theta) = X - \theta$. The MEL estimator is $\mathbb{E}_{\hat{Q}_r}X$, i.e., the sample mean. Test the point hypothesis $\Theta_0 = \{\theta_0\}$. If θ_0 lays outside the convex hull of the data (i.e., MEL estimate $\hat{q}(\cdot; \theta_0)$ does not exist under the restriction), then no EL (or EL-like) test can be constructed.

- ロ ト - 4 回 ト - 4 □

A way out: Modified E^3 (m E^3)

Modification: the non-negativity constraints on q are dropped out.

Modified Empirical Estimating Equations (mE³) model: $\Phi(\theta)$ is replaced with

$$\Phi_q^m(\theta) = \left\{ q(x;\theta) : \sum_{i=1}^n q(x_i;\theta) u(x_i;\theta) = 0; \sum_{i=1}^n q(x_i;\theta) = 1 \right\}.$$

So that the model $\Phi_q^m(\Theta) = \bigcup_{\theta \in \Theta} \Phi_q^m(\theta)$.

Among others, the Euclidean Empirical Likelihood (i.e., GMC with $\phi(x) = 1/2(x^2 - 1)$) allows the negative weights q.

Empty Set Problem

 $\Phi_n(\Theta)$ is data-dependent.

Empty Set Problem (ESP): There are E^3 models for which the set $\Phi_n(\Theta) = \emptyset$, for some X_1^n .

Affine Empty Set Problem (aESP): There are the modified mE³ models for which the set $\Phi_{\sigma}^{m}(\Theta) = \emptyset$, for some X_{1}^{n} .

Some examples of models with ESP

QL = Qin & Lawless, '94

- QL, Example 1
- QL, Example 2
- QL, Example 3
- restricted parameter space

QL, Example 1

Estimating functions:

$$u_1(X;\theta) = X - \theta,$$

$$u_2(X;\theta) = X^2 - (2\theta^2 + 1).$$

So that

$$\Phi_{q}(\theta) = \left\{ q(x;\theta) : \sum_{i=1}^{n} q(x_{i};\theta) u_{1}(x_{i};\theta) = 0; \\ \sum_{i=1}^{n} q(x_{i};\theta) u_{2}(x_{i};\theta) = 0; \sum_{i=1}^{n} q(x_{i};\theta) = 1; q(x_{i};\theta) \ge 0, 1 \le i \le n \right\}.$$

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 900

QL, Example 1, cont'd

Condition on data for which $\Phi_q(\Theta)$ is empty: if the data set X_1^n is such that the LHS in

$$\sum_{i=1}^{n} q(x_i; \cdot) x_i^2 - 2 \left(\sum_{i=1}^{n} q(x_i; \cdot) x_i \right)^2 = 1.$$
 (4)

can attain the RHS' value 1 for no q.

The maximal value of LHS in Eq. (4) can be attained for such q that the only non-zero elements of $q(x; \cdot)$ are $q_{(1)} \triangleq q(x_{(1)}; \cdot)$ and $q_{(n)} \triangleq q(x_{(n)}; \cdot)$; there $x_{(1)}$ denotes the lowest, $x_{(n)}$ the largest value in X_1^n .

QL, Example 1, cont'd

Without the non-negativity constraints the maximal value of the LHS of Eq. (4), denoted v, is attained for

$$\hat{q}_{(1)}^{m} = \frac{\frac{x_{(1)}^{2} - x_{(n)}^{2}}{4(x_{(1)} - x_{(n)})} - x_{(n)}}{x_{(1)} - x_{(n)}},$$

if $x_{(1)} \neq x_{(n)}$. Then $\hat{q}_{(n)}^m = 1 - \hat{q}_{(1)}^m$.

If the data $X_1^n \sim r_X(x; \theta)$ are such that v is smaller than 1 (i.e., the RHS of Eq. (4)) then $\Phi_q^m(\Theta)$ as well as $\Phi_q(\Theta)$ is empty for such data.

Consequently, for such data there is no $\mathrm{m}\mathrm{E}^3\text{-}\mathrm{based}$ or $\mathrm{E}^3\text{-}\mathrm{based}$ estimator.

QL, Example 1, cont'd

For a given $r_X(x; \theta)$ the probability of data set with ESP is Pr(v < 1). It can be estimated by MC.

Q&L: $Q_r(x; \theta) = n(0, 1)$, and n = 15. Then the probability is 0.0173 (estimated by 10000 MC runs). Thus, in 17 of 1000 samples of size n = 15 drawn from n(0, 1) it is meaningless to look for EL, or any other E³-based (or mE³-based) estimate.

QL, Example 2

Bivariate observations $(X, Y)_1^n$, such that $E(X) = E(Y) = \theta$, $\theta \in \Theta = R$.

Bivariate estimating function $u(x, y; \theta) = (X - \theta, Y - \theta)$.

 $\Phi_q(\Theta)$ will be empty for every sample, such that $X_i - Y_i > 0$, or $X_i - Y_i < 0$, for all i = 1, ..., n, as Q&L note.

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

If $X \sim n(-0.3, 0.1)$ and $Y \sim n(0, 0.1)$, then for n = 10 the probability that $\Phi_q(\Theta)$ is empty is 0.056.

QL, Example 3

 $\Theta = \{a\}$, where $a \in \mathbb{R}$ is known.

Estimating function: u(X) = X - a.

ESP: $\Phi_q(\Theta)$ is empty for any data set that contains only values greater (smaller) than *a*.

Illustration: $r_X(x) = [0.025, 0.025, 0.15, 0.8]$ is a pmf on $\mathscr{X} = \{1, 2, 3, 4\}$. Let a = 2.0, n = 40. The probability that $\Phi_q(2)$ is empty is 0.129.

Restricted parameter space

Example: $u(X; \theta) = X - \theta$, where $\theta \in \Theta = [0, \infty)$. The set $\Phi_a(\Theta)$ is empty for any data set $X_1^n < 0$.

A model without ESP

Brown & Chen, '98: estimation of a location parameter by a data-based combination of the mean and the median. E^3 model:

$$\Phi_q(\theta) = \left\{ q(x;\theta) : \sum_{i=1}^n q(x_i;\theta)(x_i - \theta) = 0; \\ \sum_{i=1}^n q(x_i;\theta) \operatorname{sgn}(x_i - \theta) = 0; \sum_{i=1}^n q(x_i;\cdot) = 1; q(x_i;\cdot) \ge 0, 1 \le i \le n \right\},$$

and $\theta \in \Theta = R$. No problem of the empty set. In this case MEL always exists.

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

(However, EL c.i./test need not exist for every θ).

Summary

- There are E^3 models that are subject to ESP.
- There are mE^3 models with the affine ESP. For such models the escape route of lifting up the non-negativity constraints does not work.

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 回 ▶

• There are models which are free of ESP.

Implications of ESP for E³ based methods

• If the E³ and mE³-based methods are to be used also in the future applications, the models should be checked on case-by-case basis for ESP, aESP.

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 回 ▶

References

- Bickel, P. J., Klaassen, C.A.J., Ritov, Y., and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press.
- Brown, B. M., and Chen, S. X. (1998). Combined and Least Squares Empirical Likelihood. Ann. Inst. Statist. Math. 90:443-450.
- Corcoran, S. A. (2000). Empirical exponential family likelihood using several moment conditions. *Stat. Sinica*. 10:545-557.
- Grendár, M. and Judge, G. (2009). Asymptotic Equivalence of Empirical Likelihood and Bayesian MAP. *Ann. Statist.* 37/5A:2445-2457.

References (cont'd)

- Grendár, M. and Judge, G. (2009). Empty Set Problem of Maximum Empirical Likelhood Methods. *Electron. J. Statist.* 3:1542-1555.
- Kitamura, Y. (2007). Nonparametric Likelihood: efficiency and robustness. *Jap. Econ. Rev.* 58/1:26-45.
- Owen, A. B. (2001). *Empirical Likelihood*. New York:Chapman-Hall/CRC.
- Qin, J., and Lawless, J. (1994). Empirical Likelihood and General Estimating Equations. *Ann. Statist.* 22:300-325.

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ