
Recalling basic framework
Robustifying identification of regression model

The least weighted squares

√
n-CONSISTENCY OF THE LEAST WEIGHTED

SQUARES UNDER HETEROSCEDASTICITY

Jan Ámos Víšek

Institut ekonomických studií, UK FSV
&

Ústav teorie informace a automatizace, AV ČR
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

The most frequent econometrical (statistical) framework is:

Regression model

Yi = X ′
i β

0 + εi =
∑p

j=1 Xijβ
0
j + εi , i = 1, 2, ..., n

Y = Xβ0 + ε

Data : (Y , X )

Response var, explanatory vars, error terms (?; disturbances !!), etc.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

Hence one of crucial task is:

Identification of regression model

β̂(n) (Y , X ) → Rp

σ̂2
(n) (Y , X ) → R+
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

Classical assumptions - several variants

Conditions: {(X ′
i , εi)

′}∞i=1 is sequence

of independent (?) (p + 1)-dimensional random variables.

Explanatory variables are not correlated with disturbances

- to verify (!) or to reach (?) - if not .... .

Disturbances are normally distributed

- to verify (!) or to reach (?) - if not .... .
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

Durbin, J. (1960): Estimation of parameters in time-series regression
models. J. of Royal Statistical Society, Series B, 22, 139 - 153.

Mizon, G. E. (1995): A simple message for autocorrelation
correctors: Don’t. Journal of Econometrics 69, 267 - 288.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

Equivariance - invariance of β̂(n)

β̂(Y , X ) : M(n, p + 1) → Rp

scale-equivariant : ∀c ∈ R+ β̂(cY , X ) = cβ̂(Y , X )

regression-equivariant : ∀b ∈ Rp β̂(Y + Xb, X ) = β̂(Y , X ) + b

Examples : β̂(OLS,n) = (X ′X )
−1 X ′Y

β̂(L1,n) = ...
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

Equivariance - invariance of σ̂2

σ̂2(Y , X ) : M(n, p + 1) → R+

scale-equivariant : ∀c ∈ R+ σ̂2(cY , X ) = c2σ̂2(Y , X )

regression-invariant : ∀b ∈ Rp σ̂2(Y + Xb, X ) = σ̂2(Y , X )

Examples : s2
n = 1

n−p

∑n
i=1 r2

i (β̂(OLS,n))

σ̂(L1,n) = MAD L(e) = DoubleExp(λ)

σ̂(L1,n) = 1.483 ·MAD L(e) = N (µ, σ2)

MAD = med
1≤i≤n

˛̨̨̨
ri (β̂

(L1,n))− med
1≤i≤n ri (β̂

(L1,n))

˛̨̨̨
,

IEN (0,1) MAD = (1.2533)−1
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

Bickel, P. J. (1975): One-step Huber estimates in the linear model.
J. Amer. Statist. Assoc. 70, 428–433.

To reach scale- and regression-equivariance of an M-estimator, say

β̂(M,ρ,n) = arg min
β∈Rp

n∑
i=1

ρ

(
Yi − X ′

i β

σ̂(n)

)

σ̂(n) is to be scale-equivariant and regression-invariant.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

An advantage of M-estimator = technically tractable.

Significant disappointment = low breakdown point equal to 1
p+1 .

Yohai, V. J., Maronna, R. A. (1979): Asymptotic behaviour of
M-estimators for the linear model. Ann. Statist. 7, 248–268.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

On the other hand, L-estimators (and R-estimator)
are scale- and regression-equivariant of “automatically”.

However, L-estimators (and R-estimator)
are (were ?) less easily tractable.

Examples : Trimmed mean

Trimmed empirical variance
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Definition: Breakdown point
The break down point of the sequence of estimators {Tn}∞n=1
at the d. f. F is defined by

ε∗ = sup
{

ε ≤ 1;∃ a compact Kε ⊂
6= Θ :

π (F , G) < ε ⇒ G ({Tn ∈ Kε)} −−−−→
n → ∞ 1

}

Hampel, F. R. et al. (1986): Robust Statistics – The Approach Based
on Influence Functions. New York: J.Wiley & Son.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

β̂(LMS,n,h) = arg min
β∈Rp

r2
(h)(β)

Rousseeuw, P.J. (1984): Least median of square regression.
Journal of Amer. Statist. Association 79, pp. 871-880.

β̂(LTS,n,h) = arg min
β∈Rp

h∑
i=1

r2
(i)(β)

Hampel, F. R. et al. (1986): Robust Statistics – The Approach Based
on Influence Functions. New York: J.Wiley & Son.

Notice that both are scale- and regression-equivariance and can be
considered to be L-estimators (although it need not be clear at the first
glance).
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Statistical folklore about high breakdown point

High sensitivity to the change of data

This is an academic example - explaning “why”,
there are also real data, exhibiting the same phenomenon.

"Decreasing" model "Increasing" model

A A
Jan Ámos Víšek

√
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

The first estimate of scale of disturbances which is

consistent, scale-equivariant and regression-invariant:

Jurečková, J., P. K. Sen (1993): Regression rank scores scale statistics and
studentization in linear models. Proc. of the Fifth Prague Symposium

on Asymptotic Statistics, Physica Verlag, 111-121.

based on L-estimator by

Koenker,R., G. Bassett (1978): Regression quantiles. Econometrica, 46, 33-50.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′
i β

0 + εi
i = 1, 2, ..., n

The least weighted squares

Residuals ∀β ∈ R → ri(β) = Yi − X ′
i β

Order statistics of squared residuals, i. e.

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β)

Definition

Let w(u) : [0, 1] → [0, 1], w(0) = 1, nonincreasing. Then

β̂(LWS,n,w) = arg min
β∈Rp

∑n
i=1 w

( i−1
n

)
r2
(i)(β)

will be called the least weighted squares (LWS).
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∑n
i=1 w

( i−1
n

)
r2
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will be called the least weighted squares (LWS).

Víšek, J. Á. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.
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Notice that it is also L-estimator.
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)
r2
(i)(β)

will be called the least weighted squares (LWS).

Víšek, J. Á. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.

Notice that it is also L-estimator.

What about to employ it for estimating scale of disturbances?

Jan Ámos Víšek
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Conditions

Conditions S1 : (conditions on r.v.’s)

1 {(X ′i , εi)
′}∞i=1 i.i.d., FX ,e(x , v) = FX (x) · Fe(v), Fe(v) = F (v · σ−1).

2 F (v), sup−∞<v<∞ f (v) < U, IEF V = 0, IEF V 2 = 1.
3 IEFX ‖X‖

2 <∞.

Conditions S2 : (conditions on weight function)

1 w(u) : [0, 1] ← [0, 1], w(0) = 1 continuous, nonincreasing.
2 Lipschitz, i. e. |w(u1)− w(u2)| ≤ L · |u1 − u2|.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Proposal of estimator of scale of disturbances

Put
γ =

Z
w(F (|u|)) · u2 · f (u)du

Definition: Scale estimate

Let β̂(n) be an estimator of regression coefficients. Then put

σ̂2
(n) = γ−1 · 1

n

nX
i=1

w
„

i − 1
n

«
r 2
(i)(β̂

(n)).

ri(β) = Yi − X ′i β
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Consistency of estimator of scale of disturbances

Conditions S3 : (conditions on estimator of regression coefficients)

1 β̂(n) is consistent.

Assertion: Consistency

Under Conditions S1, S2 and S3 σ̂2
(n) is consistent.
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Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Consistency of estimator of scale of disturbances

Conditions S4 : (conditions on estimator of regression coefficients)

1 β̂(n) is
√

n-consistent.

Assertion: Consistency

Under Conditions S1, S2 and S4 σ̂2
(n) is

√
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Consistency of the least weighted squares under heteroscedasticity

Can we meet heteroscedasticity frequently ?

1 Data in question represent the aggregates over some regions.
2 Explanatory vars are measured with random errors.
3 Models with randomly varying coeffs.
4 ARCH models.
5 Probit, logit or counting models.
6 Limited and censored reponse variable.
7 Error component (random effects) models.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Consistency of the least weighted squares under heteroscedasticity

Can we meet heteroscedasticity frequently ?

1 Data in question represent the aggregates over some regions.
2 Explanatory vars are measured with random errors.
3 Models with randomly varying coeffs.
4 ARCH models.
5 Probit, logit or counting models.
6 Limited and censored reponse variable.
7 Error component (random effects) models.

Heteroscedasticity is implied by character of assumed model.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Consistency of the least weighted squares under heteroscedasticity

Can we meet heteroscedasticity frequently ?(continued)

1 Expenditure of households.
2 Demands for electricity.
3 Wages of employed married women.
4 Technical analysis of capital markets.
5 Models of export, import and FDI.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Consistency of the least weighted squares under heteroscedasticity

Can we meet heteroscedasticity frequently ?(continued)

1 Expenditure of households.
2 Demands for electricity.
3 Wages of employed married women.
4 Technical analysis of capital markets.
5 Models of export, import and FDI.

Heteroscedasticity was not assumed but
“empirically found” for given dat.
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Recalling basic framework
Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Conditions for consistency

Conditions C1 : (conditions on r.v.’s)

1 {(X ′i , εi)
′}∞i=1 i.d., FX ,ei (x , v) = FX (x) · Fei (v), Fei (v) = F (v · σ−1

i ).
2 F (v), sup−∞<v<∞ f (v) < U, IEF V = 0, IEF V 2 = 1.

3 lim
n→∞

1
n

Pn
i=1 σi = 1.

4 ∃q > 1 : IEFX ‖X‖
2q <∞.

5 There is only one solution of IE [w (Fβ(|r(β)|)) .X1 (e − X ′1β)] = 0.

Conditions C2 : (conditions on weight function)

1 w(u) : [0, 1] ← [0, 1], w(0) = 1 continuous, nonincreasing.
2 Lipschitz, i. e. |w(u1)− w(u2)| ≤ L · |u1 − u2|.
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Conditions C2 : (conditions on weight function)

1 w(u) : [0, 1] ← [0, 1], w(0) = 1 continuous, nonincreasing.
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Consistency of the least weighted squares

Assertion: Consistency

Under Conditions C1 and C2 β̂(LWS,n,w) is consistent.
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Robustifying identification of regression model

The least weighted squares

Motto: Yi = X ′i β
0 + εi

i = 1, 2, ..., n

Basic result for proving consistency

Put
F (n)

β (v) =
1
n

nX
i=1

I {|ri(β)| < v} =
1
n

nX
i=1

I
˘
|Yi − X ′i β| < v

¯
and

F n,β(v) =
1
n

nX
i=1

Fi,β(v) with Fi,β(v) = P
`˛̨

Yi − X ′i β
˛̨
< v

´
.
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nX
i=1
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`˛̨
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´
.

Assertion:
√

n-consistency of d. f. under heteroscedasticity

Let Conditions C1 hold. For any ε > 0 there is a constant Kε and nε ∈ N so
that for all n > nε

P

 (
ω ∈ Ω : sup

v∈R+

sup
β∈IRp

√
n
˛̨̨
F (n)

β (v)− F n,β(v)
˛̨̨
< Kε

)!
> 1− ε.
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