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Recalling basic framework

The most frequent econometrical (statistical) framework is:

C Regression model )

Yi= X +e1= X0, Xyff +ep, i=1,2,.n
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Recalling basic framework

The most frequent econometrical (statistical) framework is:

C Regression model )

Yi= X +e1= X0, Xyff +ep, i=1,2,.n

Y =X8%+ ¢
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Recalling basic framework

The most frequent econometrical (statistical) framework is:

C Regression model )

7} — SRR e 0 ] iy, 5

Y =X8%+ ¢

Data: (Y,X)
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Recalling basic framework

The most frequent econometrical (statistical) framework is:

C Regression model )

7} — SRR e 0 ] iy, 5

Y=X3+¢
Data: (Y,X)

Response var, explanatory vars, error terms (?; disturbances !!), etc.
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Recalling basic framework

Motto: Y; = X!3° + ¢;

1=, 2, cocy (D

Hence one of crucial task is:

C Identification of regression model )

B"M(Y,X) — RP
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Recalling basic framework

Motto: Y; = X!3° + ¢;

1=, 2, cocy (D

Hence one of crucial task is:

C Identification of regression model )

B"M(Y,X) — RP

52, (Y,X) — R*
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Recalling basic framework

Motto: Y; = X!3° + ¢;

2 oo D

C Classical assumptions - several variants )

Conditions: {(X/,s;)'}~, is sequence

of independent (?) (p+ 1)-dimensional random variables.
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Recalling basic framework

Motto: Y; = X!3° + ¢;

2 oo D

C Classical assumptions - several variants )

Conditions: {(X/,s;)'}~, is sequence
of independent (?) (p + 1)-dimensional random variables.

Explanatory variables are not correlated with disturbances

- to verify (!) or to reach (?) - if not .... .

Disturbances are normally distributed

- to verify (!) or to reach (?) - if not .... .

Jan Amos Vigek \/N-CONSISTENCY OF THE LEAST WEIGHTED SQUARES



Recalling basic framework

Motto: Y; = X/3° + ¢

i=1,2,...,n

Durbin, J. (1960): Estimation of parameters in time-series regression
models. J. of Royal Statistical Society, Series B, 22, 139 - 153. p
Mizon, G. E. (1995): A simple message for autocorrelation
correctors: Don’t. Journal of Econometrics 69, 267 - 288. P
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Recalling basic framework

Motto: Y; = X!3° + ¢;

2 oo D

C Classical assumptions - several variants )

Conditions: {(X/,s;)'}~, is sequence
of independent (?) (p + 1)-dimensional random variables.

Explanatory variables are not correlated with disturbances

- to verify (!) or to reach (?) - if not .... .

Disturbances are normally distributed

- to verify (!) or to reach (?) - if not .... .
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=2, o ()

C Equivariance - invariance of 3" )

N

BIY,X): M(n,p+1) — RP
scale-equivariant : VYce Rt [(cY,X) = ch(Y,X)

~ ~

regression-equivariant : Vbe RP  [G(Y + Xb,X)=p(Y,X)+ b
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=2, o ()

C Equivariance - invariance of 3" )

N

BIY,X): M(n,p+1) — RP
scale-equivariant : VYce Rt [(cY,X) = ch(Y,X)

~ ~

regression-equivariant : Vbe RP  [G(Y + Xb,X)=p(Y,X)+ b

Examples : 3(OLS") — (X'X)™' X'Y
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=2, o ()

C Equivariance - invariance of 3" )

N

BIY,X): M(n,p+1) — RP
scale-equivariant : VYce Rt [(cY,X) = ch(Y,X)

~ ~

regression-equivariant : Vbe RP  [G(Y + Xb,X)=p(Y,X)+ b

Examples : 3Ol — (X'X)™' X'Y
3(/‘"”) — R
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=12

C Equivariance - invariance of 52 )

&2(Y, X): M(n,p+1) - R*
scale-equivariant : Yc e Rt 52(cY, X) = ?62(Y, X)
regression-invariant : Vb e RP 52(Y + Xb, X) = 62(Y, X)
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=12

C Equivariance - invariance of 52 )

&2(Y, X): M(n,p+1) - R*
scale-equivariant : Yc e Rt 52(cY, X) = ?62(Y, X)
regression-invariant : Vb e RP 52(Y + Xb, X) = 62(Y, X)

Examples : R T e,

ol 1 [
n—p
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=12

C Equivariance - invariance of 52 )

&2(Y, X): M(n,p+1) - R*
a2(eY-20r=jCc il X)
2(Y + Xb, X) = 6%(Y, X)

scale-equivariant : Yc e Rt
regression-invariant : Vb € RP

Examples : SolES n%p B (P

D L(e) = DoubleExp()\)

I
s

(T(L1>n)
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Recalling basic framework

Motto: Y; = X!3° + ¢;

=12

C Equivariance - invariance of 52 )

&2(Y, X): M(n,p+1) - R*
scale-equivariant : Yc e Rt 52(cY, X) = ?62(Y, X)
regression-invariant : Vb e RP 52(Y + Xb, X) = 62(Y, X)

Examples : G = n%p B (P
o(L,,n) = MAD L(e) = DoubleExp()\)
G(L,,n = 1.483- MAD £(e) = N(u,o?)
MAD S Sedgitr (o Cihn)) — - med (G EREIR

Enr(0,1) MAD = (1.2533)
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Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

i=1,2,...,n

Bickel, P.J. (1975): One-step Huber estimates in the linear model.
J. Amer. Statist. Assoc. 70, 428—433.

To reach scale- and regression-equivariance of an M-estimator, say

=y

9(n)

n
fMpn) — argmin p (
e

(n) is to be scale-equivariant and regression-invariant.
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Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

1=, 2, cocy )

An advantage of M-estimator = technically tractable.
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Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

1=, 2, cocy )

An advantage of M-estimator = technically tractable.

sl

Significant disappointment = low breakdown point equal to 5T

Yohai, V. J., Maronna, R. A. (1979): Asymptotic behaviour of
M-estimators for the linear model. Ann. Statist. 7, 248-268.

Jan Amos Vigek \/N-CONSISTENCY OF THE LEAST WEIGHTED SQUARES



Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

i=1,2,...,n

On the other hand, L-estimators (and R-estimator)
are scale- and regression-equivariant of “automatically”.

Amos Vigek \/N-CONSISTENCY OF THE LEAST WEIGHTED SQUARES



Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

i=1,2,...,n

On the other hand, L-estimators (and R-estimator)
are scale- and regression-equivariant of “automatically”.

However, L-estimators (and R-estimator)
are (were ?) less easily tractable.
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Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

i=1,2,...,n

On the other hand, L-estimators (and R-estimator)
are scale- and regression-equivariant of “automatically”.

However, L-estimators (and R-estimator)
are (were ?) less easily tractable.

Examples : Trimmed mean
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Robustifying identification of regression model

Motto: Y; = X!3° + ¢;

i=1,2,...,n

On the other hand, L-estimators (and R-estimator)
are scale- and regression-equivariant of “automatically”.

However, L-estimators (and R-estimator)
are (were ?) less easily tractable.

Examples : Trimmed mean

Trimmed empirical variance
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Robustifying identification of regression model

Definition: Breakdown point

The break down point of the sequence of estimators {T,} -,
at the d.f. F is defined by

5*_3up{5§1;3avcompavctKE G O :

71.(F’G)<5 = G({TnEKE)} n— oo 1}

Hampel, F. R. et al. (1986): Robust Statistics — The Approach Based
on Influence Functions. New York: J.Wiley & Son.
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Robustifying identification of regression model

3(LMS.n.h) _  argmin 2
b BERP (h)(ﬁ)

Rousseeuw, P.J. (1984): Least median of square regression.
Journal of Amer. Statist. Association 79, pp. 871-880.
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Robustifying identification of regression model

3(LMS,n.h) _ argmin r2
8 O ()

Rousseeuw, P.J. (1984): Least median of square regression.
Journal of Amer. Statist. Association 79, pp. 871-880.

h
BUTS:mh) — argmin 2 (8)

r
(/)
BRI

Hampel, F. R. et al. (1986): Robust Statistics — The Approach Based
on Influence Functions. New York: J.Wiley & Son.
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Robustifying identification of regression model

3(LMS,n.h) _ argmin r2
8 O ()

Rousseeuw, P.J. (1984): Least median of square regression.
Journal of Amer. Statist. Association 79, pp. 871-880.

h
BUTS:mh) — argmin 2 (8)

r
(/)
BRI

Hampel, F. R. et al. (1986): Robust Statistics — The Approach Based
on Influence Functions. New York: J.Wiley & Son.

Notice that both are scale- and regression-equivariance and can be
considered to be L-estimators (although it need not be clear at the first
glance).

Jan Amos Vigek \/N-CONSISTENCY OF THE LEAST WEIGHTED SQUARES



Robustifying identification of regression model

C Statistical folklore about high breakdown po/nt)
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Robustifying identification of regression model

C Statistical folklore about high breakdown po/nt)

High sensitivity to the change of data
@ This is an academic example - explaning “why”,

@ there are also real data, exhibiting the same phenomenon.

"Decreasing" model "Increasing" model
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Robustifying identification of regression model

The first estimate of scale of disturbances which is

consistent, scale-equivariant and regression-invariant:

Jureckova, J., P. K. Sen (1993): Regression rank scores scale statistics and
studentization in linear models. Proc. of the Fifth Prague Symposium
on Asymptotic Statistics, Physica Verlag, 111-121.
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Robustifying identification of regression model

The first estimate of scale of disturbances which is

consistent, scale-equivariant and regression-invariant:

Jureckova, J., P. K. Sen (1993): Regression rank scores scale statistics and
studentization in linear models. Proc. of the Fifth Prague Symposium
on Asymptotic Statistics, Physica Verlag, 111-121.

based on L-estimator by

C Koenker,R., G. Bassett (1978): Regression quantiles. Econometrica, 46, 33-50. )
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The least weighted squares

Motto: Y; = X!3° + ¢;

= 12—

C The least weighted squares )

Residuals VB ET .= M A Y =X
Order statistics of squared residuals, i. e.

(1)(5) < r( )(ﬁ) Klignd +2 r(zn)(ﬁ)

Definition

Let w(u) : [0,1] — [0, 1], w(0) = 1, nonincreasing. Then

fwsnw) _ ar?;,;lm S w (5 6 (8)

will be called the least weighted squares (LWS).
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The least weighted squares

Motto: Y; = X/3° + ¢

=2

C The least weighted squares )

Visek, J. A. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.

1(1)\/\1} T l(z)kpl SR e I(n)\ }}

Definition

Let w(u) : [0,1] — [0, 1], w(0) = 1, nonincreasing. Then

A(LWS,n,w) _ i n i—1
BUWS,nw) — ar&rgpm Z/:1W<IT)

will be called the least weighted squares (LWS).

6 (8)
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The least weighted squares

Motto: Y; = X!3° + ¢

=2

C The least weighted squares )

Visek, J. A. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.

N N )
Notice that it is also L-estimator.
Let W(, o ) o7 y e

A(LWS,nw) _ i n =1\ 2 (/
g = aiger,lqlln Yilaw (5 16y (8)

will be called the least weighted squares (LWS).
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The least weighted squares

Motto: Y; = X/3° + ¢

=2

( The least weighted squares )

Visek, J. A. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.

TP =T)\F) = - = T(n)\F)
m Notice that it is also L-estimator.
Let W( /J | A | | D \"7 ’ J
( What about to employ it for estimating scale of disturbances?

willbe called the least weighted squares (LWS).
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The least weighted squares

Motto: Y; = X/ + ¢;

i=1,2,...,n
C Conditions )

Conditions S1 : (conditions on r.v.'s)

Q (X&)} iid., Fxo(x,v) = Fx(x) - Fo(v), Fo(v)=F(v- o).
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The least weighted squares

Motto: Y; = X/ + ¢;
i= 1,200

C Conditions )

Conditions S1 : (conditions on r.v.'s)

Q {(X.e) )} 1id, Fxe(x,v) = Fx(x) - Fe(v), Fe(v)=F(v-o7").
Q@ F(vifSsupieito SR R0 VA S .
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The least weighted squares

Motto: Y; = X/ + ¢;

=12 ooy 1
C Conditions )

Conditions S1 : (conditions on r.v.'s)

@ (¢ e} Biikdul ey n)-= kb= Fe ()i Fa(v) =E (o)t
Q@ FvifSsupiiiof AR e 0 VA © .
Q@ E|X|P <o
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The least weighted squares

Motto: Y; = X/ + ¢;

=12 ooy 1
C Conditions )

Conditions S1 : (conditions on r.v.'s)

@ (¢ e} Biikdul ey n)-= kb= Fe ()i Fa(v) =E (o)t
Q@ FvifSsupiiiof AR e 0 VA © .
Q Eq|X|P < oo
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The least weighted squares

Motto: Y; = X/ + ¢;
i= 1,200

C Conditions )

Conditions S1 : (conditions on r.v.'s)

@ (¢ e} Biikdul ey n)-= kb= Fe ()i Fa(v) =E (o)t
Q@ FvifSsupiiiof AR e 0 VA © .
Q Eq|X|P < oo

Conditions S2 : (conditions on weight function)

Q@ w(u): [0,1] — [0,1], w(0) = 1 continuous, nonincreasing.
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The least weighted squares

Motto: Y; = X/ + ¢;

i=1,2,...,n
C Conditions )

Conditions S1 : (conditions on r.v.'s)

@ (¢ e} Biikdul ey n)-= kb= Fe ()i Fa(v) =E (o)t
Q@ FvifSsupiiiof AR e 0 VA © .
Q Eq|X|P < oo

Conditions S2 : (conditions on weight function)

Q@ w(u): [0,1] — [0,1], w(0) = 1 continuous, nonincreasing.
@ Lipschitz, i.e. [w(u) — w(up)| < L-|uy — wg).
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The least weighted squares

Motto: Y; = X/3° +¢;

i = 1,270

C Proposal of estimator of scale of disturbances)

Put VZ/W(F(|u|))~u2~f(U)dU
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The least weighted squares

Motto: Y; = X/3° +¢;

i = 1,270

C Proposal of estimator of scale of disturbances)

Put 3 / w(F(|u]))- &? - f(u)du

Definition: Scale estimate

Let 3 be an estimator of regression coefficients. Then put

R P i—1 :
oy =3 2w () ).

n(B)=Yi—Xp
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The least weighted squares

Motto: Y; = X!° + ¢

=1, 2 cong /T

CConsistency of estimator of scale of disturbancea

Conditions S3 : (conditions on estimator of regression coefficients)

©Q A" is consistent.
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The least weighted squares

Motto: Y; = X!° + ¢

=1, 2 cong /T

CConsistency of estimator of scale of disturbancea

Conditions S3 : (conditions on estimator of regression coefficients)

Q@ A" is consistent.
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The least weighted squares

Motto: Y; = X!° + ¢

=1, 2 cong /T

CConsistency of estimator of scale of disturbancea

Conditions S3 : (conditions on estimator of regression coefficients)

Q@ A" is consistent.

Assertion: Consistency

Under Conditions S1, S2 and S3 G(n) is consistent.
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The least weighted squares

Motto: Y; = X!° + ¢

=1, 2 cong /T

CConsistency of estimator of scale of disturbancea

Conditions S4 : (conditions on estimator of regression coefficients)

@ A" is \/n-consistent.
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The least weighted squares

Motto: Y; = X!° + ¢

=1, 2 cong /T

CConsistency of estimator of scale of disturbancea

Conditions S4 : (conditions on estimator of regression coefficients)

@ A" is \/n-consistent.
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The least weighted squares

Motto: Y; = X!° + ¢

=1, 2 cong /T

CConsistency of estimator of scale of disturbancea

Conditions S4 : (conditions on estimator of regression coefficients)

@ A" is \/n-consistent.

Assertion: Consistency

Under Conditions S1, S2 and S4 G(n) is v/n-consistent.
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The least weighted squares

Motto: Y; = X/8° +¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD
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The least weighted squares

Motto: Y; = X/8° +¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?
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The least weighted squares

Motto: Y; = X/8° +¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

@ Data in question represent the aggregates over some regions.
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The least weighted squares

Motto: Y; = X/8° +¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

@ Data in question represent the aggregates over some regions.
@ Explanatory vars are measured with random errors.
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The least weighted squares
Motto: Y; = X!B° + ¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

@ Data in question represent the aggregates over some regions.
@ Explanatory vars are measured with random errors.
© Models with randomly varying coeffs.

\/N-CONSISTENCY OF THE LEAST WEIGHTED SQUARES

Amos Vigek




The least weighted squares

Motto: Y; = X!B° + ¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

Data in question represent the aggregates over some regions.
Explanatory vars are measured with random errors.

Models with randomly varying coeffs.

ARCH models.

0000
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The least weighted squares

Motto: Y; = X!B° + ¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

Data in question represent the aggregates over some regions.
Explanatory vars are measured with random errors.

Models with randomly varying coeffs.

ARCH models.

Probit, logit or counting models.

00000
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The least weighted squares

Motto: Y; = X!B° + ¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

Data in question represent the aggregates over some regions.
Explanatory vars are measured with random errors.

Models with randomly varying coeffs.

ARCH models.

Probit, logit or counting models.

Limited and censored reponse variable.

000000
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The least weighted squares

Motto: Y; = X!B° + ¢;

(=112, coo 0

C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

Data in question represent the aggregates over some regions.
Explanatory vars are measured with random errors.

Models with randomly varying coeffs.

ARCH models.

Probit, logit or counting models.

Limited and censored reponse variable.

Error component (random effects) models.

0000000
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C

Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ?

Data in question represent the aggregates over some regions.
Explanatory vars are measured with random errors.

Models with randomly varying coeffs.

ARCH models.

Probit, logit or counting models.

Limited and censored reponse variable.

Error component (random effects) models.

0000000

(

Heteroscedasticity is implied by character of assumed model. )
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C Consistency of the least weighted squares under heteroscedasticitD
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C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ? coninved)
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C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ? coninved)

@ Expenditure of households.
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C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ? coninved)

@ Expenditure of households.
@ Demands for electricity.
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The least weighted squares

Motto: Y; = X!8° + ¢
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C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ? coninved)

@ Expenditure of households.
@ Demands for electricity.
© Wages of employed married women.
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C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ? coninved)

Expenditure of households.
Demands for electricity.

Wages of employed married women.
Technical analysis of capital markets.
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The least weighted squares
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C Consistency of the least weighted squares under heteroscedasticitD

Can we meet heteroscedasticity frequently ? coninved)

Expenditure of households.
Demands for electricity.

Wages of employed married women.
Technical analysis of capital markets.
Models of export, import and FDI.
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C Consistency of the least weighted squares under heteroscedastic/tD

Can we meet heteroscedasticity frequently ? coninved)

Expenditure of households.
Demands for electricity.

Wages of employed married women.
Technical analysis of capital markets.
Models of export, import and FDI.

00000

Heteroscedasticity was not assumed but
“empirically found” for given dat.
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Motto: Y; = X/3° + ¢;

i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q@ {(X.e)}Z id., Fie(x,v) = Fx(X) - Fo(v), Fo(v)=F(v-o;").
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The least weighted squares

Motto: Y; = X/3° + ¢;
i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q {(X.e) = id., Fxe(x,v) = Fx(x) - Fe(v), Fo(v)=F(v-o;").
@ F(v)msunlin S NN H NE =0 V= 2
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The least weighted squares

Motto: Y; = X/3° + ¢;
i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q {(X.e)}Zid., Fxe(x,v) = Fx(x) - Fe(v), Fo(v)=F(v-o;").
@ F(v)msunlin S NERO G B == 2

@ im iy o1

n—oo
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The least weighted squares

Motto: Y; = X/3° + ¢;
i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q {(X.e)}Zid., Fxe(x,v) = Fx(x) - Fe(v), Fo(v)=F(v-o;").
@ F(v)msunlin S NERO G B == 2
© limped SoUl

n—oo

Q@ 3g>1: E5|IX|* < oo
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The least weighted squares

Motto: Y; = X/3° + ¢;

i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q {((X.a)}7 id., Fxe(x,v) = Fx(x) - Fo(v), Fe(v)=F(v-o;).
@ F(v)msunlin S NERO G B == 2

QO =S i

n—oo

Q@ 3g>1: E5|IX|* < oo

@ There is only one solution of E [w (Fs(|r(3)])) .Xi (e — X{3)] = 0.
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The least weighted squares

Motto: Y; = X/3° + ¢;

i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q {(X.e)} id, Fra(X,v) = Fx(x) - Fo(v), Fe(v)=F(v-o;).
@ F(v)msunlin S NERO G B == 2

o lim %27:1 oi=1.

n— oo

Q@ 3g>1: E5|IX|* < oo

© There is only one solution of E [w (Fs(|r(8)])) .Xi (e — X{B)] = 0.
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The least weighted squares

Motto: Y; = X!B° + ¢;
i=1,2,..,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)
Q (X, )} id., Fxe(x, V) = Fx(X) - Fo(v), Fe(v)=F(v-o;").
@ F(v)msunlin S NERO G B == 2
Q lim %27:10,:1,
n—oo
Q@ 3g>1: E5|IX|* < oo
@ There is only one solution of E [w (Fs(|r(3)])) .Xi (e — X{3)] = 0.

Conditions C2 : (conditions on weight function)

Q@ w(): [0,1] — [0,1], w(0) = 1 continuous, nonincreasing.
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The least weighted squares

Motto: Y; = X!B° + ¢;

i=1,2,...,n

C Conditions for consistency )

Conditions C1 : (conditions on r.v.s)

Q {(X.e)} id, Fra(X,v) = Fx(x) - Fo(v), Fe(v)=F(v-o;).
@ F(v)msunlin S NERO G B == 2
o lim %27:1 oi=1.
n— oo
Q@ 3g>1: E5|IX|* < oo
© There is only one solution of E [w (Fs(|r(8)])) .Xi (e — X{B)] = 0.

Conditions C2 : (conditions on weight function)

Q@ w(): [0,1] — [0,1], w(0) = 1 continuous, nonincreasing.
@ Lipschitz, i.e. [w(ui) — w(up)| < L-|uy — wgl.
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The least weighted squares

Motto: Y; = X! + &;

1=l 2, oo T

C Consistency of the least weighted squares )
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The least weighted squares

Motto: Y; = X/ +¢;

1=l 2, oo T

C Consistency of the least weighted squares )

Assertion: Consistency

Va

Under Conditions ¢1 and ¢2 A" s consistent.
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The least weighted squares

Motto: Y; = X/8° +¢;

i =2

C Vv/'n-consistency of the least weighted squares)

Conditions N C1

@ 3 V), SUP_iveon IF(V)] < o0.
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The least weighted squares

Motto: Y; = X/8° +¢;

(=12 coog T

C Vv/'n-consistency of the least weighted squares)

Conditions N C1

@ 3 V), SUP_cyeon IF(V)] < o0.
@ 3 w/(u) and is Lipschitz of the first order.
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The least weighted squares

Motto: Y; = X/8° +¢;

i =2

C Vv/'n-consistency of the least weighted squares)

Conditions N C1

@ 3 1(V), SUP_cvcoIf (V)] < c0.
@ 3 w/(u) and is Lipschitz of the first order.
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The least weighted squares

Motto: Y; = X/8° +¢;

(=12 coog T

C Vv/'n-consistency of the least weighted squares)

Conditions N C1

@ 3 1(V), SUP_cvcoIf (V)] < c0.
@ 3 w/(u) and is Lipschitz of the first order.

Assertion: /n-consistency

Under Conditions C1, C2 and NC1 AWS:mW) is | /n-consistent.
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The least weighted squares

Motto: Y; = X!3° +¢;
i=1,2,..,n

C Basic result for proving consistency )

Put P
Flilgy Z/{\r, Ml Zl{\Yf—X/ﬁl<v}
i=1

and L
= =D _Fip(v) with Fig(v) =P (Y- X8| <v).
i=1
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The least weighted squares

C Basic result for proving consistency )

Put

Z/{\n ) <vE== Z/{\Y X8| < v}

and
Fna(v ZF,[, ) with Fig(v)=P(|Yi— X8| <v).

Assertion: \/n-consistency of d.f. under heteroscedasticity

Let Conditions C1 hold. For any e > 0 there is a constant K. and n. € N so
that for all n > n.

P ({w €Q: sup sup ﬁ‘E[(,”)(v) —F,,ﬂ(v)’ < KE}> >1—e.

vERT BERP
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The least weighted squares

’-‘ Co délas
v sobotu ?
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The least weighted squares

4% Codélas
j%? v sobotu ?

\?

n.

Ryl )‘
A
Ay

)

;v g
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The least weighted squares

% Co delas
) v sobotu ?
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