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Motivation

Heather dataset first presented by Peter Diggle in 1981. The image shows the presence of heather

(indicated by black) in a 10×20 m region at Jädråas, Sweeden.
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Power
tessellation
as a tool

for estimating
parameters
in a model

of a random set

JJ
II
J
I

Back

Close

Point processes

Definition Consider N the system of locally finite subsets of Rd with
the σ-algebra N = σ({x ∈ N : ](x ∩ A) = m} : A ∈ B,m ∈ N0).
A point process X defined on Rd is a measurable mapping from some
probability space (Ω,F , P ) to (N,N ).

Definition A locally finite, diffusion measure µ on B satisfying µ(A) =
EX(A) for all A ∈ B is called the intensity measure.

Definition If there exists a function ρ(x) for x ∈ Rd such that µ(A) =∫
A
ρ(x)dx, then ρ(x) is called the intensity function.

Definition If ρ(x) = ρ is constant then the constant ρ is called inten-
sity.
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Poisson point process

Definition The Poisson process Y is the process which satisfies:

• for any finite collection {An} of disjoint sets in Rd, the numbers of
points in these sets, Y (An), are independent random variables,

• for each A ⊂ Rd such that µ(A) <∞, Y (A) has Poisson distribu-

tion with parameter µ(A), i.e. P [Y (A) = k] = µ(A)k

k! e
−k, where µ

is the intensity measure.
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Point process given by the density
with respect to Poisson process

Let Y be the Poisson process with an intensity measure µ.

For F ∈ N , denote Π(F ) = P (Y ∈ F ).

Definition A point process X is given by density f with respect to the
Poisson process Y if

P (X ∈ F ) =

∫
F

f (x)Π(dx).
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Model

Denoting b = b(u, r) a disc with centre in u ∈ R2 and radius r ∈ (0,∞),
we have a process of discs ∪bi = ∪b(ui, ri). Then, we identify b with the
point x = (u, r) in R2×(0,∞) and the process of discs ∪bi = ∪b(ui, ri)
with a point process in R2 × (0,∞).



ROBUST 2010

February 1-5,
2010

Kateřina
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Model

Denoting b = b(u, r) a disc with center in u ∈ R2 and radius r ∈ (0,∞),
we have a process of discs ∪bi = ∪b(ui, ri). Then, we identify b with the
point x = (u, r) in R2×(0,∞) and the process of discs ∪bi = ∪b(ui, ri)
with a point process in R2 × (0,∞).

The reference process: A Poisson point process Y (so that the
reference Boolean model is the random set given by the union of discs
in Y ) with intensity measure ρ(u) duQ(dr) on R2 × (0,∞).

Model: The process of discs X such that the corresponding point
process is absolutely continuous with respect to the reference Poisson
process Y , and given by density f (x) for a finite configurations x =
{x1, . . . , xn}.
Assumption: X is a finite point process defined on S × (0, R), where
S denotes a given bounded planar region such that

∫
S
ρ(u) du > 0 and

R <∞.
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Exponential family density

General form of the density:

fθ(x) = exp (θ · T (Ux)) /cθ

Set T = (A,L,Ncc, Nh), where
A = A(Ux)...the area
L = L(Ux)...the perimeter
Ncc = Ncc(Ux)...the number of connected components
Nh = Nh(Ux)...the number of holes,

i.e. the density is of the form

fθ(x) =
1

cθ
exp (θ1A(Ux) + θ2L(Ux) + θ3Ncc(Ux) + θ4Nh(Ux)) .
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Example of simulations

A realization of the reference Poisson process with Q the uniform distribution on the interval

[0, 2], ρ(u) = 0.2 on a rectangular region S = [0, 30]× [0, 30], and ρ(u) = 0 outside S (left) and

A-interaction model with parameters θ1 = 0.1 (middle), resp. θ1 = −0.1 (right).
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Example of simulations

(A,L,Ncc)-interaction process, where Ncc(Ux) is the number of connected components, with

parameters (0.6,−1, 1) (left), (0.6,−1, 2) (middle) and (0.6,−1, 5) (right).
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Papangelou conditional intensity

Definition For finite x ⊂ S × (0,∞) and v ∈ S × (0,∞) \ x, Papan-
gelou conditional intensity is defined as

λθ(x, v) = fθ(x ∪ {v})/fθ(x).

Denoting

A(x, v) =A(x ∪ v)− A(x),

L(x, v) =L(x ∪ v)− L(x),
...

we get

λθ(x, v) = exp (θ1A(x, v) + θ2L(x, v) + θ3Ncc(x, v) + θ4Nh(x, v)) .
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MCMC algorithm

1. Suppose that in time t, we have a configuration xt = {x1, . . . , xn}

2. Proposal in time t + 1:

(a) with probability 1/2, the proposal is xt ∪ {xn+1}
i. we accept the proposal with probability min{1;H(xt, xn+1)}

and set xt+1 = xt ∪ {xn+1}
ii. else we set xt+1 = xt

(b) else, the proposal is xt\{xi}
i. we accept the proposal with probabilitymin{1; 1/H(xt\{xi}, xi)}

and set xt+1 = xt\{xi}
ii. else xt+1 = xt

where H(xt, xn+1) = λθ(xt, xn+1)
|S|

ρ(xn+1)·(n+1)

and H(xt\{xi}, xi) = λθ(xt\{xi}, xi) |S|
ρ(xi)·n

.
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Power tessellation of a union of discs

Assume a union of discs U = ∪Ibi in the general position.

For each disc bi (i ∈ I) with ghost sphere si, let s+
i = {(y1, y2, y3) ∈

si : y3 ≥ 0} denote the corresponding upper hypersphere.

For u ∈ bi, let yi(u) denote the unique point on s+
i those orthogonal

projection on R2 is u.

Define

Ci = {yi(u) : u ∈ bi, ‖u− yi(u)‖ ≥ ‖u− yj(u)‖ for u ∈ bj, j ∈ I}.

Denote Bi the orthogonal projection of Ci on R2.

Definition The system B of all sets Bi is called a power tessellation of
a union of discs.
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Power tessellation of a union of discs

Left: A configuration of discs in general position. Middle: The upper hemispheres as seen from

above. Right: The power tessellation of the union of discs.
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Power
tessellation
as a tool

for estimating
parameters
in a model

of a random set

JJ
II
J
I

Back

Close

Usefulness of power tessellation in
MCMC algorithm

1. Calculation of A(Ux): instead of

A(Ux) =
∑
i

A(bi)−
∑
{i1,i2}

A(bi1 ∩ bi2) + . . .

+(−1)n+1
∑
{i1,...,in}

A(bi1 ∩ · · · ∩ bin)

we use
A(Ux) =

∑
i

A(Bi).

2. Analogously we calculate L(Ux).
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Usefulness of power tessellation in
MCMC algorithm

3. For calculation ofNh(Ux), we use Euler-Poincaré characteristic χ(Ux)
satisfying χ(Ux) = Ncc(Ux)−Nh(Ux):
from its definition χ(Ki) = 1 for Ki compact convex and
χ(K) =

∑N
k=1(−1)k+1

∑
{i1,...,ik} χ(Ki1∩· · ·∩Kik) for K = ∪Ni=1Ki,

we have that

χ(Ux) = Nc(Ux)−Nie(Ux) + Niv(Ux),

where Nc is the number of cells, Nie the number of interior edges
and Niv the number of interior vertices.

4. All the calculations are local.
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Estimating parameters

Denote fθ(x) = hθ(x)/cθ (i.e. hθ(x) = exp (θ · T (Ux)) is the unnor-
malized density).

For an observation x, the log likelihood function is given by

l(θ) = log hθ(x)− log cθ = θ · T (Ux)− log cθ.

Problem: cθ has no explicit expression.
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Estimating parameters

For fixed θ0, the log likelihood ratio

l(θ)− l(θ0) = log(hθ(x)/hθ0(x))− log(cθ/cθ0)

can be approximated by

l(θ)− l(θ0) = log(hθ(x)/hθ0(x))− log
1

n

n−1∑
m=0

hθ(Ym)/hθ0(Ym),

where Ym are realizations from fθ0(x) obtained from MCMC simulations.
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Power
tessellation
as a tool

for estimating
parameters
in a model

of a random set

JJ
II
J
I

Back

Close

Outline

1. Motivation

2. Describing the model

3. Simulations

4. Power tessellation of a union of discs

5. Estimating the parameters by MCMC MLE

6. Estimating the parameters using integral characterization



ROBUST 2010

February 1-5,
2010

Kateřina
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Integral characterization

Assume for simplicity that all the discs have the same radii r and denote
Br the set of all such discs.

If the set of the discs centers S = R2 and the reference process Y as
well as the disc process X are stationary then for an arbitrary measurable
function g : N ×Br → R it holds that

E
∑
x∈X

g(X \ x, x) = ρE

∫
R2

g(X, y)λθ(X, y)du,

where u is the center of the disc y.
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Possible approximations

If the observation window W for the data x is large enough then we
can use approximation∑
x∈x

g(x \ x, x) = ρ
∑

u∈Wgrid

g(x, y)λθ(x, y) (1)

= ρ
∑

u∈Wgrid

g(x, y) exp (θ1A(x, y) + . . . + θ4Nh(x, y)) .

where Wgrid is a discretization of W .

Choosing suitable function(s) g and solving (1), we obtain estimations
of the parameters.

For calculating λθ in (1), the power tessellation is used again.
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Thank you for your attention!
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