ROBUST 2010

February 1-5, 2010

> Kateřina Helisová

Power tessellation as a tool for estimating parameters in a model of a random set

POWER TESSELLATION AS A TOOL FOR ESTIMATING PARAMETERS IN A MODEL OF A RANDOM SET

Kateřina Helisová

Czech Technical University in Prague helisova@math.feld.cvut.cz

based on joint work with Jesper Møller, David Dereudre and Frederic Lavancier

1st February 2010

- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

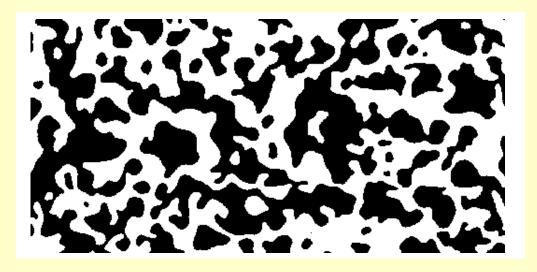
> Kateřina Helisová

- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

> Kateřina Helisová

Motivation



Heather dataset first presented by Peter Diggle in 1981. The image shows the presence of heather (indicated by black) in a 10×20 m region at Jädraås, Sweeden.

ROBUST 2010

February 1-5, 2010

Kateřina Helisová

- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

> Kateřina Helisová

Point processes

Definition Consider N the system of locally finite subsets of \mathbb{R}^d with the σ -algebra $\mathcal{N} = \sigma(\{\mathbf{x} \in N : \sharp(\mathbf{x} \cap A) = m\} : A \in \mathcal{B}, m \in \mathbf{N}_0)$. A point process X defined on \mathbb{R}^d is a measurable mapping from some probability space (Ω, \mathcal{F}, P) to (N, \mathcal{N}) .

Definition A locally finite, diffusion measure μ on \mathcal{B} satisfying $\mu(A) = EX(A)$ for all $A \in \mathcal{B}$ is called *the intensity measure*.

Definition If there exists a function $\rho(x)$ for $x \in \mathbb{R}^d$ such that $\mu(A) = \int_A \rho(x) dx$, then $\rho(x)$ is called *the intensity function*.

Definition If $\rho(x) = \rho$ is constant then the constant ρ is called *intensity*.

February 1-5, 2010

> Kateřina Helisová



Poisson point process

Definition The Poisson process Y is the process which satisfies:

- for any finite collection $\{A_n\}$ of disjoint sets in \mathbb{R}^d , the numbers of points in these sets, $Y(A_n)$, are independent random variables,
- for each $A \subset \mathbb{R}^d$ such that $\mu(A) < \infty$, Y(A) has Poisson distribution with parameter $\mu(A)$, i.e. $P[Y(A) = k] = \frac{\mu(A)^k}{k!}e^{-k}$, where μ is the intensity measure.

February 1-5, 2010

> Kateřina Helisová



February 1-5, 2010

Point process given by the density with respect to Poisson process

Let Y be the Poisson process with an intensity measure μ .

For $F \in \mathcal{N}$, denote $\Pi(F) = P(Y \in F)$.

Definition A point process X is given by density f with respect to the Poisson process Y if

 $P(X \in F) = \int_F f(\mathbf{x}) \Pi(d\mathbf{x}).$

Kateřina Helisová

Model

Denoting b = b(u, r) a disc with centre in $u \in \mathbb{R}^2$ and radius $r \in (0, \infty)$, we have a process of discs $\cup b_i = \cup b(u_i, r_i)$. Then, we identify b with the point x = (u, r) in $\mathbb{R}^2 \times (0, \infty)$ and the process of discs $\cup b_i = \cup b(u_i, r_i)$ with a point process in $\mathbb{R}^2 \times (0, \infty)$. February 1-5, 2010

> Kateřina Helisová

ROBUST 2010

February 1-5, 2010

Model

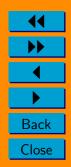
Denoting b = b(u, r) a disc with center in $u \in \mathbb{R}^2$ and radius $r \in (0, \infty)$, we have a process of discs $\cup b_i = \cup b(u_i, r_i)$. Then, we identify b with the point x = (u, r) in $\mathbb{R}^2 \times (0, \infty)$ and the process of discs $\cup b_i = \cup b(u_i, r_i)$ with a point process in $\mathbb{R}^2 \times (0, \infty)$.

The reference process: A Poisson point process Y (so that the reference Boolean model is the random set given by the union of discs in Y) with intensity measure $\rho(u) du Q(dr)$ on $\mathbb{R}^2 \times (0, \infty)$.

Model: The process of discs X such that the corresponding point process is absolutely continuous with respect to the reference Poisson process Y, and given by density $f(\mathbf{x})$ for a finite configurations $\mathbf{x} = \{x_1, \ldots, x_n\}$.

Assumption: X is a finite point process defined on $S \times (0, R)$, where S denotes a given bounded planar region such that $\int_{S} \rho(u) du > 0$ and $R < \infty$.

Kateřina Helisová



Exponential family density

General form of the density:

$$f_{\theta}(\mathbf{x}) = \exp\left(\theta \cdot T(\mathcal{U}_{\mathbf{x}})\right) / c_{\theta}$$

Set $T = (A, L, N_{cc}, N_{h})$, where $A = A(\mathcal{U}_{x})$...the area $L = L(\mathcal{U}_{x})$...the perimeter $N_{cc} = N_{cc}(\mathcal{U}_{x})$...the number of connected components $N_{h} = N_{h}(\mathcal{U}_{x})$...the number of holes,

i.e. the density is of the form

$$f_{\theta}(\mathbf{x}) = \frac{1}{c_{\theta}} \exp\left(\theta_1 A(\mathcal{U}_{\mathbf{x}}) + \theta_2 L(\mathcal{U}_{\mathbf{x}}) + \theta_3 N_{cc}(\mathcal{U}_{\mathbf{x}}) + \theta_4 N_{h}(\mathcal{U}_{\mathbf{x}})\right).$$

ROBUST 2010

February 1-5, 2010

> Kateřina Helisová

Power tessellation as a tool for estimating parameters in a model of a random set

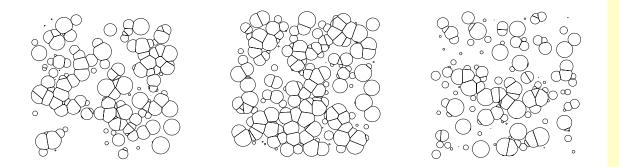
> Back Close

- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

> Kateřina Helisová

Example of simulations

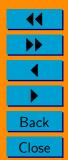


A realization of the reference Poisson process with Q the uniform distribution on the interval [0,2], $\rho(u) = 0.2$ on a rectangular region $S = [0,30] \times [0,30]$, and $\rho(u) = 0$ outside S (left) and A-interaction model with parameters $\theta_1 = 0.1$ (middle), resp. $\theta_1 = -0.1$ (right).

ROBUST 2010

February 1-5, 2010

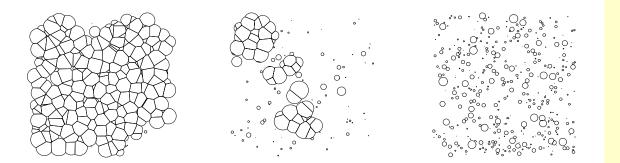
> Kateřina Helisová



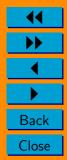
ROBUST 2010

February 1-5, 2010

Example of simulations



 (A, L, N_{cc}) -interaction process, where $N_{cc}(\mathcal{U}_{\mathbf{x}})$ is the number of connected components, with parameters (0.6, -1, 1) (left), (0.6, -1, 2) (middle) and (0.6, -1, 5) (right).



Papangelou conditional intensity

Definition For finite $\mathbf{x} \subset S \times (0, \infty)$ and $v \in S \times (0, \infty) \setminus \mathbf{x}$, *Papan-gelou conditional intensity* is defined as

 $\lambda_{\theta}(\mathbf{x}, v) = f_{\theta}(\mathbf{x} \cup \{v\}) / f_{\theta}(\mathbf{x}).$

Denoting

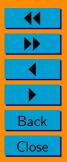
$$\begin{split} A(\mathbf{x}, v) =& A(\mathbf{x} \cup v) - A(\mathbf{x}), \\ L(\mathbf{x}, v) =& L(\mathbf{x} \cup v) - L(\mathbf{x}), \\ \vdots \end{split}$$

we get

$$\lambda_{\theta}(\mathbf{x}, v) = \exp\left(\theta_1 A(\mathbf{x}, v) + \theta_2 L(\mathbf{x}, v) + \theta_3 N_{cc}(\mathbf{x}, v) + \theta_4 N_h(\mathbf{x}, v)\right).$$

February 1-5, 2010

> Kateřina Helisová



MCMC algorithm

- 1. Suppose that in time t, we have a configuration $\mathbf{x}_{t} = \{x_1, \ldots, x_n\}$
- 2. Proposal in time t + 1:
 - (a) with probability 1/2, the proposal is $\mathbf{x_t} \cup \{x_{n+1}\}$
 - i. we accept the proposal with probability $min\{1; H(\mathbf{x}_t, x_{n+1})\}$ and set $\mathbf{x}_{t+1} = \mathbf{x}_t \cup \{x_{n+1}\}$
 - ii. else we set $\mathbf{x}_{t+1} = \mathbf{x}_t$
 - (b) else, the proposal is $\mathbf{x}_{t} \setminus \{x_{i}\}$
 - i. we accept the proposal with probability $min\{1; 1/H(\mathbf{x_t} \setminus \{x_i\}, x_i)\}$ and set $\mathbf{x_{t+1}} = \mathbf{x_t} \setminus \{x_i\}$ ii. else $\mathbf{x_{t+1}} = \mathbf{x_t}$

where $H(\mathbf{x}_{t}, x_{n+1}) = \lambda_{\theta}(\mathbf{x}_{t}, x_{n+1}) \frac{|S|}{\rho(x_{n+1}) \cdot (n+1)}$ and $H(\mathbf{x}_{t} \setminus \{x_{i}\}, x_{i}) = \lambda_{\theta}(\mathbf{x}_{t} \setminus \{x_{i}\}, x_{i}) \frac{|S|}{\rho(x_{i}) \cdot n}$.

ROBUST 2010

February 1-5, 2010

> Kateřina Helisová

Power tessellation as a tool for estimating parameters in a model f a random set

Back

lose

- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

> Kateřina Helisová

ROBUST 2010

February 1-5, 2010

Power tessellation of a union of discs

Assume a union of discs $\mathcal{U} = \bigcup_I b_i$ in the general position.

For each disc b_i $(i \in I)$ with ghost sphere s_i , let $s_i^+ = \{(y_1, y_2, y_3) \in s_i : y_3 \ge 0\}$ denote the corresponding upper hypersphere.

For $u \in b_i$, let $y_i(u)$ denote the unique point on s_i^+ those orthogonal projection on \mathbb{R}^2 is u.

Define

$$C_i = \{y_i(u) : u \in b_i, \|u - y_i(u)\| \ge \|u - y_j(u)\| \text{ for } u \in b_j, \ j \in I\}$$

Denote B_i the orthogonal projection of C_i on \mathbb{R}^2 .

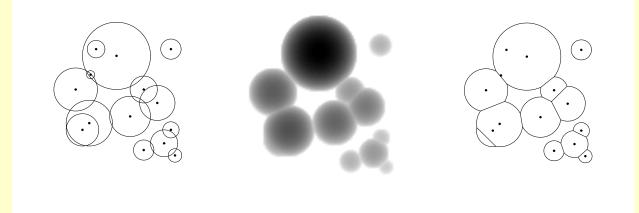
Definition The system \mathcal{B} of all sets B_i is called a *power tessellation of* a union of discs.

Kateřina Helisová

ROBUST 2010

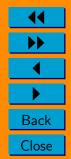
February 1-5, 2010

Power tessellation of a union of discs



Left: A configuration of discs in general position. Middle: The upper hemispheres as seen from above. Right: The power tessellation of the union of discs.

Kateřina Helisová



Usefulness of power tessellation in MCMC algorithm

1. Calculation of $A(\mathcal{U}_{\mathbf{x}})$: instead of

$$A(\mathcal{U}_{\mathbf{x}}) = \sum_{i} A(b_{i}) - \sum_{\{i_{1}, i_{2}\}} A(b_{i_{1}} \cap b_{i_{2}}) + \dots$$
$$+ (-1)^{n+1} \sum_{\{i_{1}, \dots, i_{n}\}} A(b_{i_{1}} \cap \dots \cap b_{i_{n}})$$

we use

$$A(\mathcal{U}_{\mathbf{x}}) = \sum_{i} A(B_{i}).$$

2. Analogously we calculate $L(\mathcal{U}_{\mathbf{x}})$.

ROBUST 2010

February 1-5, 2010

> Kateřina Helisová

February 1-5, 2010

Usefulness of power tessellation in MCMC algorithm

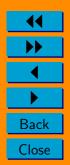
3. For calculation of $N_{\rm h}(\mathcal{U}_{\mathbf{x}})$, we use Euler-Poincaré characteristic $\chi(\mathcal{U}_{\mathbf{x}})$ satisfying $\chi(\mathcal{U}_{\mathbf{x}}) = N_{\rm cc}(\mathcal{U}_{\mathbf{x}}) - N_{\rm h}(\mathcal{U}_{\mathbf{x}})$: from its definition $\chi(K_i) = 1$ for K_i compact convex and $\chi(K) = \sum_{k=1}^{N} (-1)^{k+1} \sum_{\{i_1, \dots, i_k\}} \chi(K_{i_1} \cap \dots \cap K_{i_k})$ for $K = \bigcup_{i=1}^{N} K_i$, we have that

$$\chi(\mathcal{U}_{\mathbf{x}}) = N_{\mathrm{c}}(\mathcal{U}_{\mathbf{x}}) - N_{\mathrm{ie}}(\mathcal{U}_{\mathbf{x}}) + N_{\mathrm{iv}}(\mathcal{U}_{\mathbf{x}}),$$

where $N_{\rm c}$ is the number of cells, $N_{\rm ie}$ the number of interior edges and $N_{\rm iv}$ the number of interior vertices.

4. All the calculations are local.

Kateřina Helisová



- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

> Kateřina Helisová

Estimating parameters

Denote $f_{\theta}(\mathbf{x}) = h_{\theta}(\mathbf{x})/c_{\theta}$ (i.e. $h_{\theta}(\mathbf{x}) = \exp(\theta \cdot T(\mathcal{U}_{\mathbf{x}}))$ is the unnormalized density).

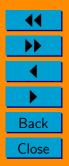
For an observation \mathbf{x} , the log likelihood function is given by

$$l(\theta) = \log h_{\theta}(\mathbf{x}) - \log c_{\theta} = \theta \cdot T(\mathcal{U}_{\mathbf{x}}) - \log c_{\theta}.$$

Problem: c_{θ} has no explicit expression.

February 1-5, 2010

> Kateřina Helisová



Estimating parameters

For fixed θ_0 , the log likelihood ratio

$$l(\theta) - l(\theta_0) = \log(h_{\theta}(\mathbf{x}) / h_{\theta_0}(\mathbf{x})) - \log(c_{\theta} / c_{\theta_0})$$

can be approximated by

$$l(\theta) - l(\theta_0) = \log(h_{\theta}(\mathbf{x})/h_{\theta_0}(\mathbf{x})) - \log\frac{1}{n}\sum_{m=0}^{n-1} h_{\theta}(Y_m)/h_{\theta_0}(Y_m),$$

where Y_m are realizations from $f_{\theta_0}(\mathbf{x})$ obtained from MCMC simulations.

ROBUST 2010

February 1-5, 2010

> Kateřina Helisová

Power tessellation as a tool for estimating parameters in a model of a random set

> Back Close

- 1. Motivation
- 2. Describing the model
- 3. Simulations
- 4. Power tessellation of a union of discs
- 5. Estimating the parameters by MCMC MLE
- 6. Estimating the parameters using integral characterization

February 1-5, 2010

> Kateřina Helisová

Integral characterization

Assume for simplicity that all the discs have the same radii r and denote B_r the set of all such discs.

If the set of the discs centers $S = \mathbb{R}^2$ and the reference process \mathbf{Y} as well as the disc process \mathbf{X} are stationary then for an arbitrary measurable function $g: N \times B_r \to \mathbb{R}$ it holds that

$$E\sum_{x\in\mathbf{X}}g(\mathbf{X}\setminus x,x) = \rho E\int_{\mathbf{R}^2}g(\mathbf{X},y)\lambda_{\theta}(\mathbf{X},y)\mathrm{d}u,$$

where u is the center of the disc y.

February 1-5, 2010

> Kateřina Helisová

Possible approximations

If the observation window W for the data ${\bf x}$ is large enough then we can use approximation

$$\sum_{x \in \mathbf{x}} g(\mathbf{x} \setminus x, x) = \rho \sum_{u \in W_{grid}} g(\mathbf{x}, y) \lambda_{\theta}(\mathbf{x}, y)$$
(1)
$$= \rho \sum_{u \in W_{grid}} g(\mathbf{x}, y) \exp\left(\theta_1 A(\mathbf{x}, y) + \ldots + \theta_4 N_h(\mathbf{x}, y)\right).$$

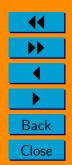
where W_{grid} is a discretization of W.

Choosing suitable function(s) g and solving (1), we obtain estimations of the parameters.

For calculating λ_{θ} in (1), the power tessellation is used again.

February 1-5, 2010

> Kateřina Helisová



Thank you for your attention!

2010

ROBUST 2010

February 1-5,

Kateřina Helisová

