Consistent and equivariant estimation in errors-in-variables models with dependent errors

Michal Pešta

Charles University in Prague Department of Probability and Mathematical Statistics

> ROBUST 2010 February 5

Salmo trutta morpha fario; L., 1758

Šumava

Vydra (Javoří potok)

Pitfalls, problems, and our

approach

length and weight

covariate or response

- covariate or response
- least squares or least absolute distance or ... ML

- covariate or response
- invariant penalization

- covariate or response
- invariant penalization
- water depth and changing conditions

- covariate or response
- invariant penalization
- data dependence

- covariate or response
- invariant penalization
- data dependence
- measurement units

- covariate or response
- invariant penalization
- data dependence
- equivariant estimate (consistency, asymptotic normality)

- covariate or response
- invariant penalization
- data dependence
- equivariant estimate (consistency, asymptotic normality)
- unknown quantities

- covariate or response
- invariant penalization
- data dependence
- equivariant estimate (consistency, asymptotic normality)
- computational feasibility

Outline

Errors-in-variables estimation EIV Model

Equivariant estimate

Inference

Assumptions of the EIV model Asymptotic properties of the estimate

Bootstrapping

Moving block bootstrap

Conclusions

$$\mathbf{Y}_{n \times 1} = \mathbf{Z}_{n \times p} \mathbf{\beta}_{p \times 1} + \mathbf{\varepsilon}_{n \times 1}$$
 $\mathbf{X}_{n \times p} = \mathbf{Z}_{n \times p} + \mathbf{\Theta}_{n \times p}$

$$\mathbf{Y}_{n \times 1} = \mathbf{Z}_{n \times p} \mathbf{\beta}_{p \times 1} + \mathbf{\varepsilon}_{n \times 1}$$
$$\mathbf{X}_{n \times p} = \mathbf{Z}_{n \times p} + \mathbf{\Theta}_{n \times p}$$

ullet X and Y ... observable random variables

- ullet X and Y ... observable random variables
- Z ... unknown constants

$$\mathbf{Y}_{n \times 1} = \mathbf{Z}_{n \times p} \underbrace{\boldsymbol{\beta}}_{p \times 1} + \underbrace{\boldsymbol{\varepsilon}}_{n \times 1}$$
 $\mathbf{X}_{n \times p} = \mathbf{Z}_{n \times p} + \underbrace{\boldsymbol{\Theta}}_{n \times p}$

- ullet X and Y ... observable random variables
- Z ... unknown constants
- \bullet ε and Θ ... random errors

$$\mathbf{Y}_{n \times 1} = \mathbf{Z}_{n \times p} \frac{\boldsymbol{\beta}}{p \times 1} + \sum_{n \times 1} \mathbf{E}_{n \times p}$$
 $\mathbf{X}_{n \times p} = \mathbf{Z}_{n \times p} + \mathbf{\Theta}_{n \times p}$

- lacksquare X and Y ... observable random variables
- Z ... unknown constants
- \bullet ε and Θ ... random errors
- \bullet β ... regression parameters (to be estimated)

Illustration

Outline

Errors-in-variables estimation

EIV Mode

Equivariant estimate

Inference

Assumptions of the EIV model Asymptotic properties of the estimate

Bootstrapping

Moving block bootstrap

Conclusions

• inconsistency of the Least Squares estimation

- inconsistency of the Least Squares estimation
- no distributional requirements

- inconsistency of the Least Squares estimation
- no distributional requirements
- orthogonal direction (errors as small as possible)

- inconsistency of the Least Squares estimation
- no distributional requirements
- orthogonal direction (errors as small as possible)
- equivariant estimate with respect to:

- inconsistency of the Least Squares estimation
- no distributional requirements
- orthogonal direction (errors as small as possible)
- equivariant estimate with respect to: scale

- inconsistency of the Least Squares estimation
- no distributional requirements
- orthogonal direction (errors as small as possible)
- equivariant estimate with respect to: scale, rotation

- inconsistency of the Least Squares estimation
- no distributional requirements
- orthogonal direction (errors as small as possible)
- equivariant estimate with respect to: scale, rotation, and coordinate change

ullet minimize the errors $[\Theta, \varepsilon]$

- ullet minimize the errors $[oldsymbol{\Theta}, oldsymbol{arepsilon}]$
- unitary invariant matrix norm

- ullet minimize the errors $[oldsymbol{\Theta}, oldsymbol{arepsilon}]$

- ullet minimize the errors $[oldsymbol{\Theta}, oldsymbol{arepsilon}]$
- ullet unitary invariant matrix norm matrix norm: $\|\mathbf{U}\mathbf{A}\mathbf{V}\| = \|\mathbf{A}\|\,,\ orall\ unitary\ \mathbf{U}$ and \mathbf{V} $(\mathbf{U}\mathbf{U}^ op = \mathbf{U}^ op \mathbf{U} = \mathbf{I})$
- for a unitary invariant matrix norm

$$\min \| [\mathbf{\Theta}, \boldsymbol{\varepsilon}] \|$$
 s.t. $\mathbf{Y} - \boldsymbol{\varepsilon} = (\mathbf{X} - \mathbf{\Theta}) \boldsymbol{\beta}$

Class of the UI matrix norms

Schatten norms

$$\|\mathbf{A}\|_{q} = \left(\sum_{i,j} a_{ij}^{q}\right)^{1/q} = \left(\sum_{i} \sigma_{i}^{q}\right)^{1/q}, \ q \ge 1$$

Class of the UI matrix norms

Schatten norms

$$\|\mathbf{A}\|_{q} = \left(\sum_{i,j} a_{ij}^{q}\right)^{1/q} = \left(\sum_{i} \sigma_{i}^{q}\right)^{1/q}, \ q \ge 1$$

nuclear norm (q = 1), Frobenius norm (q = 2)

Class of the UI matrix norms

Schatten norms

$$\left\|\mathbf{A}\right\|_{q} = \left(\sum_{i,j} a_{ij}^{q}\right)^{1/q} = \left(\sum_{i} \sigma_{i}^{q}\right)^{1/q}, \ q \ge 1$$

nuclear norm (q = 1), Frobenius norm (q = 2)

 \bullet Ky Fan k-norms

$$\|\mathbf{A}\|_{q}^{(k)} = \left(\sum_{i=1}^{k} \sigma_{i}^{q}\right)^{1/q}, \ q \ge 1$$

Class of the UI matrix norms

Schatten norms

$$\left\|\mathbf{A}\right\|_{q} = \left(\sum_{i,j} a_{ij}^{q}\right)^{1/q} = \left(\sum_{i} \sigma_{i}^{q}\right)^{1/q}, \ q \ge 1$$

nuclear norm (q = 1), Frobenius norm (q = 2)

 \bullet Ky Fan k-norms

$$\|\mathbf{A}\|_{q}^{(k)} = \left(\sum_{i=1}^{k} \sigma_{i}^{q}\right)^{1/q}, \ q \ge 1$$

operator norm (k = 1), Schatten norms (k = last)

Estimate

solution with desired properties for any UI MN

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X} - \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Estimate

solution with desired properties for any UI MN

 λ is the (p+1)-st largest eigenvalue of $[\mathbf{X},\mathbf{Y}]^{\mathsf{T}}[\mathbf{X},\mathbf{Y}]$

Outline

Errors-in-variables estimatior EIV Model Equivariant estimate

Inference

Assumptions of the EIV model

Asymptotic properties of the estimate

Bootstrapping

Moving block bootstrap

Weak dependence

• strong mixing (α -mixing)

$$\alpha(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |\mathbb{P}(AB) - \mathbb{P}(A)\mathbb{P}(B)|$$
$$\alpha(n) = \sup_{k \in \mathbb{N}} \alpha(\mathcal{F}_1^k, \mathcal{F}_{k+n}^{\infty}) \to 0, \ n \to \infty$$

Weak dependence

• strong mixing (α -mixing)

$$\alpha(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |\mathbb{P}(AB) - \mathbb{P}(A)\mathbb{P}(B)|$$
$$\alpha(n) = \sup_{k \in \mathbb{N}} \alpha(\mathcal{F}_1^k, \mathcal{F}_{k+n}^{\infty}) \to 0, \ n \to \infty$$

ullet uniformly strong mixing (arphi-mixing)

$$\varphi(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |\mathbb{P}(B|A) - \mathbb{P}(B)|$$
$$\varphi(n) = \sup_{k \in \mathbb{N}} \varphi(\mathcal{F}_1^k, \mathcal{F}_{k+n}^{\infty}) \to 0, \ n \to \infty$$

Weak dependence

• strong mixing (α -mixing)

$$\alpha(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |\mathbb{P}(AB) - \mathbb{P}(A)\mathbb{P}(B)|$$
$$\alpha(n) = \sup_{k \in \mathbb{N}} \alpha(\mathcal{F}_1^k, \mathcal{F}_{k+n}^{\infty}) \to 0, \ n \to \infty$$

ullet uniformly strong mixing (arphi-mixing)

$$\varphi(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}, B \in \mathcal{B}} |\mathbb{P}(B|A) - \mathbb{P}(B)|$$
$$\varphi(n) = \sup_{k \in \mathbb{N}} \varphi(\mathcal{F}_1^k, \mathcal{F}_{k+n}^{\infty}) \to 0, \ n \to \infty$$

lacksquare uniformly strong mixing \Rightarrow strong mixing

Assumptions of the EIV model

• rows $[\Theta_{i,\bullet}, \varepsilon_i]$ are α - or φ -mixing

Assumptions of the EIV model

- rows $[\Theta_{i,\bullet}, \varepsilon_i]$ are α or φ -mixing
- rows $[\Theta_{i,\bullet}, \varepsilon_i]$ with zero mean and non-singular covariance matrix $\sigma^2 \mathbf{I}$, where σ^2 is unknown (for simplicity)

Assumptions of the EIV model

- ullet rows $[m{\Theta}_{i,ullet},arepsilon_i]$ are lpha- or arphi-mixing
- rows $[\Theta_{i,\bullet}, \varepsilon_i]$ with zero mean and non-singular covariance matrix $\sigma^2 \mathbf{I}$, where σ^2 is unknown (for simplicity)
- exists a positive definite matrix

$$\mathbf{\Delta} := \lim_{n \to \infty} n^{-1} \mathbf{Z}^{\top} \mathbf{Z}$$

Outline

Errors-in-variables estimation EIV Model Equivariant estimate

Inference

Assumptions of the EIV model Asymptotic properties of the estimate

Bootstrapping

Moving block bootstrap

Asymptotic properties

consistency under uniformly strong mixing

$$\widehat{\boldsymbol{\beta}} \stackrel{\mathbb{P}}{\longrightarrow} \boldsymbol{\beta}, \quad n \to \infty$$

Asymptotic properties

consistency under uniformly strong mixing

$$\widehat{\boldsymbol{\beta}} \stackrel{\mathbb{P}}{\longrightarrow} \boldsymbol{\beta}, \quad n \to \infty$$

ullet asymptotic normality under stationary strong mixing and finite $(4+\delta)$ -th moment of errors

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right) \stackrel{\mathscr{D}}{\longrightarrow} \mathscr{N}(\mathbf{0}, \cdot), \quad n \to \infty$$

Outline

Errors-in-variables estimatior EIV Model Equivariant estimate

Inference

Assumptions of the EIV model Asymptotic properties of the estimate

Bootstrapping

Moving block bootstrap

 asymptotic variance depends on unknown quantities (cannot be estimated)

- asymptotic variance depends on unknown quantities (cannot be estimated)
- resample blocks of row-pairs [X, Y] with replacement

- asymptotic variance depends on unknown quantities (cannot be estimated)
- ullet resample blocks of row-pairs $[\mathbf{X},\mathbf{Y}]$ with replacement
- ullet approaching (each other) in distribution almost surely along $[\mathbf{X},\mathbf{Y}]$

$$\sqrt{n}(\widehat{oldsymbol{eta}}^*-\widehat{oldsymbol{eta}})ig|[\mathbf{X},\mathbf{Y}] \overset{\mathscr{D}(a.s.)}{\overset{\sim}{\longleftarrow}} \sqrt{n}(\widehat{oldsymbol{eta}}-oldsymbol{eta})$$

- asymptotic variance depends on unknown quantities (cannot be estimated)
- ullet resample blocks of row-pairs $[\mathbf{X},\mathbf{Y}]$ with replacement
- ullet approaching (each other) in distribution almost surely along $[\mathbf{X},\mathbf{Y}]$

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}^* - \widehat{\boldsymbol{\beta}}) \Big| [\mathbf{X}, \mathbf{Y}] \overset{\mathscr{D}(a.s.)}{\underset{n \to \infty}{\longleftrightarrow}} \sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$

• ex.: $H_0: \beta = 2$ vs $H_1: \beta \neq 2$

EIV with weakly dependent errors

- EIV with weakly dependent errors
- equivariant estimate

- EIV with weakly dependent errors
- equivariant estimate
- consistency and asymptotic normality

- EIV with weakly dependent errors
- equivariant estimate
- consistency and asymptotic normality
- MBB correctness

Bibliography

Merlevède, F. and M. Peligrad (2000)

The functional central limit theorem under the strong mixing condition.

Annals of Probability, 28(3):1336–1352.

Xuejun, W., et al. (2009)

Moment inequalities for φ -mixing sequences and its applications.

Journal of Inequalities and Applications, Volume 2009, Article ID 379743, 12 pages.