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Introduction

The idea of orthogonal decompositions in the growth curve
model appeared in 2009 in the papers of chinense
mathematicians Jianhua Hu, Ren-Dao Ye a Song-Gui Wang.
Many tasks, which are very difficult or impossible to handle in
basic models, can be done with ease in models consisting of
mutually orthogonal components.

Simple transformation can change a model into an equivalent
which allows to determine explicit forms of estimators and/or
their distribution.
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Introduction

The basic model is the growth curve model introduced in 1964
by Potthoff & Roy. It often appears in many areas (medicine,
biology, psychology, economics, . . .).

Model:
Y = XBZ + e ,

where

Yn×p is matrix of p-variate independent observations,
Xn×m and Zr×p are known design matrices (X is ANOVA matrix
and Z is a matrix of regression constants),
Bm×r is a matrix of unknown parameters of first order,
en×p is an error matrix.
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Introduction

Model:
Y = XBZ + e ,

E e = 0 ,
Var(vec e) = Σ⊗ I .

vec operator stacks elements of a matrix into a vector column-wise

and ⊗ denotes the Kroneckerov product of matrices.

We assume that e ′1, . . . , e
′
n are p-variate independent normally

distributed vectors with variance matrix Σ. Here ei denotes the
row of matrix e.
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Uniform correlation structure

There is no problem estimating Σ when it is completely
unknown. Under normality, its uniformly minimum variance
unbiased invariant estimator (UMVUIE) is

S =
1

n − r(X )
Y ′MXY ,

where MX = I − X (X ′X )−X ′.

Problems arise in situations when the structure is partially
known. One of the most common structures is the uniform
correlation structure:

Σ = σ2((1− ρ)Ip + ρ1p1′p),

where σ2 > 0 and ρ ∈
〈
− 1
p−1 , 1

〉
are unknown parameters.
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Uniform correlation structure

Žežula (2006) introduced simple estimators of both parameters
based on S :

σ̂2S =
Tr(S)

p
,

ρ̂S =
1
p − 1

(
1′S1
Tr(S)

− 1
)
.

Both estimators are based on unbiased estimating equations,
however, the estimator ρ̂S is biased, and the boundaries are
− 1
p−1 ≤ ρ̂S ≤ 1
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Uniform correlation structure

The properties of estimator of ρ̂S :

E ρ̂S = ρ− 2
n−r(X )ρ(1− ρ) 1+(p−1)ρ

p + O(n−2),

MSEρ̂S = 2
n−r(X ) ·

(1−ρ)2[1+(p−1)ρ]2

p(p−1) + O(n−2),
the distribution of ρ̂S was an open problem for a long time

Using the transformation

Zn =
1
2

ln

(
1
p−1 + ρ̂S

1− ρ̂S

)
,

asymptotic normality can be achieved.
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Uniform correlation structure

Žežula → used directly the basic model.
Ye&Wang → an idea to use not directly basic model but
modified model with orthogonal decomposition:

Y = Y1 + Y2,

where

Y1 = YP1 = XBZ ′P1 + e1,

Y2 = YM1 = XBZ ′M1 + e2.

Here 1 = (1, . . . , 1)′ a P1 = 1(1′1)−11′, M1 = I − P1.
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Uniform correlation structure

Then the estimators are based on

V1 = P1SP1, V2 = M1SM1 ,

S = 1
n−r(X )Y

′MXY is UMVUIE of Σ, the estimator on which are
based σ̂2S a ρ̂S .

The formulas:

σ̂2YW =
Tr (V1) + Tr (V2)

p
,

ρ̂YW = 1− p Tr (V2)
(p − 1) (Tr (V1) + Tr (V2))

,

Daniel Klein Orthogonal decompositions in the growth curve model



Uniform correlation structure

Then the estimators are based on

V1 = P1SP1, V2 = M1SM1 ,

S = 1
n−r(X )Y

′MXY is UMVUIE of Σ, the estimator on which are
based σ̂2S a ρ̂S .

The formulas:

σ̂2YW =
Tr (V1) + Tr (V2)

p
,

ρ̂YW = 1− p Tr (V2)
(p − 1) (Tr (V1) + Tr (V2))

,

Daniel Klein Orthogonal decompositions in the growth curve model



Uniform correlation structure

It is easy to show that this estimators are equivalent, i.e.
σ̂2S = σ̂2YW and ρ̂S = ρ̂YW for any Y .

However, orthogonal decomposition is very useful for derivation
of the distribution of estimators in an easy way:
Distributions of Tr (V1) and Tr (V2) are independent,

Tr (V1) ∼
σ2[1 + (p − 1)ρ]

n − r(X )
χ2n−r(X ),

Tr (V2) ∼
σ2(1− ρ)

n − r(X )
χ2(p−1)(n−r(X )),

so that

σ̂2 ∼ σ2

p(n − r(X ))

[
(1 + (p − 1)ρ)χ2n−r(X ) + (1− ρ)χ2(p−1)(n−r(X ))

]
,

1− ρ
1 + (p − 1)ρ

[
1 + (p − 1)ρ̂

1− ρ̂

]
∼ Fn−r(X ),(p−1)(n−r(X )) .
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Uniform correlation structure

This result is not very useful with respect to σ̂2, its distribution
depends on both σ2 and ρ, but enables us to test for any specific
value of ρ.

100(1− α)% confidence interval for ρ is given(
1− c1

1 + (p − 1)c1
;

1− c2
1 + (p − 1)c2

)
,

where

c1 =
1− ρ̂

1 + (p − 1)ρ̂
Fn−r(X ),(p−1)(n−r(X ))

(
1− α

2

)
and

c2 =
1− ρ̂

1 + (p − 1)ρ̂
Fn−r(X ),(p−1)(n−r(X ))

(α
2

)
.

Daniel Klein Orthogonal decompositions in the growth curve model



Example

Consider random sample from bivariate normal distribution with
the same variances in both dimensions.

Formally it can be written as GCM model with the uniform
correlation structure:

Y =

Y11 Y12...
...

Yn1 Yn2

 = 1n (µ1, µ2) I2 + e ,

e ∼ Nn×2
(

0n×2, σ2
(

1 ρ
ρ 1

)
⊗ In

)
.
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Example

Using the above mentioned estimator we get

ρ̂ =
2s12
s21 + s22

,

where s12 is sample covariance of the two variables, and s21 and
s22 sample variances.

This estimator is slightly more effective than standard sample
correlation coefficient (in the sense of MSE).
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Linearly structured covariance matrix

In fact, also M. Ohlson used orthogonal decomposition in deriving
the explicit estimators of linearly structured covariance matrix.

Σ = (σij) is linearly structured if the only linear structure
between the elements is given by |σij | = |σkl | and there exists at
least one (i , j) 6= (k , l) so that |σij | = |σkl |.
EXAMPLE: Toeplitz structure

Σ =

σ2 ρ1 ρ2
ρ1 σ2 ρ1
ρ2 ρ1 σ2


MLEs in such model must be found numerically.
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Linearly structured covariance matrix

Ohlson used the decomposition similar to Ye&Wang, but he
made use the decomposition of the space M(X ):

Y = Y1 + Y2,

where

Y1 = PXY = XBZ + e1,

Y2 = MXY = e2.

The idea is to decompose the total variation into two terms:
(n − r(X ))S and R̂ ′1R̂1, where

R̂1 = PXY (MS
−1
Z ′ )′.

The total variation is the sums of this two terms.
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Linearly structured covariance matrix

The first step: using the variation as when obtaining the
estimator for Σ in unstructured case, in fact, it is the estimator
of Σ in the model Y2 using least square method:

vec Σ̂1 = T ′(TT ′)−T vec S ,

where T is matrix so that T vec Σ = vec Σ(K ). Here vec Σ(K ) is
the columnwise vectorized form of Σ where all 0 and repeated
elements have been disregarded.

The final estimator is derived by the least square method using
the total variation (n − r(X ))S + R̂ ′1R̂1, with

R̂1 = PXY (MΣ̂−11
Z ′ )′.
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Extended model

The extended growth curve model (ECGM) with fixed effects
(sum-of-profiles model) is

Y =
k∑
i=1

XiBiZ ′i + e , e ∼ Nn×p (0,Σ⊗ In) .

Usually it is supposed that the column spaces of Xi ’s are ordered

M(Xk) ⊆ · · · ⊆ M(X1),

and nothing is said about different Zi ’s.

Now, the idea is to separate groups rather than models and so
consider

X ′i Xj = 0 ∀i 6= j .
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Extended model

Since we consider that Xi ’s are ANOVA matrices and all Xi ’s and
Zi ’s are of full rank, it can be shown that the two models are
equivalent:

X ′i s are 0− 1 matrices whose columns are indicators of different
groups,
we can assume that all columns of X1 are perpendicular and
columns of every Xi are a subset of columns of Xi−1,
we define

X ∗k = Xk ,

X ∗i = Xi�Xi+1, i = 1, . . . , k − 1.

Here Xi�Xi+1 consists of those columns of Xi which are not in
Xi+1.
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Extended model

Then we can reformulate the model

k∑
i=1

XiBiZi ′ =
k∑
j=1

X ∗j B
∗
j Z
∗
j
′,

where
Z ∗i = (Z1, . . . ,Zi ) , ∀ i = 1, . . . , k ,

which implies R(Z ∗1 ) ⊂ · · · ⊂ R(Z ∗k ).
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Extended model

EXAMPLE
Consider EGCM with two groups with different growth patterns –
linear and quadratic:

Yij = β1 + β2tj + eij , i = 1, . . . , n1 , j = 1, . . . , p ,

= β3 + β4tj + β5t2j + eij , i = n1 + 1, . . . , n1 + n2 , j = 1, . . . , p .

This model can be written as

Y =

(
1n1 0
0 1n2

)(
β1 β2
β3 β4

)(
1 . . . 1
t1 . . . tp

)
+

(
0
1n2

)
β5
(
t21 . . . t2p

)
+e,

or, by the new way, as

Y =

(
1n1
0

)
(β1, β2)

(
1 . . . 1
t1 . . . tp

)
+

(
0
1n2

)
(β3, β4, β5)

 1 . . . 1
t1 . . . tp
t21 . . . t2p

+e.
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Consider EGCM with two groups with different growth patterns –
linear and quadratic:

Yij = β1 + β2tj + eij , i = 1, . . . , n1 , j = 1, . . . , p ,

= β3 + β4tj + β5t2j + eij , i = n1 + 1, . . . , n1 + n2 , j = 1, . . . , p .

This model can be written as

Y =

(
1n1 0
0 1n2

)(
β1 β2
β3 β4

)(
1 . . . 1
t1 . . . tp

)
+

(
0
1n2

)
β5
(
t21 . . . t2p

)
+e,

or, by the new way, as

Y =

(
1n1
0

)
(β1, β2)

(
1 . . . 1
t1 . . . tp

)
+

(
0
1n2

)
(β3, β4, β5)

 1 . . . 1
t1 . . . tp
t21 . . . t2p

+e.
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Extended model

The model with a condition of perpendicular Xi ’s is much easier
to handle.

If all X ∗i ’s and Z ∗i ’s are of full rank, then all B∗i ’s are estimable
and unbiased LSE

B̂∗i =
(
X ∗i
′X ∗i
)−1 X ∗i ′YΣ−1Z ∗i

(
Z ∗i
′Σ−1Z ∗i

)−1
depend only on X ∗i and Z ∗i .
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Extended model

Such a closed form was difficult to obtain in the model with
ordered spaces of Xi ’s. Even for two components the estimators
are rather complicated:

B̂1 =
(
X1′X1

)−1 X1′YΣ−1Z1
(
Z1′Σ−1Z1

)−1
−
(
X1′X1

)−1 X1′PX2Y
(
P

Σ−1MΣ−1
Z1

Z2

)′
Σ−1Z1

(
Z1′Σ−1Z1

)−1
,

B̂2 =
(
X2′X2

)−1 X2′YΣ−1Z2
(
Z2′Σ−1MΣ−1

Z1 Z2
)−1

,

B̂1 and B̂2 depends on both Z1 and Z2, and B̂1 even on X2.
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Extended model

Also using Ohlson method the explicit estimator of linearly
structured covariance matrix can be found in an easy way:

vec Σ̂ = T+
((
T+
)′

Ψ̂′Ψ̂T+
)′

Ψ̂′ vec(Y − Ŷ )′(Y − Ŷ )

where
Ŷ = P(X1,...,Xk )Y

(
PS
−1

Z ′1
+ · · ·+ PS−1Z ′k

)′
,

Ψ̂ =
k∑
i=1

r(Xi )MS
−1

Z ′i
⊗MS−1Z ′i

+ (n −
∑
r(Xi ))I .
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Thank you for your attention
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