
ON ESTIMATING THE PROPORTION OF
FALSE HYPOTHESES IN MULTIPLE

TESTING PROCEDURE

Bobosharif Shokirov1

1Department of Probability and Mathematical Statistics
Faculty of Mathematics and Physics

Charles University in Prague

Robust 2010
31.01 – 5.02.2010, Králı́ky



Introduction
Motivation

Main Results

Content

1 Introduction

2 Motivation

3 Main Results

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction
FWER and it Modifications

Family-wise error rate (FWER)-the probability of committing one
or more false rejection (Hochnberg and Tahmane, 1987);

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction
FWER and it Modifications

Family-wise error rate (FWER)-the probability of committing one
or more false rejection (Hochnberg and Tahmane, 1987);
False discovery rate (FDR): expected value of false discovery
proportion (FDP), (Bejamini and Hochnberg, 1992)

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction
FWER and it Modifications

Family-wise error rate (FWER)-the probability of committing one
or more false rejection (Hochnberg and Tahmane, 1987);
False discovery rate (FDR): expected value of false discovery
proportion (FDP), (Bejamini and Hochnberg, 1992)

FDP is the number of false rejections, divided by the total number
of rejections;

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction
FWER and it Modifications

Family-wise error rate (FWER)-the probability of committing one
or more false rejection (Hochnberg and Tahmane, 1987);
False discovery rate (FDR): expected value of false discovery
proportion (FDP), (Bejamini and Hochnberg, 1992)

FDP is the number of false rejections, divided by the total number
of rejections;

Positive false discovery rate (pFDR): conditional expected value
of FDP on the event that positive findings have occurred (Storey,
2002).

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction
FWER and it Modifications

Family-wise error rate (FWER)-the probability of committing one
or more false rejection (Hochnberg and Tahmane, 1987);
False discovery rate (FDR): expected value of false discovery
proportion (FDP), (Bejamini and Hochnberg, 1992)

FDP is the number of false rejections, divided by the total number
of rejections;

Positive false discovery rate (pFDR): conditional expected value
of FDP on the event that positive findings have occurred (Storey,
2002).

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction
FWER and it Modifications

Family-wise error rate (FWER)-the probability of committing one
or more false rejection (Hochnberg and Tahmane, 1987);
False discovery rate (FDR): expected value of false discovery
proportion (FDP), (Bejamini and Hochnberg, 1992)

FDP is the number of false rejections, divided by the total number
of rejections;

Positive false discovery rate (pFDR): conditional expected value
of FDP on the event that positive findings have occurred (Storey,
2002).

Bobosharif Shokirov Robust 2010



Introduction
Motivation

Main Results

Introduction

Apart from these concepts for a large number of independently
tested hypotheses, based on the empirical distribution function of
the p-values of the tests, Meinhausen (2005) constructed the
lower bound λ for the estimate of the proportion of false
hypotheses, with the property

�(λ̂ ≤ λ) ≥ 1 − α, (1)

where 1 − α is a given confidence level.
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Apart from these concepts for a large number of independently
tested hypotheses, based on the empirical distribution function of
the p-values of the tests, Meinhausen (2005) constructed the
lower bound λ for the estimate of the proportion of false
hypotheses, with the property

�(λ̂ ≤ λ) ≥ 1 − α, (1)

where 1 − α is a given confidence level.

The message: proportion of false (null) hypotheses is at least λ̂.
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Motivation Example

Let us have n points (rv’s) from interval [0, 1]. Take a random variable
x ∈ [0, 1] and test the hypothesis:

H0 : x ∼ �[0, 1] against HA : x ∼ �[0, 1 − δ].

Then the share of points from the null hypothesis greater than x
would approximately be equal to 1 − x :
(number of points > x)/(n − k) ≈ 1 − x and the share of points from
the null hypothesis which are less than x would approximately be
equal to x : (number of points < x)/(n − k) ≈ x . Then the total
number of points which are less then x approximately equals to
x(n − k) + k and the total number of points which are greater then x
is approximately equal to (1 − x)(n − k). Thus, we have the
distribution of the random variable x on the whole interval [0, 1],
under both the null and the alternative hypotheses.
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Replace Uniform by df F(x) and G(x)

Having replaced �[0, 1] by df F (x) and G(x) such that

(A1) G(x) > F (x), ∀x ∈ [0, 1],

(A2) suppG(x) ⊂ [0, 1 − δ], for some δ > 0,

we obtain the following estimator of the ratio k/n in testing n
hypotheses:

p∗(x) = 1 − TZ (x)
n(1 − F (x))

, (2)

where TZ (x) = �[TnZ (x)] and TnZ (x) =
∑n

j=1 I{Zj>x};
I{Zj>x} indicator of the event

{
Zj > x

}
.
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Estimator the ratio k/n

Lemma

If condition (A1) holds, then the expected value of p∗(x) is defined as
following:

�[p∗(x)] = p
[
1 − 1 − G(x)

1 − F (x)

]
, (3)

where p = k/n.
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Corollary

For x ∈ (1 − δ, 1] p∗(x) is an unbiased estimator of p.
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Properties of the Estimator p∗(x)

Corollary

For x ∈ (1 − δ, 1] p∗(x) is an unbiased estimator of p.

Corollary

If in addition to condition (A1) the following condition holds

F ′(x)
1 − F (x)

≤ G′(x)
1 − G(x)

, (4)

then the expected value of p∗(x) is a monotonic nondecreasing on
the interval [0, 1] function.
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Properties of the Estimator p∗(x)

Corollary

Moreover, since

0 ≤ 1 − 1 − G(x)
1 − F (x)

≤ 1,

then 0 ≤ �[p∗(x)] ≤ p ∀x ∈ [0, 1].
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Standard Deviation of p∗(x)

σ2
p∗(x) = �[p

∗(x)]2 − [�p∗(x)]2. (5)
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Standard Deviation of p∗(x)

σ2
p∗(x) = �[p

∗(x)]2 − [�p∗(x)]2. (5)

Theorem

If the random vectors� and � are independent, then standard
deviation of the estimator p∗(x) has the form

σ2
p∗(x) =

(1 − p)F (x)
n(1 − F (x))

+
pG(x)(1 − G(x))

n(1 − F (x))2 , (6)
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Standard Deviation p∗(x)

Theorem

Let conditions (A1) and (A2) satisfied. Then the standard deviation
σ2

p∗(x), defined in Theorem 1 is a monotonic nondecreasing function
of x for all x ∈ [0, 1].
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