> Jakub Petrásek

Motivation and Modelling

Optimal Control

Economic Mod Theoretical Results

Modelling with Jump Processes and Optimal Control ROBUST 2010

Jakub Petrásek

Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s.,

petrasek@karlin.mff.cuni.cz

January 31 - February 5, 2010, Králíky

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> Jakub Petrásek

Motivation and Modelling

Optimal Control

Economic Mode Theoretical Results

Are continuous-time financial models satisfactory?

Empirical facts of financial time series:

- Sudden large movements, heavy tails
 - Diffusion models (DM): extremely large volatility term needs to be added, events cannot be accounted for
 - Jump models (JM): generic property

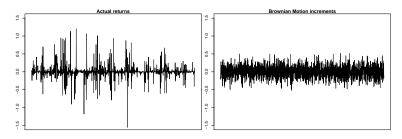


Figure: Left: Asset returns observed every 6 seconds. Right: Brownian motion increments with the same mean and variance.

nac.

> Jakub Petrásek

Motivation and Modelling

Optimal Control

Economic Mode Theoretical Results

Are continuous-time financial models satisfactory?

Empirical facts cont.:

- Volatility clustering
 - partially overcome by time change
- Asymmetric returns (respectively log returns)
 - JM: selecting appropriate model

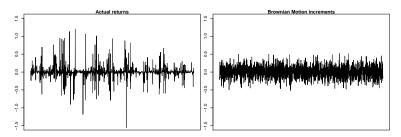


Figure: Left: Asset returns observed every 6 seconds. Right: Brownian motion increments with the same mean and variance.

nac.

э

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

> Jakub Petrásek

Motivation and Modelling

Optimal Control

Economic Model Theoretical Results

Optimal Control - Model set-up

An agent invests in two assets

- A riskfree bond that pays interest rate r,
- A risky asset with dynamics

$$\mathrm{d}S(t) = S(t^{-}) \left(\alpha \mathrm{d}t + \sigma \mathrm{d}W_t + \int_{-1}^{\infty} z \tilde{N}(\mathrm{d}t, \mathrm{d}z) \right). \quad (2.1)$$

An investor controls

- the number of stocks Δ_t in his portfolio,
- consumption $C_t \geq 0$,

for $t \geq 0$.

> Jakub Petrásek

Motivation and Modelling

Optimal Control

Economic Model Theoretical Results

Model set-up cont.

Notation

- $\theta_t = \frac{\Delta_t S_{t^-}}{X_{t^-}}$ is the proportion of capital invested in risky asset at time t,
- $c_t = \frac{C_t}{X_{t^-}}$ denotes the consumption proportion.

Objective

$$v(x) = \sup_{(\Delta_t, C_t) \in \mathcal{A}(x)} \int_0^\infty e^{-\beta t} \mathrm{E} U(C_t) \mathrm{d}t, \qquad (2.2)$$

where $\mathcal{A}(x)$ is the set of admissible strategies, β is a discount factor and U denotes a power utility function of the form

$$U(x) = \frac{x^{1-p}}{1-p}, \quad p > 0, \ p \neq 1.$$

> Jakub Petrásek

Motivation and Modelling

Optimal Control

Theoretical Results

Optimal Proportion and Consumption

Assume the wealth and consumption portfolio, p>1 and the objective (2.2). Let

$$\begin{split} \theta_p^* &= \operatorname*{argmin}_{\theta_p} h(\theta_p) = \operatorname*{argmin}_{\theta_p} \left\{ \alpha \theta_p (1-p) - \frac{1}{2} \sigma^2 \theta_p^2 p(1-p) \right. \\ &+ \int_{-1}^{\infty} \left((1+\theta_p z)^{1-p} - 1 - \theta_p z(1-p) \right) \nu(\mathrm{d}z) \right\}. \end{split}$$

If $\beta - r(1 - p) - h(\theta_p^*) > 0$ (finiteness of the value function) then • θ_p^* is the optimal proportion,

• $c^* = (K(1-p))^{-1/p}$ is the optimal consumption,

•
$$v(z) = K z^{1-p}$$
 is the value function,

where

$$\mathcal{K} = \frac{1}{1-p} \left(\frac{\beta - r(1-p) - h(\theta_p^*)}{p} \right)^{-p}.$$

> Jakub Petrásek

Motivation and Modelling

Optimal Control Economic M Theoretical Results

and p > 1. Then

Proposition

Let

Optimal proportion as a function of moments

$$\int_{-1}^{\infty} \sum_{k=2}^{\infty} \left| \binom{1-p}{k} \theta_p^k z^k \right| dz < \infty$$

$$\theta_p^* = \operatorname{argmin}_{\theta_p} \left\{ \alpha \theta_p (1-p) + \binom{1-p}{2} \theta_p^2 \sigma_J^2 + \sum_{k=3}^{\infty} \binom{1-p}{k} \theta_p^k \kappa_k \right\},$$

where

$$\sigma_J^2 = \sigma^2 + \int_{-1}^\infty z^2 \nu(dz),$$

 σ^2 is the volatility of the diffusion part, and κ_k is the k-th cumulant.

and Conclusion

Jakub Petrásek

Motivation and Modelling

Optimal Control Economic M Theoretical Results

Influence of two major moments on optimal behavior

- \bigcirc As skewness grows θ_p^* ascends (odd cumulants have negative sign for p > 1). Positive skewness is good for the investor.
- $\textcircled{\begin{tabular}{ll} \hline \vdots \\ \hline \end{array}}$ Effect of heavy tails: As kurtosis grows θ_p^* descends (even cumulants have positive sign).

? Is it possible to construct jump process with positive skewness so that $\theta_p^* > \theta_p^{*M}$ (Merton proportion)?

\Rightarrow See my poster!

 \Rightarrow Numerical study still needs to be finished.

> Jakub Petrásek

Motivation and Modelling

Optimal Control

Economic Mode

Theoretical Results

Thank you for attention

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ ○ へ へ
。