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Are continuous-time financial models
satisfactory?

Empirical facts of financial time series:

Sudden large movements, heavy tails

Diffusion models (DM): extremely large volatility term
needs to be added, events cannot be accounted for
Jump models (JM): generic property
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Figure: Left: Asset returns observed every 6 seconds. Right: Brownian
motion increments with the same mean and variance.
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Are continuous-time financial models
satisfactory?

Empirical facts cont.:

Volatility clustering

partially overcome by time change

Asymmetric returns (respectively log returns)

JM: selecting appropriate model
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Figure: Left: Asset returns observed every 6 seconds. Right: Brownian
motion increments with the same mean and variance.
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Petrásek

Motivation
and Modelling

Optimal
Control

Economic Model

Theoretical
Results

Optimal Control - Model set-up

An agent invests in two assets

A riskfree bond that pays interest rate r ,

A risky asset with dynamics

dS(t) = S(t−)

(
αdt + σdWt +

∫ ∞
−1

zÑ(dt,dz)

)
. (2.1)

An investor controls

the number of stocks ∆t in his portfolio,

consumption Ct ≥ 0,

for t ≥ 0.
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Model set-up cont.

Notation

θt =
∆tSt−
Xt−

is the proportion of capital invested in risky

asset at time t,

ct = Ct
Xt−

denotes the consumption proportion.

Objective

v(x) = sup
(∆t ,Ct)∈A(x)

∫ ∞
0

e−βtE U(Ct)dt, (2.2)

where A(x) is the set of admissible strategies, β is a discount
factor and U denotes a power utility function of the form

U(x) =
x1−p

1− p
, p > 0, p 6= 1.
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Optimal Proportion and Consumption

Assume the wealth and consumption portfolio, p > 1 and the
objective (2.2). Let

θ∗p = argmin
θp

h(θp) = argmin
θp

{
αθp(1− p)− 1

2
σ2θ2

pp(1− p)

+

∫ ∞
−1

(
(1 + θpz)1−p − 1− θpz(1− p)

)
ν(dz)

}
.

If β − r(1− p)− h(θ∗p) > 0 (finiteness of the value function) then

θ∗p is the optimal proportion,

c∗ = (K (1− p))−1/p is the optimal consumption,

v(z) = Kz1−p is the value function,

where

K =
1

1− p

(
β − r(1− p)− h(θ∗p)

p

)−p

.
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Optimal proportion as a function of
moments

Proposition

Let ∫ ∞
−1

∞∑
k=2

∣∣∣∣(1− p

k

)
θk
pzk

∣∣∣∣ dz <∞

and p > 1. Then

θ∗p = argmin
θp

{
αθp(1− p) +

(
1− p

2

)
θ2
pσ

2
J +

∞∑
k=3

(
1− p

k

)
θk
pκk

}
,

where

σ2
J = σ2 +

∫ ∞
−1

z2ν(dz),

σ2 is the volatility of the diffusion part, and κk is the k-th
cumulant.
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Conclusion

Influence of two major moments on optimal behavior

, As skewness grows θ∗p ascends (odd cumulants have
negative sign for p > 1). Positive skewness is good for the
investor.

/ Effect of heavy tails: As kurtosis grows θ∗p descends (even
cumulants have positive sign).

? Is it possible to construct jump process with positive
skewness so that θ∗p > θ∗Mp (Merton proportion)?

⇒ See my poster!

⇒ Numerical study still needs to be finished.
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