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REAL PROBLEM
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Real problem — collocation extraction

Our colleagues from the Institute of Formal and Applied Linguistics
(UFAL) are developing automatic method for two-word collocation

extraction from a text corpus PDT 2.0 comprising more than 2.108
annotated sentences.

Examples of bigram collocations

m visi otaznik — the question mark is hanging — open question
m mit pravdu — to have right — to be right

Data set available

m 2557 have been annotated as true collocations ...C4
m 9675 have been annotated as normal bigrams . .. Co
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Stochastic point of view

Classification approach

Candidate’s chance to be a true collocation is evaluated using a so
called association measure Y = Y(g,9). (= hyperparameter)
These measures are supposed to separate Co and Cy linearly

Y>9 = g€
Y<i¥=gelo

for a collocation candidate g and an arbitrary threshold 9 € R.

Decision problem

The problem can be seen as a statistical decision g € Cp against
g € Cq with a “critical value” ¥

General aim

To measure/display overall performance of Y for varying
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Analogy with statistical testing

Choice of 9

Y>9= ge(4
Y<i9=gelo

Small values of ¥

m C; is “preferred”
m the primary interest in “high power”

m almost all true collocations are labeled with a big amount of
wrongly labeled normal words — very fine translation

Large values of ¥

m the primary interest in “small level”

m only the most evident true collocations are labeled with a small
amount of misclassified normal words — rough translation
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ROC REMINDER
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Two-sample classification

C ... set of objects Fori=1,...,n
BC=CUCy, ConNCy =0
m Cp ... class without condition ith object & Co _ G = 0
m C; ... class with condition Cq 1

Existence of considered event
m illness
m bonita etc.
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Linear classifier

Diagnostic variable Y Treshold value 9 and decision

m (discriminant) score, marker

etc.
~ 0 if Y<UV
. . : B9 — <
m evaluation of object properties () {1 t YS9, 0cR
Hyperparameter

m given by classification method used up to the value of
= hyperparameter a € A

Y: XxA—R

(x,a)T — Yy

m covers most typical methods as
LDA, QDA, FLDA, LogReg, NNet, SVM, ...
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Evaluation of classifier

Representation of classifier

m diagnostic variable Y
m fixed choice of hyperparameter « . .. training

Description of behavior

m for one ¥ = one classification ... = traditional criteria
(Acc, Err, risk)

m for all 4 € R = all possible classifications ... ROC curve
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ROC curve definition

RANGE OF VALUES

r: R—[0,1] x [0,1]
9 — [FPR(W), TPR(9)] = [1 — Fo(9), 1 — F1(9)]

True Positive Rate sensitivity, recall, hit rate

TPR(9) =P (G(Y,9) =1|G=1) =1-F(v)

False Positive Rate nonspecificity, fallout, alarm rate

FPR(Y) = P (G(Y,9) = 1] G=0) = 1 - Fo(v)

[Foy)=P(Y<y|G=0)] and [Fi(y)=P(Y<y[G=1)]




ROC curve definition

Theoretical ROC curve is the range of

o(+; Fo,F1): R— [0,1] x [0,1]
9 [1—Fo(19),1 —F1(19)].

where

Itis a curve in [0, 1] x [0, 1] square consisting of 1 — F1(¥) on the
vertical axis plotted against 1 — Fy(¢) on the horizontal axis Vt € R

ROCy — {re 0,12 : 3 R  o(9; Fo, F1) = r}
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Collocation extraction revisited

To measure/display overall performance of Y for varying 4.

Rough translation

A ... most evident collocations are
labeled; level 5 %, power 40 %

1
0.8
0.6

0.4

Fine translation

B ...almost all collocations are
labeled; level 40 %, power 95 %

0.2

1 — Fy(9) : TRUE POSITIVE RATE

0

0 02 04 06 08 1
1 — Fo(¥) : FALSE POSITIVE RATE

Fo(¥) = P(Y < 9|Co)=P(Yo <) & Fi(9) =P(Y <9|C1)=P(Y; < V)




Examples of ROC curves
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Alternative definition

ROC curve — TPR as function of FPR

ROC(¢) = TPR(¢) =1~ Fi(F; '(1-9)),
where £ :=FPR € [0, 1]

m Assumptions

m F and F; are absolutely continuous (may be weakened)
m supports fy and f; are identical

m used in parametric models

TPR=1-Fi(Fy'(1 = FPR)) =1— F(Fy '(1 — (1 — Fo(v))))
—1- F(9) = TPR()

J. Antoch et al. O testovani shody ROC kfivek



NONPARAMETRIC APPROACH
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ROC curves and confusion matrix

Result of classification for fixed ¥ = Jg

Reality g € Cp (negatives) g € Cq1 (positives)
g € Co (negatives) | true negatives TN(v¥p) | false positives FP(dg)

g < C1 (positives) | false negatives FN(vJg) | true positives TP(Jg)

False positive rate

1
Fp(ﬁo) w 0.8
FPR = &
TN(Wo) + FP(o) z
2 0.6
E
38
True positive rate o 04
2
K o2
TPR= —_ (%)
TP(Yo) + FN(vo) 0

0 0.2 04 0.6 08 1
FALSE POSITIVE RATE
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ROC curves and confusion matrix (cont.)

False positive rate

il
(Vo) :
FP(do w
FPR =
TN(Jo) + FP(do) £
o
o
=
True positive rate T
=
TP(do) w
TPR = \
TP(Yo) + FN(9o) -
0 0.2 0.4 0.6 0.8 1
1 — Fo(¥); FALSE POSITIVE RATE
FP(v) 1

1 & o
TN®W) +FP(W) — no FP(v) = ™ ;H(Yo:' >t =1-F(9), VIER,

TP(’l?) B 1 B 1 n B R
W_ETP&?)_E;H(YN>t)—1*F1(19), v € R.
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UFAL ROC curves
Linguistic collocation
measures

Linguist in UFAL use 86
different association
measures for collocation
extraction.
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1 — Fo(¥); FALSE POSITIVE RATE

1 — Fi(v); TRUE POSITIVE RATE

Tasks for statisticians

m How to compare these measures?

m How to detect groups (clusters) of collocation measures that
behave analogously?

J. Antoch et al. O testovani shody ROC kfivek



Typical linguistic ROC curves




Basic situation — reminder

m Diagnostic variable Y with conditional cdfs Fo(?) and F1(9), i.e.
Fr(9) =P(Y <9|Ck) =P(Yx <9), k=0,1

B Yp and Y; follow continuous distributions with densities f(¢) and
fi() such that f(¢) > 0, f1(¢) > 0 on the same interval Zy C R.
® Yy and Y; are independent.

Theoretical ROC curve is the range of

o(+; Fo,F1): R— [0,1] x [0, 1]
9 [1 — Fo(9),1 — F (19)]

ROCy ={re[0,1]2: 3 e R o(V; Fo,F1) =r}
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Equivalence test — setting for two ROC curves

Two ROC curves

m ROCy ={re[0,12: 3 eR o9; Fo,F1) =r}
m ROCz;={re[0,12: 3 R o(¥; Go, Gy) =r}

Observed data

m ng objects from Cy and ny objects from C;
m For each object two (different) measures Y and Z are evaluated

m It yields samples Yo1, ..., Yon, distributed according to Fy(#), and
Yi1,..., Yin, distributed according to F1 (%)

m Analogously, Z1, . .., Zon, — €ach follows Go(¥), and
Z117' o '7Z1n1 ~ G1(19)
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Equivalence test — idea

Equivalence of two ROC curves

for us means that for any ry € ROCy exists r> € ROC such that
ry =rz
i.e.

ROCy =ROC,; <+—
Vty € Zy Aty € 7 : Fo(ty) = Go(tz) and F1(ty) = G1(tz)

Transformation function

Define 19, 7 : Zy — Z7 such that

70(9) = Gy ' (F(¥)) and m(9) = Gy ' (Fi1(¥) W € Zy.
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Equivalence test — formal definition

Hypothesis

ROC curves are equivalent if and only if 7o(¢) = 74 (9), i.e.

H:VYely T0(9) = ™1 (),

Alternative

We aim to test H against the alternative
A:3Ty CIy, Iy 0 1(9) #m(9) V9Iely

70(9) = Gy ' (Fo(¥)) and m(0) = Gy (Fi(9)) VI € Zy.
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Equivalence test — test statistic

Test statistic

W) =Gy ' (Fo(9), #(®) =G ' (), ey,
I:'k(ﬁ) and ék(ﬁ), k = 0,1, denote the empirical distribution functions,
Gy '(u) =inf{t: Gk(9) > u}, k=0,1,
and closed interval Z} C Zy is chosen such that

0< go(m0(¥)) < o0, 0< g (r1(d)) <oo, VI E€Ty.
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Equivalence test — test statistic

Theorem

Under the null hypothesis, the test statistic T converges weakly to the
infinite weighted sums of independent x? variables 72,73, ...

n—oo

T % 7B= Z)\,-n]?,

where {);} represent the eigenvalues of the covariance operator of
the zero mean gaussian process B(t) with the covariance structure

Fo(s)(1 — Fo(t)) Fi(s)(1— Fi(t))
"B () g (o) oS m0) "

Co, C1 are positive constants.

cov(B(s), B(t)) =
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Equivalence test — critical values

To obtain (asymptotic) critical values we need

to estimate eigenvalues {);}

to evaluate the distribution function of a weighted sum of x?
variables

To estimate the covariance structure and \;’s

Fo(s)(1 —Fo() F(9)(1 — F(1)
9o (70(S)) 9o (7o(t)) gi(F(9) g (7 (D)’

fors,te {t,...,t,} C Zy, with gk, k = 0,1, being density kernel
estimators. The spectral decomposition of the matrix

(cov (B(0). B(1)))’

cov (B(s). B(1)) = co

=1
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Equivalence test — Monte Carlo critical values

Trimming and Monte Carlo

Suppose that eigenvalues )4, ..., A\, are estimated. It allows an
approximation of T8 by its first J estimated components

J
TB ~ Z)\j’r]jz = SJ.
j=1

As distribution of S is not explicitly known, we perform Monte Carlo
simulations in order to obtain the corresponding quantiles.
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Proximity matrix for linguistic association measures

Application on linguistic association measures

We applied our test on all pairs of 86 collocation association
measures and used 1 — p-value as the proximity distance between
two ROC curves.
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Collocation extraction — selected results

Proximity matrix and dendrogram

Rearranged (permuted) proximity matrix and the corresponding
dendrogram, both providing insight ideas on natural similarity clusters
of the observed ROC curves.
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Equivalent classes of selected collocation rules
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Equivalent classes of collocation rules
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Lingustic problem — summary

m ROC curves are useful to display overall performance of a binary
classifier

m ROC curve has a theoretical definition

m Statistical theory helps to understand properties of ROC curves
and derive new analytical methods

m Our test is essentially based on a proper definition of a ROC
curve. However, even straightforward ideas lead to quite
complicated theoretical tasks

m Our test can be used to cluster ROC curves

m Clusters may serve to construct a superclassifer more efficient
than individual measures

J. Antoch et al. O testovani shody ROC kfivek



DEKUJI

ch et al. O testovani shody ROC kfivek



