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1) Logistic regression

@ Introduction

Testing a risk factor: we want to check whether a certain factor adds
to the probability of outbreak of a disease.

This corresponds to the following contingency table:

. disease status
risk factor g . sum
ill | not ill
exposed N1y Ni> N1io
unexposed N2 N2 N20
sum No1 No2 n
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1) Logistic regression

@ Introduction

Testing a risk factor: we want to check whether a certain factor adds
to the probability of outbreak of a disease.

This corresponds to the following contingency table:

. disease status
risk factor - —— sum
il | notill
exposed N11 N2 N1o
unexposed No1 Noo Noo
sum No1 Np2 n
@ Odds of the outbreak for both groups are:
n N N
N1t o P1 P2
01 = = it = —, 0y = =
Nio — N11 e 1-m 1-p2
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1) Logistic regression

@ As a measure of the risk, we can form odds ratio :

0 P 1-P
o2 1-p1 po2
01 =0R -0,

OR

I. Zezula Robust 2010



Introduction
Logistic regression 33 model

1) Logistic regression

@ As a measure of the risk, we can form odds ratio :

0 P 1-P
o2 1-p1 po2
01 =0R -0,

OR

@ Then, it holds

log (0;) = log (02) + log (OR),
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1) Logistic regression

@ As a measure of the risk, we can form odds ratio :

0 P 1-P
o2 1-p1 po2
01 =0R -0,

OR

@ Then, it holds
log (01) = log (02) + log (OR),

@ or
y =log(02) + log (OR) - x,

where x € {0,1} andy € {log(01),log (02)}.
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1) Logistic regression

@ This is the basic logistic model. Formally it is a regression model

Yy = Bo + p1X

with baseline Sy = log (02) and slope $1 = log (OR) — effect of
the exposure.
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1) Logistic regression

@ This is the basic logistic model. Formally it is a regression model

Yy = Bo + p1X

with baseline Sy = log (02) and slope $1 = log (OR) — effect of
the exposure.

@ If we denote the probability of the event (outbreak of the disease)
by p, then

log (%p) = fo + P1X

in either group.
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Logistic regression

1) Logistic regression

@ This is the basic logistic model. Formally it is a regression model

Yy = Bo + p1X

with baseline Sy = log (02) and slope $1 = log (OR) — effect of
the exposure.
@ If we denote the probability of the event (outbreak of the disease)
by p, then
P\ _
log (1 p) = fo + p1X

in either group.
@ It follows

__exp(fot+pix) _ 1
~1+exp(Bo+pix)  1+exp(—fo— pix)
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1) Logistic regression

@ Estimation is done via ML-method. Likelihood of observed
frequencies for given g’s is

n w—ny (N 21 20 —N21
L(ﬂ) = (nii) p;-‘ll (1 . pl)n o—n <n§i> pg (1 N pZ)n 0—N
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1) Logistic regression

@ Estimation is done via ML-method. Likelihood of observed
frequencies for given g’s is

n w—ny (N 21 20 —N21
L(ﬂ) = (nii) p;-‘ll (1 . pl)n o—n <n§i> pg (1 N pZ)n 0—N
@ Then

{(B) =logL(B) = n11log(p1) + nizlog (1 — p1) +
+ Ng1log (p2) + N2z log (1 — p2)
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1) Logistic regression

@ Estimation is done via ML-method. Likelihood of observed
frequencies for given g’s is

n w—ny (N 21 20 —N21
L(ﬂ) = (nii) p;-‘ll (1 . pl)n o—n <n§i> pg (1 N pZ)n 0—N
@ Then

{(B) =logL(B) = n11log(p1) + nizlog (1 — p1) +
+ Ng1log (p2) + N2z log (1 — p2)

@ It is easy to derive that ML-equations are

o
b1

=nN11 — NP1 =0, N1oP1 + N2t — NP2 =0

o L
8ﬂ0_ 11
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1) Logistic regression

: . . N
@ In this case we already know the solution, p; = n—ll and p, = =
10

N20
(and corresponding 's).
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1) Logistic regression

: . . N
@ In this case we already know the solution, p; = n—ll and p, = n21
10 20

(and corresponding 's).

@ Asymptotic variance matrix of 3’s can also be established. In this

case it is .
Bo o1-1 i a —a
var(Bl>_J = \—a atb)’

where a = ngP1 (1 — P1), b = nzoP2 (1 — P2).
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1) Logistic regression

: . . N
@ In this case we already know the solution, p; = n—ll and p, = =
10

N20
(and corresponding 's).

@ Asymptotic variance matrix of 3’s can also be established. In this

case it is .
Bo o1-1 i a —a
var(Bl>_J = \—a atb)’

where a = ngP1 (1 — P1), b = nzoP2 (1 — P2).

oJ= <a;t b Z) is the information matrix.
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1) Logistic regression

@ Example: Baystate Medical Center in Springfield, MA, studied
factors influencing low birth weights of babies. Let us take as a
risk factor smoking during pregnancy. We get the following

contingency table:

. low birth weight
smoking sum
yes no
exposed 30 44 74
unexposed 29 86 115
sum 59 130 159
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1) Logistic regression

@ Example: Baystate Medical Center in Springfield, MA, studied
factors influencing low birth weights of babies. Let us take as a
risk factor smoking during pregnancy. We get the following
contingency table:

low birth weight

smoking sum
yes [ no
exposed 30 44 74
unexposed 29 86 115
sum 59 130 159

@ Odds for the unexposed is 0; = 30/44 = 0.681818, for the
exposed 0, = 29/86 = 0.337209, OR = 2.021644. Sakoda
coefficient S = 0.225344 indicates moderate association, but
statistically significant (x? = 4.92 > 3.84 = x2(0.05)).
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1) Logistic regression

@ Aslog(2.021644) = 0.7040592, log(0.337209) = —1.087051,
we get the model

y = —1.087 + 0.704x.

I. Zezula Robust 2010



Introduction
Logistic regression Basic model
ore general predictors

1) Logistic regression

@ Aslog(2.021644) = 0.7040592, log(0.337209) = —1.087051,
we get the model

y = —1.087 + 0.704x.

@ Software gets

coefficient | std. error z P> |z] 95% conf. interval
smoking | 0.7040592 | 0.319639 | 2.20 0.028 0.077579 | 1.330539
constant | -1.087051 | 0.21473 | -5.06 | 0.000 -1.50791 | -0.66619
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1) Logistic regression

@ Aslog(2.021644) = 0.7040592, log(0.337209) = —1.087051,
we get the model

y = —1.087 + 0.704x.

@ Software gets

coefficient | std. error z P> |z] 95% conf. interval
smoking | 0.7040592 | 0.319639 | 2.20 0.028 0.077579 | 1.330539
constant | -1.087051 | 0.21473 | -5.06 | 0.000 -1.50791 | -0.66619

@ We can also get 95% CI for the OR:

[60'077579;61'330539] _ [108v 378]
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1) Logistic regression

General categorical predictor:

There are more probabilities to estimate. Let the predictor have m
categories:

® 0 =nj1/Niz, i=1,....m
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1) Logistic regression

General categorical predictor:

There are more probabilities to estimate. Let the predictor have m
categories:

® 0 =nj1/Niz, i=1,....m

o Iog(ORi):Iogg—i:ﬂi,i:l,...,mfl
m
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1) Logistic regression

General categorical predictor:

There are more probabilities to estimate. Let the predictor have m
categories:

® 0 =nj1/Niz, i=1,....m
(¢]] .

@ log(ORj)=log— =4;,i=1,....m-1
Om

Then,
Yy =fBo+ X1+ + Bm—1Xm—1,

where all x; € {0, 1}, but only one of them can be 1 at a time.

I. Zezula Robust 2010



Logistic regression

1) Logistic regression

General categorical predictor:

There are more probabilities to estimate. Let the predictor have m
categories:

® 0 =nj1/Niz, i=1,....m
(¢]] .

@ log(ORj)=log— =4;,i=1,....m-1
Om

Then,
Yy =fBo+ X1+ + Bm—1Xm—1,

where all x; € {0, 1}, but only one of them can be 1 at a time.

One category out of m has to be a reference category. One
explanatory variable is replaced by m-1 indicator variables of other
categories, which are mutually exclusive. Significance of a regression
coefficient indicates significant difference between corresponding
category and the reference category (differential effect of the
category).
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1) Logistic regression

Example: Let us take mother’s weight (grouped in 3 categories) as a
risk factor of child’s low birth weight. We get

weight group low birth weight sum || row percentages
yes no

<110 25 28 53 47.2% | 52.8%

(110;150] 27 73 100 || 27.0% | 73.0%

> 150 7 29 36 19.4% | 80.6%

sum 59 130 189 || 31.2% | 68.8%

Changing row percentages show that mother’s weight can be a risk
factor.
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1) Logistic regression

Software output for the 3rd category as the reference:

variable coefficient std. error Wald df p-value
wt_groups 9.073891 | 2 | 0.010706
wt_groups(1l) | 1.308056995 | 0.503044916 | 6.761449 | 1 | 0.009315
wt_groups(2) | 0.426763105 | 0.477572579 | 0.798537 | 1 | 0.371531
constant -1.42138568 | 0.421117444 | 11.39246 | 1 | 0.000737
Software output for the 1st category as the reference:

variable coefficient std. error Wald df p-value
wt_groups 9.073891 | 2 | 0.010706
wt_groups(2) | -0.88129389 | 0.355598021 | 6.142184 | 1 | 0.013199
wt_groups(3) -1.308057 0.503044916 | 6.761449 | 1 | 0.009315
constant -0.11332869 0.27516229 0.16963 1 | 0.680441

Symbolically, for the impact of weight groups holds 1 # {2, 3} at 5%
level. Weight as a factor also is significant.
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1) Logistic regression

Quantitative predictor:

If we have quantitative explanatory variable influencing the probability
of the outcome, we simply assume that p is a (continuous) function of
X:

log (ﬁ) = fo + P1x
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Logistic regression

1) Logistic regression

Quantitative predictor:

If we have quantitative explanatory variable influencing the probability
of the outcome, we simply assume that p is a (continuous) function of
X:

log (ﬁ) = fo + P1x

The regression coefficient of x is interpreted as effect of 1 unit change
in X on the outcome.
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1) Logistic regression

Quantitative predictor:

If we have quantitative explanatory variable influencing the probability
of the outcome, we simply assume that p is a (continuous) function of
X:

log (ﬁ) = fo + P1x

The regression coefficient of x is interpreted as effect of 1 unit change
in X on the outcome.

Logistic transformation p — log (1%) is
from (0; 1) to (—oo; +00), so thatitremoves *
restrictions harming regression.

Aod RoB O R N W Ao

cdl
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1) Logistic regression

Example: Let us take mother’s weight as a continuous risk factor of
child’s low birth weight.
Software gets:

variable coefficient std. error Wald df p-value
Iwt -0.01405826 | 0.006169588 | 5.192193 | 1 | 0.022689
constant | 0.998314313 | 0.78529092 | 1.616119 | 1 | 0.203634

Mother’s weight is again significant.
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1) Logistic regression

Example: Let us take mother’s weight as a continuous risk factor of
child’s low birth weight.
Software gets:

variable coefficient std. error Wald df p-value
Iwt -0.01405826 | 0.006169588 | 5.192193 | 1 | 0.022689
constant | 0.998314313 | 0.78529092 | 1.616119 | 1 | 0.203634

Mother’s weight is again significant.

Example: Effect of anti-pneumococcus  °°

serum on survival of ill mice was studied. — es\
Five different doses were administered to ..
five groups of 40 mice. Plot shows the ,
death rates, simple linear regression line, .
and logistic regression curve. W ne o oo gm
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1) Logistic regression

General logistic regression model:

@ We have dichotomic dependent variable Y and explanatory
variables X1, Xz, ..., Xk of any type. We want to explain and/or
predict the behaviour of Y using the explanatory variables.
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1) Logistic regression

General logistic regression model:

@ We have dichotomic dependent variable Y and explanatory

variables X1, Xz, ..., Xk of any type. We want to explain and/or
predict the behaviour of Y using the explanatory variables.
@ Model:

log (1p_p) = fo + B1 X1 + -+ 4 B X
or (taking Xo = 1)

o exp (Z}(:oﬂjxii) B 1

= 1t exp (Z}(:O ﬂinj) a 1+exp (f Z}(:o ﬂinj)
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1) Logistic regression

General logistic regression model:

@ We have dichotomic dependent variable Y and explanatory

variables X1, Xz, ..., Xk of any type. We want to explain and/or
predict the behaviour of Y using the explanatory variables.
@ Model:

log (_1pp) = fBo + B1Xe 4 -+ + B Xk
or (taking Xo = 1)
. exp (Z}(:o ﬂqu) B 1
o k - k
1+ exp (Zj:O ﬂinj) 1+ exp (7 21:0 ﬂinj)

@ Estimation of parameters is done via ML-method

Pi
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1) Logistic regression

@ Likelihood of observed frequencies for given 5's is

L(8) = H pY (L —p)t
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1) Logistic regression

@ Likelihood of observed frequencies for given 5's is

n
_ Hpii (1 _ pi)l*yi
i=1
@ Then

{(B) =log L(5 Zy.log pi) + (1 —yi)log (1 —pi)
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eneral predictors
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ciation

1) Logistic regression

@ Likelihood of observed frequencies for given 5's is

=[Ie"@-p)
i=1
@ Then
() = log L(5 Zy. log (pi) + (1 —yi)log (1 — pi)

@ The ML-equations are

5—; =20 =0
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1) Logistic regression

@ In general, these equations are solved numerically
(Newton-Raphson type algorithm).
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1) Logistic regression

@ In general, these equations are solved numerically
(Newton-Raphson type algorithm).

@ Letus denote X = {x;}, V =diag {p1,...,Pn}. Information
matrix is
J = X'VX

and J—! is the asymptotic variance matrix of 3.
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1) Logistic regression

@ In general, these equations are solved numerically
(Newton-Raphson type algorithm).

@ Letus denote X = {x;}, V =diag {p1,...,Pn}. Information
matrix is
J =X'VX
and J—! is the asymptotic variance matrix of 3.

@ If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.
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1) Logistic regression

@ In general, these equations are solved numerically
(Newton-Raphson type algorithm).

@ Letus denote X = {x;}, V =diag {p1,...,Pn}. Information
matrix is
J =X'VX
and J—! is the asymptotic variance matrix of 3.

@ If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.

@ Pros & cons:
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1) Logistic regression

@ In general, these equations are solved numerically
(Newton-Raphson type algorithm).

@ Letus denote X = {x;}, V =diag {p1,...,Pn}. Information
matrix is
J =X'VX
and J—! is the asymptotic variance matrix of 3.

@ If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.

@ Pros & cons:
— no closed form formulas, iterative estimation
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1) Logistic regression

@ In general, these equations are solved numerically
(Newton-Raphson type algorithm).

@ Letus denote X = {x;}, V =diag {p1,...,Pn}. Information
matrix is
J =X'VX
and J—! is the asymptotic variance matrix of 3.

@ If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.

@ Pros & cons:

— no closed form formulas, iterative estimation
+ approximate variances, p-values and Cl available

I. Zezula Robust 2010
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1) Logistic regression

@ Wald test of a coefficient:
If Ho : 5, = 0 holds, then

has asymptotically N(O; 1).
There is alternative chi-square form (Z?2).
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predictors

Tests of association

1) Logistic regression

@ Wald test of a coefficient:
If Ho : 5, = 0 holds, then

has asymptotically N(O; 1).

There is alternative chi-square form (Z?2).
@ Likelihood ratio test:

Notions:

@ estimated model — model with predictors
@ empty model — model without predictors, just with intercept
o full model — model predicting nioPi = niy Vi, t.j. §i = v; Vi
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1) Logistic regression

Deviance:

b = log Ly = log L(estimated model),
ls = log Lt = log L(full model)
Dy = 2 (éf - Em) — 2log (tf/tm)
For binomial data, Dy, is @ measure of goodness-of-fit of the model.

Asymptotically,
Dm ~ X5 k1

I. Zezula Robust 2010
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1) Logistic regression

Deviance:
b = log Ly = log L(estimated model),
s = log s = log L(full model)
Dy = 2 (éf - Em) — 2log (tf/tm)
For binomial data, Dy, is @ measure of goodness-of-fit of the model.

Asymptotically,
Dm ~ X5 k1

For all kinds of models, deviance difference is used for comparison of
nested models (LRT of significance of added predictors):

Dm; — Dm, =2 (é\mz - gml) ~ Xﬁz—k1

I. Zezula Robust 2010
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1) Logistic regression

Example: Let us consider low birth weight data with risk factor
smoking. Software tell us that

/1 =log Ly = log L(estimated model) = —114.9023,
fo = log Ly = log L(empty model) = —117.336.
If Ho : 51 = 0 holds, then
2 (@1 — éo) — 2log <t—;> ~ 2
We have
AD = 2(~114.9023 + 117.336) — 4.8674 > 3.84 = 12(0.05),

so that the association between smoking and low birth weight is
significant.
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1) Logistic regression

Interactions

Logistic regression model allows to include (and test) interactions of
categorical variables. If variable X has c categories and variable Z d
categories, then the interaction X « Z has (c — 1)(d — 1) categories.
They are all possible combinations of non-reference categories of X
and Z.
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1) Logistic regression

Interactions

Logistic regression model allows to include (and test) interactions of
categorical variables. If variable X has c categories and variable Z d
categories, then the interaction X « Z has (c — 1)(d — 1) categories.
They are all possible combinations of non-reference categories of X
and Z.

Interactions are tested via Wald test or LRT as any other variable.
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Tests of association

1) Logistic regression

Interactions

Logistic regression model allows to include (and test) interactions of
categorical variables. If variable X has c categories and variable Z d
categories, then the interaction X « Z has (c — 1)(d — 1) categories.
They are all possible combinations of non-reference categories of X
and Z.

Interactions are tested via Wald test or LRT as any other variable.

If an interaction is significant, the significance of the original
constituent variables has no interpretation, nor meaning. The effects
are crossed, and we have only two ways to handle the situation:
© Perform stratification and do separate analyses in different strata.
@ Introduce a new variable, which operates on the cross-product of
the crossed variables (the interaction variable), and omit the
interacting variables.
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1) Logistic regression

Measures of goodness-of-fit
Let /o = log Lo = log L(empty model).
@ McFadden RZ- =1 — %—m
0

I. Zezula Robust 2010



Introduction
Logistic regression

Tests of association

1) Logistic regression

Measures of goodness-of-fit
Let /o = log Lo = log L(empty model).
@ McFadden RZ- =1 — %—m
0

EIN)

A

@ Cox&SnellRZ; =1— [ =~
m
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1) Logistic regression

Measures of goodness-of-fit
Let /o = log Lo = log L(empty model).

¢
@ McFaddenRZ. =1 — -
to
@ Cox&SnellRZ; =1— [ =~
Lm
2 R%S
@ Nagelkerke Rj = —=5
-4
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1) Logistic regression

Measures of goodness-of-fit
Let /o = log Lo = log L(empty model).
6

0

@ McFadden RZ- =1 —

@ Cox & Snell R(%S:1< )

@ Nagelkerke RZ = S

1- Lg

@ Hosmer-Lemeshow test (chi-square test of goodness-of-fit in
contingency table between the outcome variable and groups of

predicted values)
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predictors

Tests of association

1) Logistic regression

Alternatives

Logistic function is not the only one used for transformation of
probabilities of binary outcomes. Most used are:

@ logistic function log (1L>

@ probit function ®~1(p)

@ complementary log-log function
log(—log(1 - p))

@ negative log-log function
—log(—log(p))

@ cauchit function tan ((p — %) )

N N

— probit

com. log-log

_— logit

They are called link functions. o
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2) Multinomial regression

@ Example: From 1991 U.S. General Social Survey data, we want
to check whether sex of a respondent influences the probabilities
of life satisfaction feelings.

We get the following contingency table:
life satisfaction
exiting | routine | dull
male 213 200 12 425
female 221 305 29 555
sum 434 505 41 980

sum

sex
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2) Multinomial regression

@ Example: From 1991 U.S. General Social Survey data, we want
to check whether sex of a respondent influences the probabilities
of life satisfaction feelings.

We get the following contingency table:
life satisfaction
exiting | routine | dull
male 213 200 12 425
female 221 305 29 555
sum 434 505 41 980

@ Sometimes it may have sense to solve such a problem by a
series of binary models:

sex sum
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oduction

Multinomial regression
and overdispersion

2) Multinomial regression

@ Example: From 1991 U.S. General Social Survey data, we want
to check whether sex of a respondent influences the probabilities
of life satisfaction feelings.

We get the following contingency table:
life satisfaction
exiting | routine | dull
male 213 200 12 425
female 221 305 29 555
sum 434 505 41 980
@ Sometimes it may have sense to solve such a problem by a
series of binary models:
© life is exiting — not exiting
@ not exiting life: routine — dull

sex sum
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t and overdispersion

2) Multinomial regression

@ Or, we have to consider more probabilities and more odds. In our
example, we have to consider two multinomial distributions
(P11, P12, P13) @nd (P21, P22, P23), describing the probabilities of
life satisfaction feelings for males and females, respectively. The
simplest way is to choose one response category as a reference
— say exciting life — because one of the probabilities in each row
is redundant.
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Multinomial regression
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2) Multinomial regression

@ Or, we have to consider more probabilities and more odds. In our
example, we have to consider two multinomial distributions
(P11, P12, P13) @nd (P21, P22, P23), describing the probabilities of
life satisfaction feelings for males and females, respectively. The
simplest way is to choose one response category as a reference
— say exciting life — because one of the probabilities in each row
is redundant.

@ Then, the model is
Pi \ _ o i
|Og - ﬂOJ + ﬂl]xl , 1= 273a
Pi1

where x; € {0, 1} is the indicator of sex.

I. Zezula Robust 2010



Multinomial regression
fit and overdispersion

2) Multinomial regression

@ Or, we have to consider more probabilities and more odds. In our
example, we have to consider two multinomial distributions
(P11, P12, P13) @nd (P21, P22, P23), describing the probabilities of
life satisfaction feelings for males and females, respectively. The
simplest way is to choose one response category as a reference
— say exciting life — because one of the probabilities in each row
is redundant.

@ Then, the model is
Pi) _ 5.+ 8ix . i—
|Og - | — ﬂOJ + ﬂl]xl , 1= 27 3;
Pi1
where x; € {0, 1} is the indicator of sex.

@ The previous formula coincides with the simple linear logistic
model in the case of dichotomic outcome.
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2) Multinomial regression

Based on our frequencies, we get the following odds and log-odds:

| odds [ log-odds |

200/213 = 0,938967 | 12/213 = 0,056338 -0,06297 | -2,87639
305/221 =1,38009 | 29/221 =0,131222 || 0,322149 | -2,03087
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2) Multinomial regression

Based on our frequencies, we get the following odds and log-odds:

| odds [ log-odds |

200/213 = 0,938967 | 12/213 = 0,056338 -0,06297 | -2,87639
305/221 =1,38009 | 29/221 =0,131222 || 0,322149 | -2,03087

The differences of the log-odds in the last two columns are
—0,385123874 and —0,845518644. Thus, we can write two models

y =0.322 — 0.385x, y = —2.031 — 0.846x

for routine and dull feeling, respectively.
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2) Multinomial regression

Based on our frequencies, we get the following odds and log-odds:

| odds [ log-odds |

200/213 = 0,938967 | 12/213 = 0,056338 -0,06297 | -2,87639
305/221 =1,38009 | 29/221 =0,131222 || 0,322149 | -2,03087

The differences of the log-odds in the last two columns are
—0,385123874 and —0,845518644. Thus, we can write two models

y =0.322 — 0.385x, y = —2.031 — 0.846x

for routine and dull feeling, respectively. Software gets:

Life B Std. Error Wald df Sig. Exp(B) 95% CI
Intercept 0,322149 0,088338 13,29904 1 0,000266
Routine [sex=1] -0,38512 0,132282 8,476221 1 0,003598 0,680366 0,524982 0,881741
[sex=2] 0 0
Intercept -2,03087 0,197504 105,7336 1 0
Dull [sex=1] -0,84552 0,356421 5,627561 1 0,01768 0,429335 0,213506 0,86334
[sex=2] 0 0
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2) Multinomial regression

General model
Let

@ the response variable Y have r categories, and Xy, ..., Xk be
explanatory variables;
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2) Multinomial regression

General model
Let

@ the response variable Y have r categories, and Xy, ..., Xk be
explanatory variables;

@ yi = (Vi1, ..., Yir) be the response values in i-th subgroup having
multinomial distribution Mn (n;, pi1, - - - , Pir);
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2) Multinomial regression

General model
Let

@ the response variable Y have r categories, and Xy, ..., Xk be
explanatory variables;

@ yi = (Vi1, ..., Yir) be the response values in i-th subgroup having
multinomial distribution Mn (n;, pi1, - - - , Pir);

9 5= (ﬁo,-,ﬁlj, ... ,ﬁkj)' be regression coefficients for the j-th
response category with respect to the j*-th (reference) one;
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2) Multinomial regression

General model
Let

@ the response variable Y have r categories, and Xy, ..., Xk be
explanatory variables;

@ yi = (Vi1, ..., Yir) be the response values in i-th subgroup having
multinomial distribution Mn (n;, pi1, - - - , Pir);

9 5= (ﬁo,-,ﬁlj, ... ,ﬁkj)' be regression coefficients for the j-th
response category with respect to the j*-th (reference) one;

@ x; = (1,%1,...,%ik) be actual values of explanatory variables for
the i-th subgroup.
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2) Multinomial regression

General model
Let

@ the response variable Y have r categories, and Xy, ..., Xk be
explanatory variables;

@ yi = (Vi1, ..., Yir) be the response values in i-th subgroup having
multinomial distribution Mn (n;, pi1, - - - , Pir);

9 5= (ﬁo,-,ﬁlj, ... ,ﬁkj)' be regression coefficients for the j-th
response category with respect to the j*-th (reference) one;

@ x; = (1,%1,...,%ik) be actual values of explanatory variables for
the i-th subgroup.

Then, general multinomial regression model is

log (ﬂ) —xB, 2]

Pij~
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2) Multinomial regression

@ Inverse formulas are

and

pij* = ; .
1 + Z EXp (Xi/ﬁk)
k=1
kA"
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2) Multinomial regression

@ Inverse formulas are

and

pij* = ; .
1 + Z EXp (Xi/ﬁk)
k=1
kA"

@ Estimation is done via ML-method.
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2) Multinomial regression

@ The log-likelihood function is

((B) = log (Hnl >+ZZyulog P
j=1 Yij!

i=1 j=1
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2) Multinomial regression

@ The log-likelihood function is

((B) = log (H ) +ZZyU log (p;)
j=1 Yij!

i=1 j=1

@ The ML-equations are

Xi N =0, j#j*, m=0,...,k
aﬁmj Z im (Yi — Nipj) i #]

i=1
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2) Multinomial regression

@ The log-likelihood function is

((B) = log (H ) +ZZyU log (p;)
j=1 Yij!

i=1 j=1

@ The ML-equations are

=0, j#j" =0,...,k
aﬁmj Iz;XIm Yi — nipj) , J#FINm e
@ Hessian matrix of the estimates of 8 = (5/,j = 1,...,r,j ;éj*)' is

n
H=-— Z (|r,1 X Xi)\/)i* (|r,1 X Xi)/ ,
i=1
where V* = n; (diag (p7) — p;p;*’) and p* is the vector of all
estimates of probabilities p;; except pj-
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2) Multinomial regression

@ Chi=square of the estimated model is

_ (i —ni pu
v Z Z niPj

i=1 j=1

Since total number of non-redundant parameters in the model is
(r-1)(k+1), it holds x? ~ anfkfl)(rfl).
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2) Multinomial regression

@ Chi=square of the estimated model is

_ (i —ni pu
v Z Z niPj

i=1 j=1

Since total number of non-redundant parameters in the model is
(r-1)(k+1), it holds x? ~ anfkfl)(rfl).

@ Deviance of the estimated model is

Dm = 2 (¢ — ) zzzy“ ,Og< Yi )

i=1 j=1 '“

Here also Dy, ~ X(zn—k—l)(r—l)'
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2) Multinomial regression

@ Chi=square of the estimated model is

_ (i —ni pu
v Z Z niPj

i=1 j=1

Since total number of non-redundant parameters in the model is
(r-1)(k+1), it holds x? ~ anfkfl)(rfl).

@ Deviance of the estimated model is

D = 2 (¢ — £m) ZZy.,Iog( Yi )

i=1 j=1 '“

Here also Dy, ~ X(zn—k—l)(r—l)'

@ The same pseudo-R? statistics as in logistic regression model
can be used.
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2) Multinomial regression

If actual variance matrix of y; are substantially larger than

Vi = n; (diag (pi) — pip{) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter o2, such
that vary; = o?V,;.
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2) Multinomial regression

If actual variance matrix of y; are substantially larger than
Vi = n; (diag (pi) — pip{) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter o2, such
that vary; = o?V,;.

@ Usual (asymptotically unbiased) estimator of o2 is

2
A X
52

T h—k-1)(r -1

(or Dy, instead of x?).
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2) Multinomial regression

If actual variance matrix of y; are substantially larger than
Vi = n; (diag (pi) — pip{) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter o2, such
that vary; = o?V,;.

@ Usual (asymptotically unbiased) estimator of o2 is

2
A X
52

T h—k-1)(r -1

(or Dy, instead of x?).
@ Use of o2 does not change estimators of 3.
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2) Multinomial regression

If actual variance matrix of y; are substantially larger than
Vi = n; (diag (pi) — pip{) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter o2, such
that vary; = o?V,;.

@ Usual (asymptotically unbiased) estimator of o2 is

2
A X
52

T h—k-1)(r -1

(or Dy, instead of x?).
@ Use of o2 does not change estimators of 3.

@ Variance of the estimators is

n -1

varf =613 (-1 ® ) Vi (1 ® %)’
i=1
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2) Multinomial regression

Tests

@ For any Lqgxk+1 Of full rank, it holds

~ ~ 1,
AL [L var L’} LA ~ X3

under Ho : L3 = 0. This allows testing of separate regression
coefficients and/or their linear combinations.
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2) Multinomial regression

Tests

@ For any Lqgxk+1 Of full rank, it holds

~ ~ 1,
AL [L var L’} LA ~ X3

under Ho : L3 = 0. This allows testing of separate regression
coefficients and/or their linear combinations.

@ LR test of nested models with k; and ks (k; < k2) regression
parameters is based on

1 2 /- A
ﬁ (Dm1 - sz) = ﬁ (€m2 - eml) ~ Xﬁz—kl

I. Zezula Robust 2010



Multinomial regression
t and overdispersion

2) Multinomial regression

Example: We have used sex as a predictor in our life satisfaction
study model. This first model has 4 non-redundant parameters
(intercept and one non-reference sex category for each of 2
non-reference life feelings).
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2) Multinomial regression

Example: We have used sex as a predictor in our life satisfaction
study model. This first model has 4 non-redundant parameters
(intercept and one non-reference sex category for each of 2
non-reference life feelings).

If we add race (white, black, other) as another possible predictor, we
have 4 more non-redundant parameters — 2 non-reference races
within 2 non-reference life feelings.
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2) Multinomial regression

Example: We have used sex as a predictor in our life satisfaction
study model. This first model has 4 non-redundant parameters
(intercept and one non-reference sex category for each of 2
non-reference life feelings).

If we add race (white, black, other) as another possible predictor, we
have 4 more non-redundant parameters — 2 non-reference races
within 2 non-reference life feelings.

Overdispersion is not observed. Software gets:

b, = —25,8165, I, = —24.332
Therefore,
ADy, = 2(—24.332 + 25,8165) = 2.969 < 9.488 = x2_,(0.05)

Corresponding p-value is 0.563. The race factor proves to be
non-significant.
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3) Ordinal regression

Example: Random sample of Vermont citizens was asked to rate the
work of criminal judges in the state. The scale was Poor (1), Only fair
(2), Good (3), and Excellent (4). At the same time, they had to report
whether somebody of their household had been a crime victim within
the last 3 years.
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3) Ordinal regression

Example: Random sample of Vermont citizens was asked to rate the
work of criminal judges in the state. The scale was Poor (1), Only fair
(2), Good (3), and Excellent (4). At the same time, they had to report
whether somebody of their household had been a crime victim within
the last 3 years.

The question was, whether people with personal experience with
crime and people without it share the same view of criminal justice
performance.
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3) Ordinal regression

Example: Random sample of Vermont citizens was asked to rate the
work of criminal judges in the state. The scale was Poor (1), Only fair
(2), Good (3), and Excellent (4). At the same time, they had to report
whether somebody of their household had been a crime victim within
the last 3 years.

The question was, whether people with personal experience with
crime and people without it share the same view of criminal justice

performance.
The data:
Household victim Judges’ performance sum
Poor | Onlyfair | Good [ Excellent
Yes 14 28 31 3 76
No 38 170 248 34 490
sum 52 198 279 37 566
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3) Ordinal regression

With ordinal data, it is natural to consider probabilities of cumulative
events, like specific score or worse. Table of cumulative frequencies

is as follows:
Judges’ performance

Household victim Poor Only fair Good Excellent
or worse or worse or worse

Yes 14 42 73 76
row percentage 18,42% 55,26% 96,05% 100,00%

No 38 208 456 490
row percentage 7,76% 42,45% 93,06% 100,00%
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3) Ordinal regression

With ordinal data, it is natural to consider probabilities of cumulative
events, like specific score or worse. Table of cumulative frequencies

is as follows:
Judges’ performance
Household victim Poor Only fair Good Excellent 1q
or worse or worse or worse ]
Yes 14 42 73 76 o0l
row percentage 18,42% 55,26% 96,05% 100,00% e
No 38 208 456 490 ]
row percentage 7,76% 42,45% 93,06% 100,00% 0.6
0,4
0,24
o
1 2 3 4
Yes
No
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3) Ordinal regression

With ordinal data, it is natural to consider probabilities of cumulative
events, like specific score or worse. Table of cumulative frequencies

is as follows:
Judges’ performance

Household victim Poor Only fair Good Excellent
or worse or worse or worse

Yes 14 42 73 76
row percentage 18,42% 55,26% 96,05% 100,00%

No 38 208 456 490
row percentage 7,76% 42,45% 93,06% 100,00%

The graph suggests that having a crime victim in
the household implies more negative opinion on
judges’ performance.

The lines must meet at 100%. Otherwise they
look almost parallel. That suggest model with
common slope for both categories.

I. Zezula Robust 2010
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3) Ordinal regression

Let us denote pj; = P(score < j), i = 1(No),2(Yes),j =1,2,3 the
non-trivial cumulative probabilities. Then, our model is

log Py, =] =q and log P2 = | =q+8,
1-pj 1-p3
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3) Ordinal regression

Let us denote pj; = P(score < j), i = 1(No),2(Yes),j =1,2,3 the
non-trivial cumulative probabilities. Then, our model is

log P, =] =q and log P = | =q+8,
1—pj 1-p3

|Og (%) = qj +ﬂX VJ X € {07 1}

i

or
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3) Ordinal regression

Let us denote pj; = P(score < j), i = 1(No),2(Yes),j =1,2,3 the
non-trivial cumulative probabilities. Then, our model is

log Py, =] =q and log P2 = | =q+8,
1-pj 1-p3

S(x
|Og (%) :Oz]‘ +ﬂX VJ aX € {071}

Software gets a; = —2.39, ap = —0.32, ap = 2.59, 8 = 0.63. Using
standard inverse formula for logits, we obtain the following estimates:

or

<1 <2 <3
Yes | 14,69% | 57,85% | 96,18%
No | 8,38% | 42,15% | 93,04%
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3) Ordinal regression

Proportional odds model

Let
@ Y be ordinal response variable with possible values 1,...,r
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3) Ordinal regression

Proportional odds model

Let
@ Y be ordinal response variable with possible values 1,...,r
® X = (X4,...,Xk) be independent predictor variables
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3) Ordinal regression

Proportional odds model

Let
@ Y be ordinal response variable with possible values 1,...,r
® X = (X4,...,Xk) be independent predictor variables

® a1,...,ar—1 and g = (f,..., Sk) be unknown regression
coefficients
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3) Ordinal regression

Proportional odds model

Let
@ Y be ordinal response variable with possible values 1,...,r
® X = (X4,...,Xk) be independent predictor variables

® a1,...,ar—1 and g = (f,..., Sk) be unknown regression
coefficients

Model: logits of cumulative probabilities pf(x) = P (Y < j[X =x)

satisfy
S I T
|09<71—pj°(x) =q+p8x Vi=1,...,r=1
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3) Ordinal regression

Proportional odds model

Let
@ Y be ordinal response variable with possible values 1,...,r
® X = (X4,...,Xk) be independent predictor variables

® a1,...,ar—1 and g = (f,..., Sk) be unknown regression
coefficients

Model: logits of cumulative probabilities pf(x) = P (Y < j[X =x)

satisfy
S I T
|09<71—pjc(x) =q+p8x Vi=1,...,r=1

Because log of cumulative odds ratio of making the same responses at different
X-points is proportional to the distance of the points, the model is called proportional

odds model:
pPOa)  1-pf(x)
lo .
1-pf(xa)  PE(xa)

) =B (x1 — x2)
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3) Ordinal regression

@ Estimation is done again via ML-method. There are two options:
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3) Ordinal regression

@ Estimation is done again via ML-method. There are two options:
@ atfirst estimating pf(x), and then calculating
Pi(X) =Py (x) — pi_1(x) (taking po(x) = 0)
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3) Ordinal regression

@ Estimation is done again via ML-method. There are two options:
@ atfirst estimating pf(x), and then calculating
Pi(x) = pj(x) — pi_1(x) (taking po(x) = 0)
@ estimating directly pj(x)
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3) Ordinal regression

@ Estimation is done again via ML-method. There are two options:
@ atfirst estimating pf(x), and then calculating
Pi(x) = pj(x) — pi_1(x) (taking po(x) = 0)
@ estimating directly pj(x)

@ Likelihood function is

L(a, B) :HH —pj-1 (X )]y“

I. Zezula Robust 2010



Ordinal regression

3) Ordinal regression

@ Estimation is done again via ML-method. There are two options:
© at first estimating py(x), and then calculating
pi(x) = P (x) — pi_1(x) (taking po(x) = 0)
@ estimating directly pj(x)
@ Likelihood function is

L(a, B) :HH —pj-1 (X )]y“

i
N
i

@ All standard goodness-of-fit measures apply.
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3) Ordinal regression

@ Estimation is done again via ML-method. There are two options:
© at first estimating py(x), and then calculating
pi(x) = P (x) — pi_1(x) (taking po(x) = 0)
@ estimating directly pj(x)
@ Likelihood function is

L(a, B) :HH —pj-1 (X )]y“

i
N
i

@ All standard goodness-of-fit measures apply.
@ The fit is different than separate logit models for all j’s.
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3) Ordinal regression

Example: Software output for Vermont crime data:

[ [[ Estimate [ Std. Error | Wald [ df ] Sig. [ 95% conf. interval ]
Threshold [rating = 1] -2,39221 0,15177 248,44332 1 0,00000 -2,68968 -2,09475
[rating = 2] -0,31651 0,09082 12,14637 1 0,00049 -0,49451 -0,13852
[rating = 3] 2,59316 0,17163 228,28667 1 0,00000 2,25678 2,92955
Location [hhcrime=1] -0,63298 0,23198 7,44539 1 0,00636 -1,08765 -0,17831
[hhcrime=2] 0 . . 0 . . .

Notice opposite sign of the coefficient 8 (hhcrime=1). Many work with the model
aj — Bx because of interpretation reasons: in such a case, higher coefficients indicate
association with higher scores.
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3) Ordinal regression

Introduction

Proportional odds model

Other mode!

Example: Software output for Vermont crime data:

Estimate [ Std. Error_| Wald [ df ] Sig. 95% conf. interval
Threshold [rating = 1] -2,39221 0,15177 248,44332 1 0,00000 -2,68968 -2,09475
[rating = 2] -0,31651 0,09082 12,14637 1 0,00049 -0,49451 -0,13852
[rating = 3] 2,59316 0,17163 228,28667 1 0,00000 2,25678 2,92955
Location [hhcrime=1] -0,63298 0,23198 7,44539 1 0,00636 -1,08765 -0,17831
[hhcrime=2] 0 . . 0 . . .

Notice opposite sign of the coefficient 8 (hhcrime=1). Many work with the model

aj — Bx because of interpretation reasons: in such a case, higher coefficients indicate

association with higher scores.
Let us now add another predictor variable, sex:

[[ Estimate [ Std. Error | Wald [ df ] Sig. 95% conf. interval
Threshold [rating = 1] -2,57419 0,17641 212,93519 1 0,00000 -2,91995 -2,22844
[rating = 2] -0,48730 0,12326 15,62868 1 0,00008 -0,72890 -0,24571
[rating = 3] 2,43740 0,18672 170,40298 1 0,00000 2,07143 2,80336
Location [hhcrime=1] -0,62074 0,23228 7,14177 1 0,00753 -1,07599 -0,16548
[hhcrime=2] 0 . . 0 . . .
[sex=1] -0,34145 0,16030 4,53709 1 0,03317 -0,65563 -0,02726
[sex=2] 0 . . 0 . . .
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3) Ordinal regression

We suspect that sex may influence sensitivity to crime victims, so that we add the

interaction:
[ [[ Estimate [ Std. Error | Wald T df J Sig. [ 95% conf.interval ]
Threshold [rating -2,64904 0,18097 214,26179 1 0,00000 -3,00374 -2,29434
[rating -0,55150 0,12873 18,35418 1 0,00002 -0,80381 -0,29920
[rating = 3] 2,38107 0,18819 160,07877 1 0,00000 2,01222 2,74993
Location [hhcrime=1] -1,13654 0,33008 11,85565 1 0,00057 -1,78350 -0,48959
[hhcrime=2] 0 . . 0 . . .
[sex=1] -0,46925 0,17330 7,33183 1 0,00677 -0,80891 -0,12959
[sex=2] 0 . . 0 . . .
[hhcrime=1] * [sex=1] 0,95889 0,46413 4,26832 1 0,03883 0,04921 1,86857
[hhcrime=1] * [sex=2] 0 . . 0 . . .
[hhcrime=2] * [sex=1] 0 0
[hhcrime=2] * [sex=2] 0 0
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) Ordinal regression

We suspect that sex may influence sensitivity to crime victims, so that we add the

interaction:
[ [[ Estimate [ Std. Error | Wald T df J Sig. [ 95% conf.interval ]
Threshold [rating = 1] -2,64904 0,18097 214,26179 1 0,00000 -3,00374 -2,29434
[rating = 2] -0,55150 0,12873 18,35418 1 0,00002 -0,80381 -0,29920
[rating = 3] 2,38107 0,18819 160,07877 1 0,00000 2,01222 2,74993
Location [hhcrime=1] -1,13654 0,33008 11,85565 1 0,00057 -1,78350 -0,48959
[hhcrime=2] 0 . . 0 . . .
[sex=1] -0,46925 0,17330 7,33183 1 0,00677 -0,80891 -0,12959
[sex=2] 0 . . 0 . . .
[hhcrime=1] * [sex=1] 0,95889 0,46413 4,26832 1 0,03883 0,04921 1,86857
[hhcrime=1] * [sex=2] 0 . . 0 . . .
[hhcrime=2] * [sex=1] 0 0
[hhcrime=2] * [sex=2] 0 0

But, since the interaction is significant, the two individual variables don’t have good
meaning any more:

[ [[ Estimate | Std. Error | Wald [ df T Sig. ] 95% conf. interval ]

Threshold [rating = 1] -2,64904 0,18097 214,26179 1 0,00000 -3,00374 -2,29434
[rating = 2] -0,55150 0,12873 18,35418 1 0,00002 -0,80381 -0,29920
[rating = 3] 2,38107 0,18819 160,07877 1 0,00000 2,01222 2,74993
Location [hhcrime=1] * [sex=1] -0,64690 0,32950 3,85460 1 0,04961 -1,29270 -0,00110
[hhcrime=1] * [sex=2] -1,13654 0,33008 11,85565 1 0,00057 -1,78350 -0,48959
[hhcrime=2] * [sex=1] -0,46925 0,17330 7,33183 1 0,00677 -0,80891 -0,12959

[hhcrime=2] * [sex=2] 0 . . 0 . . .

Redundant parameters are not estimated, so that interaction itself is enough. This
model has the same x2, deviance, and pseudo-R?2 as the previous.one.

I. Zezula Robust
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3) Ordinal regression

Other ordinal regression models
@ General cumulative logit model is
Py (x) .
log| — | =y +8x Vi=1,....,r—1
g<1pj°(x) GEAX =L

Thus, every group has its own slope. Proportional odds model is
a special case, and can be tested by LR test.

I. Zezula Robust 2010
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3) Ordinal regression

Other ordinal regression models
@ General cumulative logit model is

SIS
IOg(W —OéJ+6jX VJ—l,...,r—l

]

Thus, every group has its own slope. Proportional odds model is
a special case, and can be tested by LR test.
@ Adjacent categories model is

Pi(x) ) i
lo =q+p0x Vj=1,....,r—1
g(pj+1(x) 0 :

This model recognizes the ordering, since

o (88) om0

I. Zezula Robust 2010
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Thank you for your attention!
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