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1) Logistic regression

Introduction
Testing a risk factor: we want to check whether a certain factor adds
to the probability of outbreak of a disease.

This corresponds to the following contingency table:

risk factor
disease status

sum
ill not ill

exposed n11 n12 n10

unexposed n21 n22 n20

sum n01 n02 n
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1) Logistic regression

Introduction
Testing a risk factor: we want to check whether a certain factor adds
to the probability of outbreak of a disease.

This corresponds to the following contingency table:

risk factor
disease status

sum
ill not ill

exposed n11 n12 n10

unexposed n21 n22 n20

sum n01 n02 n

Odds of the outbreak for both groups are:

o1 =
n11

n10 − n11
=

n11
n10

1 − n11
n10

=
p̂1

1 − p̂1
, o2 =

p̂2

1 − p̂2
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1) Logistic regression

As a measure of the risk, we can form odds ratio :

OR =
o1

o2
=

p̂1

1 − p̂1
·

1 − p̂2

p̂2

o1 = OR · o2
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1) Logistic regression

As a measure of the risk, we can form odds ratio :

OR =
o1

o2
=

p̂1

1 − p̂1
·

1 − p̂2

p̂2

o1 = OR · o2

Then, it holds

log (o1) = log (o2) + log (OR) ,
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1) Logistic regression

As a measure of the risk, we can form odds ratio :

OR =
o1

o2
=

p̂1

1 − p̂1
·

1 − p̂2

p̂2

o1 = OR · o2

Then, it holds

log (o1) = log (o2) + log (OR) ,

or
y = log (o2) + log (OR) · x ,

where x ∈ {0, 1} and y ∈ {log (o1) , log (o2)}.
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1) Logistic regression

This is the basic logistic model. Formally it is a regression model

y = β0 + β1x

with baseline β0 = log (o2) and slope β1 = log (OR) – effect of
the exposure.
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1) Logistic regression

This is the basic logistic model. Formally it is a regression model

y = β0 + β1x

with baseline β0 = log (o2) and slope β1 = log (OR) – effect of
the exposure.
If we denote the probability of the event (outbreak of the disease)
by p, then

log
(

p
1 − p

)

= β0 + β1x

in either group.
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1) Logistic regression

This is the basic logistic model. Formally it is a regression model

y = β0 + β1x

with baseline β0 = log (o2) and slope β1 = log (OR) – effect of
the exposure.
If we denote the probability of the event (outbreak of the disease)
by p, then

log
(

p
1 − p

)

= β0 + β1x

in either group.
It follows

p =
exp (β0 + β1x)

1 + exp (β0 + β1x)
=

1
1 + exp (−β0 − β1x)
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1) Logistic regression

Estimation is done via ML-method. Likelihood of observed
frequencies for given β’s is

L(β) =
(

n10

n11

)

pn11
1 (1 − p1)

n10−n11

(

n20

n21

)

pn21
2 (1 − p2)

n20−n21
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1) Logistic regression

Estimation is done via ML-method. Likelihood of observed
frequencies for given β’s is

L(β) =
(

n10

n11

)

pn11
1 (1 − p1)

n10−n11

(

n20

n21

)

pn21
2 (1 − p2)

n20−n21

Then

ℓ(β) = log L(β) = n11 log (p1) + n12 log (1 − p1)+

+ n21 log (p2) + n22 log (1 − p2)
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1) Logistic regression

Estimation is done via ML-method. Likelihood of observed
frequencies for given β’s is

L(β) =
(

n10

n11

)

pn11
1 (1 − p1)

n10−n11

(

n20

n21

)

pn21
2 (1 − p2)

n20−n21

Then

ℓ(β) = log L(β) = n11 log (p1) + n12 log (1 − p1)+

+ n21 log (p2) + n22 log (1 − p2)

It is easy to derive that ML-equations are

∂ℓ

∂β1
= n11 − n10p1 = 0 ,

∂ℓ

∂β0
= n11 − n10p1 + n21 − n20p2 = 0

I. Žežula Robust 2010



Logistic regression
Multinomial regression

Ordinal regression

Introduction
Basic model
More general predictors
General model
Tests of association

1) Logistic regression

In this case we already know the solution, p̂1 =
n11

n10
and p̂2 =

n21

n20
(and corresponding β’s).
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1) Logistic regression

In this case we already know the solution, p̂1 =
n11

n10
and p̂2 =

n21

n20
(and corresponding β’s).

Asymptotic variance matrix of β̂’s can also be established. In this
case it is

var
(

β̂0

β̂1

)

= J−1 =
1

ab

(

a −a
−a a + b

)

,

where a = n10p̂1 (1 − p̂1), b = n20p̂2 (1 − p̂2).
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1) Logistic regression

In this case we already know the solution, p̂1 =
n11

n10
and p̂2 =

n21

n20
(and corresponding β’s).

Asymptotic variance matrix of β̂’s can also be established. In this
case it is

var
(

β̂0

β̂1

)

= J−1 =
1

ab

(

a −a
−a a + b

)

,

where a = n10p̂1 (1 − p̂1), b = n20p̂2 (1 − p̂2).

J =

(

a + b a
a a

)

is the information matrix.
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1) Logistic regression

Example: Baystate Medical Center in Springfield, MA, studied
factors influencing low birth weights of babies. Let us take as a
risk factor smoking during pregnancy. We get the following
contingency table:

smoking
low birth weight

sum
yes no

exposed 30 44 74
unexposed 29 86 115

sum 59 130 159

I. Žežula Robust 2010
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1) Logistic regression

Example: Baystate Medical Center in Springfield, MA, studied
factors influencing low birth weights of babies. Let us take as a
risk factor smoking during pregnancy. We get the following
contingency table:

smoking
low birth weight

sum
yes no

exposed 30 44 74
unexposed 29 86 115

sum 59 130 159

Odds for the unexposed is o1 = 30/44 = 0.681818, for the
exposed o2 = 29/86 = 0.337209, OR = 2.021644. Sakoda
coefficient S = 0.225344 indicates moderate association, but
statistically significant (χ2 = 4.92 > 3.84 = χ2

1(0.05)).
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1) Logistic regression

As log(2.021644) = 0.7040592, log(0.337209) = −1.087051,
we get the model

y = −1.087 + 0.704 x .
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1) Logistic regression

As log(2.021644) = 0.7040592, log(0.337209) = −1.087051,
we get the model

y = −1.087 + 0.704 x .

Software gets

coefficient std. error z P > |z| 95% conf. interval
smoking 0.7040592 0.319639 2.20 0.028 0.077579 1.330539
constant -1.087051 0.21473 -5.06 0.000 -1.50791 -0.66619
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1) Logistic regression

As log(2.021644) = 0.7040592, log(0.337209) = −1.087051,
we get the model

y = −1.087 + 0.704 x .

Software gets

coefficient std. error z P > |z| 95% conf. interval
smoking 0.7040592 0.319639 2.20 0.028 0.077579 1.330539
constant -1.087051 0.21473 -5.06 0.000 -1.50791 -0.66619

We can also get 95% CI for the OR:
[

e0.077579; e1.330539] = [1.08; 3.78]

I. Žežula Robust 2010



Logistic regression
Multinomial regression

Ordinal regression

Introduction
Basic model
More general predictors
General model
Tests of association

1) Logistic regression

General categorical predictor:
There are more probabilities to estimate. Let the predictor have m
categories:

oi = ni1/ni2 , i = 1, . . . ,m
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1) Logistic regression

General categorical predictor:
There are more probabilities to estimate. Let the predictor have m
categories:

oi = ni1/ni2 , i = 1, . . . ,m

log (ORi) = log
oi

om
= βi , i = 1, . . . ,m − 1
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1) Logistic regression

General categorical predictor:
There are more probabilities to estimate. Let the predictor have m
categories:

oi = ni1/ni2 , i = 1, . . . ,m

log (ORi) = log
oi

om
= βi , i = 1, . . . ,m − 1

Then,
y = β0 + β1x1 + · · ·+ βm−1xm−1 ,

where all xi ∈ {0, 1}, but only one of them can be 1 at a time.
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1) Logistic regression

General categorical predictor:
There are more probabilities to estimate. Let the predictor have m
categories:

oi = ni1/ni2 , i = 1, . . . ,m

log (ORi) = log
oi

om
= βi , i = 1, . . . ,m − 1

Then,
y = β0 + β1x1 + · · ·+ βm−1xm−1 ,

where all xi ∈ {0, 1}, but only one of them can be 1 at a time.
One category out of m has to be a reference category. One
explanatory variable is replaced by m–1 indicator variables of other
categories, which are mutually exclusive. Significance of a regression
coefficient indicates significant difference between corresponding
category and the reference category (differential effect of the
category).

I. Žežula Robust 2010
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1) Logistic regression

Example: Let us take mother’s weight (grouped in 3 categories) as a
risk factor of child’s low birth weight. We get

weight group
low birth weight

sum row percentages
yes no

≤ 110 25 28 53 47.2% 52.8%
(110;150] 27 73 100 27.0% 73.0%
> 150 7 29 36 19.4% 80.6%
sum 59 130 189 31.2% 68.8%

Changing row percentages show that mother’s weight can be a risk
factor.

I. Žežula Robust 2010
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1) Logistic regression

Software output for the 3rd category as the reference:

variable coefficient std. error Wald df p-value
wt groups 9.073891 2 0.010706

wt groups(1) 1.308056995 0.503044916 6.761449 1 0.009315
wt groups(2) 0.426763105 0.477572579 0.798537 1 0.371531

constant -1.42138568 0.421117444 11.39246 1 0.000737

Software output for the 1st category as the reference:

variable coefficient std. error Wald df p-value
wt groups 9.073891 2 0.010706

wt groups(2) -0.88129389 0.355598021 6.142184 1 0.013199
wt groups(3) -1.308057 0.503044916 6.761449 1 0.009315

constant -0.11332869 0.27516229 0.16963 1 0.680441

Symbolically, for the impact of weight groups holds 1 6= {2, 3} at 5%
level. Weight as a factor also is significant.
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1) Logistic regression

Quantitative predictor:
If we have quantitative explanatory variable influencing the probability
of the outcome, we simply assume that p is a (continuous) function of
x:

log
(

p
1 − p

)

= β0 + β1x
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1) Logistic regression

Quantitative predictor:
If we have quantitative explanatory variable influencing the probability
of the outcome, we simply assume that p is a (continuous) function of
x:

log
(

p
1 − p

)

= β0 + β1x

The regression coefficient of x is interpreted as effect of 1 unit change
in x on the outcome.

I. Žežula Robust 2010
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1) Logistic regression

Quantitative predictor:
If we have quantitative explanatory variable influencing the probability
of the outcome, we simply assume that p is a (continuous) function of
x:

log
(

p
1 − p

)

= β0 + β1x

The regression coefficient of x is interpreted as effect of 1 unit change
in x on the outcome.

Logistic transformation p → log
(

p
1−p

)

is

from (0; 1) to (−∞; +∞), so that it removes
restrictions harming regression.

0,60,40,20

y

5

4

3

2

1

0

-1

-2

-3

-4

-5

x

10,8
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1) Logistic regression

Example: Let us take mother’s weight as a continuous risk factor of
child’s low birth weight.
Software gets:

variable coefficient std. error Wald df p-value
lwt -0.01405826 0.006169588 5.192193 1 0.022689

constant 0.998314313 0.78529092 1.616119 1 0.203634

Mother’s weight is again significant.
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1) Logistic regression

Example: Let us take mother’s weight as a continuous risk factor of
child’s low birth weight.
Software gets:

variable coefficient std. error Wald df p-value
lwt -0.01405826 0.006169588 5.192193 1 0.022689

constant 0.998314313 0.78529092 1.616119 1 0.203634

Mother’s weight is again significant.

Example: Effect of anti-pneumococcus
serum on survival of ill mice was studied.
Five different doses were administered to
five groups of 40 mice. Plot shows the
death rates, simple linear regression line,
and logistic regression curve. 0,030,020,010

0,8

x

0,6

0,050,04

0,2

0

0,4
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1) Logistic regression

General logistic regression model:

We have dichotomic dependent variable Y and explanatory
variables X1,X2, . . . ,Xk of any type. We want to explain and/or
predict the behaviour of Y using the explanatory variables.
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1) Logistic regression

General logistic regression model:

We have dichotomic dependent variable Y and explanatory
variables X1,X2, . . . ,Xk of any type. We want to explain and/or
predict the behaviour of Y using the explanatory variables.

Model:

log
(

p
1 − p

)

= β0 + β1X1 + · · ·+ βk Xk

or (taking X0 = 1)

pi =
exp

(

∑k
j=0 βjxij

)

1 + exp
(

∑k
j=0 βjxij

) =
1

1 + exp
(

−
∑k

j=0 βjxij

)

I. Žežula Robust 2010
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1) Logistic regression

General logistic regression model:

We have dichotomic dependent variable Y and explanatory
variables X1,X2, . . . ,Xk of any type. We want to explain and/or
predict the behaviour of Y using the explanatory variables.

Model:

log
(

p
1 − p

)

= β0 + β1X1 + · · ·+ βk Xk

or (taking X0 = 1)

pi =
exp

(

∑k
j=0 βjxij

)

1 + exp
(

∑k
j=0 βjxij

) =
1

1 + exp
(

−
∑k

j=0 βjxij

)

Estimation of parameters is done via ML-method
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1) Logistic regression

Likelihood of observed frequencies for given β’s is

L(β) =
n
∏

i=1

pyi
i (1 − pi)

1−yi
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1) Logistic regression

Likelihood of observed frequencies for given β’s is

L(β) =
n
∏

i=1

pyi
i (1 − pi)

1−yi

Then

ℓ(β) = log L(β) =
n
∑

i=1

yi log (pi) + (1 − yi) log (1 − pi)
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1) Logistic regression

Likelihood of observed frequencies for given β’s is

L(β) =
n
∏

i=1

pyi
i (1 − pi)

1−yi

Then

ℓ(β) = log L(β) =
n
∑

i=1

yi log (pi) + (1 − yi) log (1 − pi)

The ML-equations are

∂ℓ

∂βj
=

n
∑

i=1

(yi − pi(β)) xij = 0 ∀j

I. Žežula Robust 2010
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1) Logistic regression

In general, these equations are solved numerically
(Newton-Raphson type algorithm).
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1) Logistic regression

In general, these equations are solved numerically
(Newton-Raphson type algorithm).

Let us denote X =
{

xij
}

, V = diag {p̂1, . . . , p̂n}. Information
matrix is

J = X ′VX

and J−1 is the asymptotic variance matrix of β̂.
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1) Logistic regression

In general, these equations are solved numerically
(Newton-Raphson type algorithm).

Let us denote X =
{

xij
}

, V = diag {p̂1, . . . , p̂n}. Information
matrix is

J = X ′VX

and J−1 is the asymptotic variance matrix of β̂.

If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.
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1) Logistic regression

In general, these equations are solved numerically
(Newton-Raphson type algorithm).

Let us denote X =
{

xij
}

, V = diag {p̂1, . . . , p̂n}. Information
matrix is

J = X ′VX

and J−1 is the asymptotic variance matrix of β̂.

If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.

Pros & cons:
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1) Logistic regression

In general, these equations are solved numerically
(Newton-Raphson type algorithm).

Let us denote X =
{

xij
}

, V = diag {p̂1, . . . , p̂n}. Information
matrix is

J = X ′VX

and J−1 is the asymptotic variance matrix of β̂.

If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.

Pros & cons:
– no closed form formulas, iterative estimation
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1) Logistic regression

In general, these equations are solved numerically
(Newton-Raphson type algorithm).

Let us denote X =
{

xij
}

, V = diag {p̂1, . . . , p̂n}. Information
matrix is

J = X ′VX

and J−1 is the asymptotic variance matrix of β̂.

If all predictors are categorical ones, it is possible to reformulate
the model in terms of binomial variables.

Pros & cons:
– no closed form formulas, iterative estimation
+ approximate variances, p-values and CI available
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1) Logistic regression

Wald test of a coefficient:
If H0 : βi = 0 holds, then

Z =
β̂i

s
β̂i

has asymptotically N(0; 1).
There is alternative chi-square form (Z 2).
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1) Logistic regression

Wald test of a coefficient:
If H0 : βi = 0 holds, then

Z =
β̂i

s
β̂i

has asymptotically N(0; 1).
There is alternative chi-square form (Z 2).
Likelihood ratio test:
Notions:

estimated model – model with predictors
empty model – model without predictors, just with intercept
full model – model predicting ni0p̂i = ni1 ∀i , t.j. ŷi = yi ∀i
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1) Logistic regression

Deviance:

ℓ̂m = log L̂m = log L̂(estimated model),

ℓ̂f = log L̂f = log L̂(full model)

Dm = 2
(

ℓ̂f − ℓ̂m

)

= 2 log
(

L̂f/L̂m

)

For binomial data, Dm is a measure of goodness-of-fit of the model.
Asymptotically,

Dm ≈ χ2
n−k−1
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1) Logistic regression

Deviance:

ℓ̂m = log L̂m = log L̂(estimated model),

ℓ̂f = log L̂f = log L̂(full model)

Dm = 2
(

ℓ̂f − ℓ̂m

)

= 2 log
(

L̂f/L̂m

)

For binomial data, Dm is a measure of goodness-of-fit of the model.
Asymptotically,

Dm ≈ χ2
n−k−1

For all kinds of models, deviance difference is used for comparison of
nested models (LRT of significance of added predictors):

Dm1 − Dm2 = 2
(

ℓ̂m2 − ℓ̂m1

)

≈ χ2
k2−k1

I. Žežula Robust 2010
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1) Logistic regression

Example: Let us consider low birth weight data with risk factor
smoking. Software tell us that

ℓ̂1 = log L̂1 = log L̂(estimated model) = −114.9023,

ℓ̂0 = log L̂0 = log L̂(empty model) = −117.336.

If H0 : β1 = 0 holds, then

2
(

ℓ̂1 − ℓ̂0

)

= 2 log

(

L̂1

L̂0

)

≈ χ2
1

We have

∆D = 2(−114.9023 + 117.336) = 4.8674 > 3.84 = χ2
1(0.05),

so that the association between smoking and low birth weight is
significant.
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1) Logistic regression

Interactions
Logistic regression model allows to include (and test) interactions of
categorical variables. If variable X has c categories and variable Z d
categories, then the interaction X ∗ Z has (c − 1)(d − 1) categories.
They are all possible combinations of non-reference categories of X
and Z .
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1) Logistic regression

Interactions
Logistic regression model allows to include (and test) interactions of
categorical variables. If variable X has c categories and variable Z d
categories, then the interaction X ∗ Z has (c − 1)(d − 1) categories.
They are all possible combinations of non-reference categories of X
and Z .

Interactions are tested via Wald test or LRT as any other variable.
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1) Logistic regression

Interactions
Logistic regression model allows to include (and test) interactions of
categorical variables. If variable X has c categories and variable Z d
categories, then the interaction X ∗ Z has (c − 1)(d − 1) categories.
They are all possible combinations of non-reference categories of X
and Z .

Interactions are tested via Wald test or LRT as any other variable.

If an interaction is significant, the significance of the original
constituent variables has no interpretation, nor meaning. The effects
are crossed, and we have only two ways to handle the situation:

1 Perform stratification and do separate analyses in different strata.
2 Introduce a new variable, which operates on the cross-product of

the crossed variables (the interaction variable), and omit the
interacting variables.
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1) Logistic regression

Measures of goodness-of-fit
Let ℓ̂0 = log L̂0 = log L̂(empty model).

McFadden R2
MF = 1 −

ℓ̂m

ℓ̂0

I. Žežula Robust 2010



Logistic regression
Multinomial regression

Ordinal regression

Introduction
Basic model
More general predictors
General model
Tests of association

1) Logistic regression

Measures of goodness-of-fit
Let ℓ̂0 = log L̂0 = log L̂(empty model).

McFadden R2
MF = 1 −

ℓ̂m

ℓ̂0

Cox & Snell R2
CS = 1 −

(

L̂0

L̂m

)
2
n
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1) Logistic regression

Measures of goodness-of-fit
Let ℓ̂0 = log L̂0 = log L̂(empty model).

McFadden R2
MF = 1 −

ℓ̂m

ℓ̂0

Cox & Snell R2
CS = 1 −

(

L̂0

L̂m

)
2
n

Nagelkerke R2
N =

R2
CS

1 − L̂
2
n
0
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1) Logistic regression

Measures of goodness-of-fit
Let ℓ̂0 = log L̂0 = log L̂(empty model).

McFadden R2
MF = 1 −

ℓ̂m

ℓ̂0

Cox & Snell R2
CS = 1 −

(

L̂0

L̂m

)
2
n

Nagelkerke R2
N =

R2
CS

1 − L̂
2
n
0

Hosmer-Lemeshow test (chi-square test of goodness-of-fit in
contingency table between the outcome variable and groups of
predicted values)

I. Žežula Robust 2010



Logistic regression
Multinomial regression

Ordinal regression

Introduction
Basic model
More general predictors
General model
Tests of association

1) Logistic regression

Alternatives
Logistic function is not the only one used for transformation of
probabilities of binary outcomes. Most used are:

logistic function log
(

p
1−p

)

probit function Φ−1(p)

complementary log-log function
log(− log(1 − p))

negative log-log function
− log(− log(p))

cauchit function tan
((

p − 1
2

)

π
)

They are called link functions.

0,60,40,20

y

5

4

3

2

1

0

-1

-2

-3

-4

-5

x

10,8

probit                  

com. log-log            

logit                   

cauchit                 
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2) Multinomial regression

Example: From 1991 U.S. General Social Survey data, we want
to check whether sex of a respondent influences the probabilities
of life satisfaction feelings.

We get the following contingency table:

sex
life satisfaction

sum
exiting routine dull

male 213 200 12 425
female 221 305 29 555
sum 434 505 41 980

I. Žežula Robust 2010
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2) Multinomial regression

Example: From 1991 U.S. General Social Survey data, we want
to check whether sex of a respondent influences the probabilities
of life satisfaction feelings.

We get the following contingency table:

sex
life satisfaction

sum
exiting routine dull

male 213 200 12 425
female 221 305 29 555
sum 434 505 41 980

Sometimes it may have sense to solve such a problem by a
series of binary models:

I. Žežula Robust 2010
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2) Multinomial regression

Example: From 1991 U.S. General Social Survey data, we want
to check whether sex of a respondent influences the probabilities
of life satisfaction feelings.

We get the following contingency table:

sex
life satisfaction

sum
exiting routine dull

male 213 200 12 425
female 221 305 29 555
sum 434 505 41 980

Sometimes it may have sense to solve such a problem by a
series of binary models:

1 life is exiting – not exiting
2 not exiting life: routine – dull
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2) Multinomial regression

Or, we have to consider more probabilities and more odds. In our
example, we have to consider two multinomial distributions
(p11, p12, p13) and (p21, p22, p23), describing the probabilities of
life satisfaction feelings for males and females, respectively. The
simplest way is to choose one response category as a reference
– say exciting life – because one of the probabilities in each row
is redundant.
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2) Multinomial regression

Or, we have to consider more probabilities and more odds. In our
example, we have to consider two multinomial distributions
(p11, p12, p13) and (p21, p22, p23), describing the probabilities of
life satisfaction feelings for males and females, respectively. The
simplest way is to choose one response category as a reference
– say exciting life – because one of the probabilities in each row
is redundant.

Then, the model is

log
(

pij

pi1

)

= β0j + β1jxi , j = 2, 3,

where xi ∈ {0, 1} is the indicator of sex.
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2) Multinomial regression

Or, we have to consider more probabilities and more odds. In our
example, we have to consider two multinomial distributions
(p11, p12, p13) and (p21, p22, p23), describing the probabilities of
life satisfaction feelings for males and females, respectively. The
simplest way is to choose one response category as a reference
– say exciting life – because one of the probabilities in each row
is redundant.

Then, the model is

log
(

pij

pi1

)

= β0j + β1jxi , j = 2, 3,

where xi ∈ {0, 1} is the indicator of sex.

The previous formula coincides with the simple linear logistic
model in the case of dichotomic outcome.
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2) Multinomial regression

Based on our frequencies, we get the following odds and log-odds:

odds log-odds

200/213 = 0, 938967 12/213 = 0, 056338 -0,06297 -2,87639
305/221 = 1, 38009 29/221 = 0, 131222 0,322149 -2,03087
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2) Multinomial regression

Based on our frequencies, we get the following odds and log-odds:

odds log-odds

200/213 = 0, 938967 12/213 = 0, 056338 -0,06297 -2,87639
305/221 = 1, 38009 29/221 = 0, 131222 0,322149 -2,03087

The differences of the log-odds in the last two columns are
−0, 385123874 and −0, 845518644. Thus, we can write two models

y = 0.322 − 0.385x , y = −2.031 − 0.846x

for routine and dull feeling, respectively.
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2) Multinomial regression

Based on our frequencies, we get the following odds and log-odds:

odds log-odds

200/213 = 0, 938967 12/213 = 0, 056338 -0,06297 -2,87639
305/221 = 1, 38009 29/221 = 0, 131222 0,322149 -2,03087

The differences of the log-odds in the last two columns are
−0, 385123874 and −0, 845518644. Thus, we can write two models

y = 0.322 − 0.385x , y = −2.031 − 0.846x

for routine and dull feeling, respectively. Software gets:

Life B Std. Error Wald df Sig. Exp(B) 95% CI
Intercept 0,322149 0,088338 13,29904 1 0,000266

Routine [sex=1] -0,38512 0,132282 8,476221 1 0,003598 0,680366 0,524982 0,881741
[sex=2] 0 0

Intercept -2,03087 0,197504 105,7336 1 0
Dull [sex=1] -0,84552 0,356421 5,627561 1 0,01768 0,429335 0,213506 0,86334

[sex=2] 0 0
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2) Multinomial regression

General model
Let

the response variable Y have r categories, and X1, . . . ,Xk be
explanatory variables;
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2) Multinomial regression

General model
Let

the response variable Y have r categories, and X1, . . . ,Xk be
explanatory variables;
yi = (yi1, . . . , yir ) be the response values in i-th subgroup having
multinomial distribution Mn (ni , pi1, . . . , pir );
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2) Multinomial regression

General model
Let

the response variable Y have r categories, and X1, . . . ,Xk be
explanatory variables;
yi = (yi1, . . . , yir ) be the response values in i-th subgroup having
multinomial distribution Mn (ni , pi1, . . . , pir );

βj =
(

β0j , β1j , . . . , βkj
)′

be regression coefficients for the j-th
response category with respect to the j∗-th (reference) one;
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2) Multinomial regression

General model
Let

the response variable Y have r categories, and X1, . . . ,Xk be
explanatory variables;
yi = (yi1, . . . , yir ) be the response values in i-th subgroup having
multinomial distribution Mn (ni , pi1, . . . , pir );

βj =
(

β0j , β1j , . . . , βkj
)′

be regression coefficients for the j-th
response category with respect to the j∗-th (reference) one;
xi = (1, xi1, . . . , xik )

′ be actual values of explanatory variables for
the i-th subgroup.
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2) Multinomial regression

General model
Let

the response variable Y have r categories, and X1, . . . ,Xk be
explanatory variables;
yi = (yi1, . . . , yir ) be the response values in i-th subgroup having
multinomial distribution Mn (ni , pi1, . . . , pir );

βj =
(

β0j , β1j , . . . , βkj
)′

be regression coefficients for the j-th
response category with respect to the j∗-th (reference) one;
xi = (1, xi1, . . . , xik )

′ be actual values of explanatory variables for
the i-th subgroup.

Then, general multinomial regression model is

log
(

pij

pij∗

)

= x ′
i βj , j 6= j∗
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2) Multinomial regression

Inverse formulas are

pij =
exp

(

x ′
i βj
)

1 +
r
∑

k=1
k 6=j∗

exp
(

x ′
i βk
)

, j 6= j∗

and

pij∗ =
1

1 +
r
∑

k=1
k 6=j∗

exp
(

x ′
i βk
)

.
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2) Multinomial regression

Inverse formulas are

pij =
exp

(

x ′
i βj
)

1 +
r
∑

k=1
k 6=j∗

exp
(

x ′
i βk
)

, j 6= j∗

and

pij∗ =
1

1 +
r
∑

k=1
k 6=j∗

exp
(

x ′
i βk
)

.

Estimation is done via ML-method.
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2) Multinomial regression

The log-likelihood function is

ℓ(β) = log

(

ni !
∏r

j=1 yij!

)

+

n
∑

i=1

r
∑

j=1

yij log
(

pij
)
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2) Multinomial regression

The log-likelihood function is

ℓ(β) = log

(

ni !
∏r

j=1 yij!

)

+

n
∑

i=1

r
∑

j=1

yij log
(

pij
)

The ML-equations are

∂ℓ

∂βmj
=

n
∑

i=1

xim
(

yij − nipij
)

= 0, j 6= j∗, m = 0, . . . , k
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2) Multinomial regression

The log-likelihood function is

ℓ(β) = log

(

ni !
∏r

j=1 yij!

)

+

n
∑

i=1

r
∑

j=1

yij log
(

pij
)

The ML-equations are

∂ℓ

∂βmj
=

n
∑

i=1

xim
(

yij − nipij
)

= 0, j 6= j∗, m = 0, . . . , k

Hessian matrix of the estimates of β =
(

βj
′, j = 1, . . . , r , j 6= j∗

)′
is

H = −

n
∑

i=1

(Ir−1 ⊗ xi) V̂ ∗
i (Ir−1 ⊗ xi)

′
,

where V̂ ∗
i = ni (diag (p̂∗

i )− p̂∗
i p̂∗

i
′) and p̂∗

i is the vector of all
estimates of probabilities pij except pij∗
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2) Multinomial regression

Chi=square of the estimated model is

χ2 =
n
∑

i=1

r
∑

j=1

(

yij − ni p̂ij
)2

ni p̂ij

Since total number of non-redundant parameters in the model is
(r-1)(k+1), it holds χ2 ≈ χ2

(n−k−1)(r−1).
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2) Multinomial regression

Chi=square of the estimated model is

χ2 =
n
∑

i=1

r
∑

j=1

(

yij − ni p̂ij
)2

ni p̂ij

Since total number of non-redundant parameters in the model is
(r-1)(k+1), it holds χ2 ≈ χ2

(n−k−1)(r−1).

Deviance of the estimated model is

Dm = 2 (ℓf − ℓm) =

n
∑

i=1

r
∑

j=1

yij log
(

yij

ni p̂ij

)

Here also Dm ≈ χ2
(n−k−1)(r−1).
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2) Multinomial regression

Chi=square of the estimated model is

χ2 =
n
∑

i=1

r
∑

j=1

(

yij − ni p̂ij
)2

ni p̂ij

Since total number of non-redundant parameters in the model is
(r-1)(k+1), it holds χ2 ≈ χ2

(n−k−1)(r−1).

Deviance of the estimated model is

Dm = 2 (ℓf − ℓm) =

n
∑

i=1

r
∑

j=1

yij log
(

yij

ni p̂ij

)

Here also Dm ≈ χ2
(n−k−1)(r−1).

The same pseudo-R2 statistics as in logistic regression model
can be used.
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2) Multinomial regression

If actual variance matrix of yi are substantially larger than
Vi = ni (diag (pi)− pip′

i ) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter σ2, such
that var yi = σ2Vi .
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2) Multinomial regression

If actual variance matrix of yi are substantially larger than
Vi = ni (diag (pi)− pip′

i ) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter σ2, such
that var yi = σ2Vi .

Usual (asymptotically unbiased) estimator of σ2 is

σ̂2 =
χ2

(n − k − 1)(r − 1)

(or Dm instead of χ2).
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2) Multinomial regression

If actual variance matrix of yi are substantially larger than
Vi = ni (diag (pi)− pip′

i ) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter σ2, such
that var yi = σ2Vi .

Usual (asymptotically unbiased) estimator of σ2 is

σ̂2 =
χ2

(n − k − 1)(r − 1)

(or Dm instead of χ2).
Use of σ2 does not change estimators of β.
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2) Multinomial regression

If actual variance matrix of yi are substantially larger than
Vi = ni (diag (pi)− pip′

i ) (given by the multinomial model), we speak
about overdispersion . Then, we introduce scale parameter σ2, such
that var yi = σ2Vi .

Usual (asymptotically unbiased) estimator of σ2 is

σ̂2 =
χ2

(n − k − 1)(r − 1)

(or Dm instead of χ2).
Use of σ2 does not change estimators of β.
Variance of the estimators is

var β̂ = σ̂2

[

n
∑

i=1

(Ir−1 ⊗ xi) V̂ ∗
i (Ir−1 ⊗ xi)

′

]−1
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2) Multinomial regression

Tests

For any Lq×k+1 of full rank, it holds

β̂′
j L

′
[

L var β̂jL′
]−1

Lβ̂j ≈ χ2
q

under H0 : Lβj = 0. This allows testing of separate regression
coefficients and/or their linear combinations.
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2) Multinomial regression

Tests

For any Lq×k+1 of full rank, it holds

β̂′
j L

′
[

L var β̂jL′
]−1

Lβ̂j ≈ χ2
q

under H0 : Lβj = 0. This allows testing of separate regression
coefficients and/or their linear combinations.

LR test of nested models with k1 and k2 (k1 < k2) regression
parameters is based on

1
σ̂2 (Dm1 − Dm2) =

2
σ̂2

(

ℓ̂m2 − ℓ̂m1

)

≈ χ2
k2−k1
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2) Multinomial regression

Example: We have used sex as a predictor in our life satisfaction
study model. This first model has 4 non-redundant parameters
(intercept and one non-reference sex category for each of 2
non-reference life feelings).
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2) Multinomial regression

Example: We have used sex as a predictor in our life satisfaction
study model. This first model has 4 non-redundant parameters
(intercept and one non-reference sex category for each of 2
non-reference life feelings).
If we add race (white, black, other) as another possible predictor, we
have 4 more non-redundant parameters – 2 non-reference races
within 2 non-reference life feelings.
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2) Multinomial regression

Example: We have used sex as a predictor in our life satisfaction
study model. This first model has 4 non-redundant parameters
(intercept and one non-reference sex category for each of 2
non-reference life feelings).
If we add race (white, black, other) as another possible predictor, we
have 4 more non-redundant parameters – 2 non-reference races
within 2 non-reference life feelings.
Overdispersion is not observed. Software gets:

ℓ̂m1 = −25, 8165, ℓ̂m2 = −24.332

Therefore,

∆Dm = 2(−24.332 + 25, 8165) = 2.969 < 9.488 = χ2
8−4(0.05)

Corresponding p-value is 0.563. The race factor proves to be
non-significant.
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3) Ordinal regression

Example: Random sample of Vermont citizens was asked to rate the
work of criminal judges in the state. The scale was Poor (1), Only fair
(2), Good (3), and Excellent (4). At the same time, they had to report
whether somebody of their household had been a crime victim within
the last 3 years.
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3) Ordinal regression

Example: Random sample of Vermont citizens was asked to rate the
work of criminal judges in the state. The scale was Poor (1), Only fair
(2), Good (3), and Excellent (4). At the same time, they had to report
whether somebody of their household had been a crime victim within
the last 3 years.

The question was, whether people with personal experience with
crime and people without it share the same view of criminal justice
performance.
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3) Ordinal regression

Example: Random sample of Vermont citizens was asked to rate the
work of criminal judges in the state. The scale was Poor (1), Only fair
(2), Good (3), and Excellent (4). At the same time, they had to report
whether somebody of their household had been a crime victim within
the last 3 years.

The question was, whether people with personal experience with
crime and people without it share the same view of criminal justice
performance.

The data:

Household victim
Judges’ performance

sum
Poor Only fair Good Excellent

Yes 14 28 31 3 76
No 38 170 248 34 490

sum 52 198 279 37 566
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3) Ordinal regression

With ordinal data, it is natural to consider probabilities of cumulative
events, like specific score or worse. Table of cumulative frequencies
is as follows:

Judges’ performance
Household victim

Poor
Only fair
or worse

Good
or worse

Excellent
or worse

Yes 14 42 73 76
row percentage 18,42% 55,26% 96,05% 100,00%

No 38 208 456 490
row percentage 7,76% 42,45% 93,06% 100,00%
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3) Ordinal regression

With ordinal data, it is natural to consider probabilities of cumulative
events, like specific score or worse. Table of cumulative frequencies
is as follows:

Judges’ performance
Household victim

Poor
Only fair
or worse

Good
or worse

Excellent
or worse

Yes 14 42 73 76
row percentage 18,42% 55,26% 96,05% 100,00%

No 38 208 456 490
row percentage 7,76% 42,45% 93,06% 100,00%
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3) Ordinal regression

With ordinal data, it is natural to consider probabilities of cumulative
events, like specific score or worse. Table of cumulative frequencies
is as follows:

Judges’ performance
Household victim

Poor
Only fair
or worse

Good
or worse

Excellent
or worse

Yes 14 42 73 76
row percentage 18,42% 55,26% 96,05% 100,00%

No 38 208 456 490
row percentage 7,76% 42,45% 93,06% 100,00%

The graph suggests that having a crime victim in
the household implies more negative opinion on
judges’ performance.
The lines must meet at 100%. Otherwise they
look almost parallel. That suggest model with
common slope for both categories.

1

0,8

0,6

0,4

0,2

0
4321

Yes                     

No                      
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3) Ordinal regression

Let us denote pc
ij = P(score ≤ j), i = 1(No), 2(Yes), j = 1, 2, 3 the

non-trivial cumulative probabilities. Then, our model is

log

(

pc
1j

1 − pc
1j

)

= αj and log

(

pc
2j

1 − pc
2j

)

= αj + β ,
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3) Ordinal regression

Let us denote pc
ij = P(score ≤ j), i = 1(No), 2(Yes), j = 1, 2, 3 the

non-trivial cumulative probabilities. Then, our model is

log

(

pc
1j

1 − pc
1j

)

= αj and log

(

pc
2j

1 − pc
2j

)

= αj + β ,

or

log

(

pc
j (x)

1 − pc
j (x)

)

= αj + βx ∀j , x ∈ {0, 1}.
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3) Ordinal regression

Let us denote pc
ij = P(score ≤ j), i = 1(No), 2(Yes), j = 1, 2, 3 the

non-trivial cumulative probabilities. Then, our model is

log

(

pc
1j

1 − pc
1j

)

= αj and log

(

pc
2j

1 − pc
2j

)

= αj + β ,

or

log

(

pc
j (x)

1 − pc
j (x)

)

= αj + βx ∀j , x ∈ {0, 1}.

Software gets α1 = −2.39, α2 = −0.32, α2 = 2.59, β = 0.63. Using
standard inverse formula for logits, we obtain the following estimates:

≤ 1 ≤ 2 ≤ 3
Yes 14,69% 57,85% 96,18%
No 8,38% 42,15% 93,04%
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3) Ordinal regression

Proportional odds model
Let

Y be ordinal response variable with possible values 1, . . . , r
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3) Ordinal regression

Proportional odds model
Let

Y be ordinal response variable with possible values 1, . . . , r
X = (X1, . . . ,Xk ) be independent predictor variables
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3) Ordinal regression

Proportional odds model
Let

Y be ordinal response variable with possible values 1, . . . , r
X = (X1, . . . ,Xk ) be independent predictor variables
α1, . . . , αr−1 and β = (β1, . . . , βk ) be unknown regression
coefficients
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3) Ordinal regression

Proportional odds model
Let

Y be ordinal response variable with possible values 1, . . . , r
X = (X1, . . . ,Xk ) be independent predictor variables
α1, . . . , αr−1 and β = (β1, . . . , βk ) be unknown regression
coefficients

Model: logits of cumulative probabilities pc
j (x) = P (Y ≤ j|X = x)

satisfy

log

(

pc
j (x)

1 − pc
j (x)

)

= αj + β′x ∀j = 1, . . . , r − 1
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3) Ordinal regression

Proportional odds model
Let

Y be ordinal response variable with possible values 1, . . . , r
X = (X1, . . . ,Xk ) be independent predictor variables
α1, . . . , αr−1 and β = (β1, . . . , βk ) be unknown regression
coefficients

Model: logits of cumulative probabilities pc
j (x) = P (Y ≤ j|X = x)

satisfy

log

(

pc
j (x)

1 − pc
j (x)

)

= αj + β′x ∀j = 1, . . . , r − 1

Because log of cumulative odds ratio of making the same responses at different
x-points is proportional to the distance of the points, the model is called proportional
odds model:

log

(

pc
j (x1)

1 − pc
j (x1)

·
1 − pc

j (x2)

pc
j (x2)

)

= β′ (x1 − x2)
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3) Ordinal regression

Estimation is done again via ML-method. There are two options:
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3) Ordinal regression

Estimation is done again via ML-method. There are two options:
1 at first estimating pc

j (x), and then calculating
pj(x) = pc

j (x)− pc
j−1(x) (taking p0(x) ≡ 0)
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3) Ordinal regression

Estimation is done again via ML-method. There are two options:
1 at first estimating pc

j (x), and then calculating
pj(x) = pc

j (x)− pc
j−1(x) (taking p0(x) ≡ 0)

2 estimating directly pj(x)
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3) Ordinal regression

Estimation is done again via ML-method. There are two options:
1 at first estimating pc

j (x), and then calculating
pj(x) = pc

j (x)− pc
j−1(x) (taking p0(x) ≡ 0)

2 estimating directly pj(x)

Likelihood function is

L(α, β) =
n
∏

i=1

r
∏

j=1

[

pj (xi)− pj−1 (xi)
]yij
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3) Ordinal regression

Estimation is done again via ML-method. There are two options:
1 at first estimating pc

j (x), and then calculating
pj(x) = pc

j (x)− pc
j−1(x) (taking p0(x) ≡ 0)

2 estimating directly pj(x)

Likelihood function is

L(α, β) =
n
∏

i=1

r
∏

j=1

[

pj (xi)− pj−1 (xi)
]yij

All standard goodness-of-fit measures apply.
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3) Ordinal regression

Estimation is done again via ML-method. There are two options:
1 at first estimating pc

j (x), and then calculating
pj(x) = pc

j (x)− pc
j−1(x) (taking p0(x) ≡ 0)

2 estimating directly pj(x)

Likelihood function is

L(α, β) =
n
∏

i=1

r
∏

j=1

[

pj (xi)− pj−1 (xi)
]yij

All standard goodness-of-fit measures apply.

The fit is different than separate logit models for all j ’s.
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3) Ordinal regression

Example: Software output for Vermont crime data:

Estimate Std. Error Wald df Sig. 95% conf. interval

Threshold [rating = 1] -2,39221 0,15177 248,44332 1 0,00000 -2,68968 -2,09475
[rating = 2] -0,31651 0,09082 12,14637 1 0,00049 -0,49451 -0,13852
[rating = 3] 2,59316 0,17163 228,28667 1 0,00000 2,25678 2,92955

Location [hhcrime=1] -0,63298 0,23198 7,44539 1 0,00636 -1,08765 -0,17831
[hhcrime=2] 0 . . 0 . . .

Notice opposite sign of the coefficient β (hhcrime=1). Many work with the model
αj − βx because of interpretation reasons: in such a case, higher coefficients indicate
association with higher scores.

I. Žežula Robust 2010



Logistic regression
Multinomial regression

Ordinal regression

Introduction
Proportional odds model
Other models

3) Ordinal regression

Example: Software output for Vermont crime data:

Estimate Std. Error Wald df Sig. 95% conf. interval

Threshold [rating = 1] -2,39221 0,15177 248,44332 1 0,00000 -2,68968 -2,09475
[rating = 2] -0,31651 0,09082 12,14637 1 0,00049 -0,49451 -0,13852
[rating = 3] 2,59316 0,17163 228,28667 1 0,00000 2,25678 2,92955

Location [hhcrime=1] -0,63298 0,23198 7,44539 1 0,00636 -1,08765 -0,17831
[hhcrime=2] 0 . . 0 . . .

Notice opposite sign of the coefficient β (hhcrime=1). Many work with the model
αj − βx because of interpretation reasons: in such a case, higher coefficients indicate
association with higher scores.

Let us now add another predictor variable, sex:

Estimate Std. Error Wald df Sig. 95% conf. interval

Threshold [rating = 1] -2,57419 0,17641 212,93519 1 0,00000 -2,91995 -2,22844
[rating = 2] -0,48730 0,12326 15,62868 1 0,00008 -0,72890 -0,24571
[rating = 3] 2,43740 0,18672 170,40298 1 0,00000 2,07143 2,80336

Location [hhcrime=1] -0,62074 0,23228 7,14177 1 0,00753 -1,07599 -0,16548
[hhcrime=2] 0 . . 0 . . .

[sex=1] -0,34145 0,16030 4,53709 1 0,03317 -0,65563 -0,02726
[sex=2] 0 . . 0 . . .
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3) Ordinal regression
We suspect that sex may influence sensitivity to crime victims, so that we add the

interaction:
Estimate Std. Error Wald df Sig. 95% conf. interval

Threshold [rating = 1] -2,64904 0,18097 214,26179 1 0,00000 -3,00374 -2,29434
[rating = 2] -0,55150 0,12873 18,35418 1 0,00002 -0,80381 -0,29920
[rating = 3] 2,38107 0,18819 160,07877 1 0,00000 2,01222 2,74993

Location [hhcrime=1] -1,13654 0,33008 11,85565 1 0,00057 -1,78350 -0,48959
[hhcrime=2] 0 . . 0 . . .

[sex=1] -0,46925 0,17330 7,33183 1 0,00677 -0,80891 -0,12959
[sex=2] 0 . . 0 . . .

[hhcrime=1] * [sex=1] 0,95889 0,46413 4,26832 1 0,03883 0,04921 1,86857
[hhcrime=1] * [sex=2] 0 . . 0 . . .
[hhcrime=2] * [sex=1] 0 . . 0 . . .
[hhcrime=2] * [sex=2] 0 . . 0 . . .
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3) Ordinal regression
We suspect that sex may influence sensitivity to crime victims, so that we add the

interaction:
Estimate Std. Error Wald df Sig. 95% conf. interval

Threshold [rating = 1] -2,64904 0,18097 214,26179 1 0,00000 -3,00374 -2,29434
[rating = 2] -0,55150 0,12873 18,35418 1 0,00002 -0,80381 -0,29920
[rating = 3] 2,38107 0,18819 160,07877 1 0,00000 2,01222 2,74993

Location [hhcrime=1] -1,13654 0,33008 11,85565 1 0,00057 -1,78350 -0,48959
[hhcrime=2] 0 . . 0 . . .

[sex=1] -0,46925 0,17330 7,33183 1 0,00677 -0,80891 -0,12959
[sex=2] 0 . . 0 . . .

[hhcrime=1] * [sex=1] 0,95889 0,46413 4,26832 1 0,03883 0,04921 1,86857
[hhcrime=1] * [sex=2] 0 . . 0 . . .
[hhcrime=2] * [sex=1] 0 . . 0 . . .
[hhcrime=2] * [sex=2] 0 . . 0 . . .

But, since the interaction is significant, the two individual variables don’t have good

meaning any more:
Estimate Std. Error Wald df Sig. 95% conf. interval

Threshold [rating = 1] -2,64904 0,18097 214,26179 1 0,00000 -3,00374 -2,29434
[rating = 2] -0,55150 0,12873 18,35418 1 0,00002 -0,80381 -0,29920
[rating = 3] 2,38107 0,18819 160,07877 1 0,00000 2,01222 2,74993

Location [hhcrime=1] * [sex=1] -0,64690 0,32950 3,85460 1 0,04961 -1,29270 -0,00110
[hhcrime=1] * [sex=2] -1,13654 0,33008 11,85565 1 0,00057 -1,78350 -0,48959
[hhcrime=2] * [sex=1] -0,46925 0,17330 7,33183 1 0,00677 -0,80891 -0,12959
[hhcrime=2] * [sex=2] 0 . . 0 . . .

Redundant parameters are not estimated, so that interaction itself is enough. This

model has the same χ2, deviance, and pseudo-R2 as the previous one.
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3) Ordinal regression

Other ordinal regression models

General cumulative logit model is

log

(

pc
j (x)

1 − pc
j (x)

)

= αj + β′
j x ∀j = 1, . . . , r − 1

Thus, every group has its own slope. Proportional odds model is
a special case, and can be tested by LR test.
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3) Ordinal regression

Other ordinal regression models

General cumulative logit model is

log

(

pc
j (x)

1 − pc
j (x)

)

= αj + β′
j x ∀j = 1, . . . , r − 1

Thus, every group has its own slope. Proportional odds model is
a special case, and can be tested by LR test.
Adjacent categories model is

log
(

pj(x)
pj+1(x)

)

= αj + β′x ∀j = 1, . . . , r − 1

This model recognizes the ordering, since

log
(

pj(x)
pr (x)

)

=

r
∑

m=j

αm + β′(r − j)x ∀j
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The suffering is over...

Thank you for your attention!
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