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SUMMARY
The poster presents recent results on tests of interaction in two-way ANOVA mixed models
without replication, and determination of the minimum size of experiment in this case.

INTRODUCTION
In many applications of statistical methods it is assumed that the
response variable is a sum of several factor variables and a random
noise. In a real world this may not be an appropriate model. For
example, some patients may react differently to the same drug treat-
ment. Or the influence of fertilizer may be influenced by the type of
a soil. There might exist an interaction between factors. A testing
for such interaction will be referred here as testing of additivity
hypothesis.

If there is more than one observation per cell then standard
ANOVA techniques may be applied. Unfortunately, in many cases it
is infeasible to get more than one observation taken under the same
conditions. For instance, it is impossible to ask the same student the
same question twice.

We restrict ourselves to a case of two factors, i.e. two–array model,
when the response in ith row and jth column is modeled as

yij = µ + αi + bj + γij + eij, i = 1, . . . , a, j = 1, . . . , b, (1)

where αi are levels of the fixed factor,
∑

i αi = 0, bj and γij are
random factor and random interaction, both normally distributed
with zero mean and variance σ2

b and σ2
γ, resp., and the eij are nor-

mally distributed independent random variables with zero mean and
variance σ2.

The problem is to find a test for the hypothesis that there is no
interaction between the fixed and the random factor (σ2

γ = 0).
There are several tests of additivity for the two-way ANOVA model

without replication with fixed factors. We consider five of them:
Tukey test, Mandel test, Johnson – Graybill test, locally best invari-
ant (LBI) test and Tussel test.

First, the actual type-I-risk of all these tests is verified for the
mixed ANOVA model by simulation. Second, their power is studied
and a modification of Tukey test is proposed. Third, we found an
approximate relation of the power of the Johnson – Graybill test and
the parameters of model (1).

ADDITIVITY TESTS
We very shortly recall the five tests. Let ȳ·· denotes the over all mean,
ȳi· and ȳ·j the ith row’s and the jth column’s means, respectively.
The matrix R will stand for a residual matrix with respect to the
main effects rij = yij − ȳi· − ȳ·j + ȳ·· The decreasingly ordered list

of eigenvalues of RRT will be denoted by κ1 ≥ κ2 ≥ . . . , and its
scaled version ωi = κi/

∑

k κk, i = 1, 2, . . . .
If the interaction is present we may expect that some of the ωi

coefficients will be substantially higher than others.

Tukey test: Introduced in Tukey (1949). Tukey test first esti-
mates row and column effects and then tests for the interaction of
type γij = kȳi·ȳ·j (k = 0 implies no interaction). Tukey’s test
statistic ST equals

ST = MSint/MSerror,

where

MSint =

(

∑

i

∑

j yij(ȳi· − ȳ··)(ȳ·j − ȳ··)
)2

∑

i(ȳi· − ȳ··)2
∑

j(ȳ·j − ȳ··)2

and

MSerror =

∑

i

∑

j(yij − ȳ··)
2 − a

∑

j(ȳ·j − ȳ··)
2 − b

∑

i(ȳi· − ȳ··)
2 − MSint

(a − 1)(b − 1) − 1
.

ST is F -distributed with 1 and (a−1)(b−1)−1 degrees of freedom
under the hypothesis of additivity.

Mandel test: Introduced in Mandel (1961). Mandel test statistic
SM equals

SM =

∑

i(zi − 1)2
∑

j(ȳ·j − ȳ··)
2

a − 1
/

∑

i

∑

j ((yij − ȳi·) − zi(ȳ·j − ȳ··))
2

(a − 1)(b − 2)
,

where

zi :=

∑

j yij(ȳ·j − ȳ··)
∑

j(ȳ·j − ȳ··)2
.

SM is F -distributed with a−1 and (a−1)·(b−1) degrees of freedom
under the additivity hypothesis.

Johnson – Graybill test: Introduced in Johnson and Graybill
(1972). Johnson – Graybill test statistic is just SJ = ω1. The addi-
tivity hypothesis is rejected if SJ is high.

Locally best invariant (LBI) test: See Boik (1993). LBI test
statistic equals

SL =

min(a,b)−1
∑

k=1

ω2
k.

The additivity hypothesis is rejected if SL is high.

Tussel test: See Tussel (1990). Tussel test statistic equals

SU =

min(a,b)−1
∏

k=1

ωk.

The additivity hypothesis is rejected if SU is low.

The definitions of Johnson – Graybill’s, LBI and Tussel’s test statis-
tics presented above slightly differ from their original versions (in a
multiplicative constant). For a, b fixed, a simulation may be used to
get the critical values.

TYPE-I-RISK OF ADDITIVITY
TESTS
The actual type-I-risk of all the five tests of additivity were verified
for the mixed ANOVA model by simulation. Only the most common
nominal type-I-risk 5 % was assumed.

For verifying the type-I-risk, the number of levels of the fixed factor
was assumed a = 3, 4, . . . , 10, number of levels of the random factor
b was chosen between 4 and 50 (by 2 between 4 and 20, by 5 between
20 and 50), the variance of the random factor σ2

b = 2, 5, 10 and the

variance of the random error σ2 = 1.
In one step of the simulation a set of data was generated based on

the model without interaction. Then the test of no interaction was
performed. The percentage of significant test after several steps is
assumed to be the actual level of the test.

The 10 000 simulations were repeated 10 times and the standard
error of the estimation of the mean actual level was computed based
on these 10 repetitions. Then the one-sided one sample t-test of the
hypothesis “the actual p-level is equal to or lower than 0.05” was per-
formed (on the 5 % level without correction to the multiple testing).
The results of these tests are summarized in Table 1.

Test α̂ ≤ 0.05 α̂ > 0.05
Tukey test 349 (96.94) 11 (3.06)
Mandel test 348 (96.67) 12 (3.33)
Johnson Graybill test 339 (94.17) 21 (5.83)
LBI test 336 (93.33) 24 (6.67)
Tusell test 337 (93.61) 23 (6.39)

Table 1: Number and percentage of the simulated cases actual test level is equal

to or lower than and greater than nominal level 5%.

For the Tukey and Mandel tests in the vast majority (> 95 %)
of cases the actual level is not significantly above the 0.05 level. In
less than 4 % the type-I-risk is higher than the nominal 0.05. For
the other tests the nominal level is higher than 0.05 in slightly more
cases. However, this may also be false positives caused by multiple
testing.

In the ANOVA models with both effects fixed there is an im-
portant assumption about summing of both effects to zero, i.e.
∑a

i=1 ai=
∑b

j=1 bj = 0. In the case of random model that is not
valid. It is assumed that the expected value of random term E(bj)
equals zero, but in one particular case the sum is not zero (almost
surely). It can cause inaccuracy of the tests. However, for high num-
ber of levels of the random factor b, the sum converges to zero (law
of large numbers) and this problem disappears.

For 5 % type-I-risk all these tests hold the level of type-I-risk and
therefore the tests designed for fixed models can be used for the mixed
models as well.

A MODIFICATION OF THE TUKEY
TEST
As mentioned above the Tukey, Mandel, Johnson – Graybill, LBI
and Tussel test hold the level of type-I-risk even when one factor
is considered as random. In this part the power of these tests is
compared by means of simulation. While Tukey test has relatively
good power when the interaction is a product of the main effects, i.e.,
when γij = kαibj (interaction type A), its power for more general
interaction (interaction type B) is very poor:
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To increase the power of Tukey test we propose the following mod-
ification: In Tukey test a model yij = µ + αi + bj + kαibj + eij is

tested against a submodel yij = µ + αi + bj + e′ij. The estimators

of row effects α̂i = ȳi· − ȳ·· and column effects b̂j = ȳ·j − ȳ·· are
calculated in the same way in both models although the dependency
of yij on these parameters is not linear for the full model.

The main idea behind the presented modification is that a full
model

yij = µ + αi + bj + kαibj + eij

is fitted by a nonlinear regression and tested against a submodel
yij = µ + φi + psij + e′ij by a likelihood ratio test. The estimates
of row and column effects therefore differ for each model. See the
simulation results with modified test:
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If the sample size is small bootstrapping without replacement or
sampling from fitted model is used to control type-I-risk level.

THE POWER OF JOHNSON –
GRAYBILL TEST
As was shown, the Tukey and Mandel tests are appropriate if the
interaction is a product of the row and column effects (and a con-
stant) γij = k · ai · bj. The Johnson – Graybill, LBI and Tussel
tests are a bit worse for this special case, but they are suitable in
cases of more complex interactions. When planning experiments, it
is hard to know the form of the interaction and therefore the three
latter tests are more appropriate in the general case. In the following
we will consider only the Johnson – Graybill test.

To state the formula for estimation of power, we assume an inter-
action term in the model (1) of the form

γij = k · ai · cj, (2)

where ai are the row effects in (1), cj are normally distributed ran-

dom variables with zero expected value and variance σ2
b , mutually

independent to the random variable bj and eij. The k is a real
constant.

The interaction in (2) is a random variable with zero mean. Its
variance is equal to var γij = k2 · a2

i · σ
2
b .

The power of a test gets higher if the distance of its alternative from
the null hypothesis becomes greater. Based on simulations, it was
found out that the power of the test of additivity depends on the ai
only through the sum of their squares

∑a
i=1 a2

i . The power of John-
son – Graybill test for type-I-risk equal to 5 % can be approximately
computed as

power = 1 −
1

a · b · k4 · σ4
b

∑a
i=1 a2

i

. (3)

The plan of an experiment means in our situation to set the num-
ber of levels of the random factor b (i.e. the number of blocks).
From (3), for required power β and given a, k,σ2

B and
∑

a2
i the

number of levels should equals at least

b =
1 − β

a · k4 · σ4
B

∑a
i=1 a2

i

.

Acknowledgment. The work was supported by the Minister of Agriculture of
the Czech Republic MZE 0002701403.

References.

Alin, A. and Kurt, S. (2006). Testing non-additivity (interaction) in two-way
ANOVA tables with no replication. Stat. Meth. in Med. Res. 15, 63–85.

Boik, R.J. (1993a). Testing additivity in two-way classifications with no replica-
tions: the locally best invariant test. Journal of Applied Statistics 20, 41–55.

Boik, R.J. (1993b). A comparison of three invariant tests of additivity in two-
way classifications with no replications. Computational Statistics and Data

Analysis 15, 411–424.
Johnson, D.E. and Graybill, F.A. (1972). An analysis of a two-way model with in-

teraction and no replication. Journal of the American Statistical Association

67, 862–868.
Mandel, J. (1961). Non-additivity in two-way analysis of variance. Journal of

the American Statistical Association 56, 878–888.
Rasch, D. (1995). Mathematische Statistik. Johann Ambrosius Barth, Heidel-
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