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j.pecanka@few.vu.nl

Department of Probability and Mathematical Statistics, Charles University Prague

Department of Stochastics, Vrije Universiteit Amsterdam

1 Autoregressive Model with Change Point

We assume to have a set of observations Y1, . . . , Yn from an AR(p) process, with
p ∈ N fixed. We define a recursive equation

Yt − µ = ϕ1(Yt−1 − µ) + . . . + ϕp(Yt−p − µ) + εt, p < t, (1)

where {εt} is a white noise sequence with variance σ2 and µ, σ2, ϕ1, . . . , ϕp are
fixed constants and Y1, . . . , Yp are some initial values. This represents the null
hypothesis. On the other hand, the equation corresponding to the alternative is

Yt =

{
ϕ0 + ϕ1Yt−1 + . . . + ϕpYt−p + εt, p < t ≤ k∗,
ψ0 + ψ1Yt−1 + . . . + ψpYt−p + εt, k∗ < t,

(2)

with p < k∗ ≤ n. Thus, expressed simply, the pair of hypotheses in question is
H0 : k∗ = n and H1 : k∗ < n. More precisely, we define the null hypothesis
condition by

(H.1) The observations Yp+1, . . . , Yn follow the model (1) with k∗ = n; The
observations Y1, . . . , Yp are independent of the innovations εp+1, . . . , εn;
The characteristic polynomial φ(z) = 1 − ϕ1z − . . . − ϕpz

p has all roots
outside the unit ball ( causality, stationary solution).

and the alternative hypothesis condition we formulate as

(H.2) The observations Yp+1, . . . , Yn follow the model (2) with k∗ = ⌊τn⌋,
for some fixed τ ∈ (0, 1); The observations Y1, . . . , Yp are independent of
the innovations εp+1, . . . , εn; The polynomials φ1(z) = 1−ϕ1z−. . .−ϕpzp
and φ2(z) = 1 − (ϕ1+δ1)z − . . . − (ϕp+δp)z

p have all roots outside the
unit ball ( causality).

In both cases the initial observations Y1, . . . , Yp in the recursive equation (1) are
generated from {εt} according to

(H.3) The vector of observations xp+1 = (Yp, . . . , Y1)
′ satisfies xp+1 − µ =∑∞

j=0 Bjεp−j, where

B =

(
ϕ1, . . . , ϕp
Ip−1 0

)
and εk = (εk, 0, . . . , 0)′,

with Ip−1 denoting the (p − 1)-dimensional unit matrix and 0 denoting
the (p− 1)-dimensional zero vector.

For simplicity we also assume that the AR process is centered, i.e. µ = 0.

2 Theoretical Results

In [2] the asymptotic behavior of several testing statistics based on partial sums
of weighted residuals is investigated. We define

Tn =
1

σ̂2
n

max
p<k<n

{
S′
kC

−1
k Cn(C

0
k)
−1Sk

}
,

Tn(ǫ) =
1

σ̂2
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where ǫ ∈ (0, 1
2), q(t) is a positive weight function on (0, 1) and σ̂2

n is a suitable

estimator of the variance parameter σ2 and for k = p + 1, . . . , n

Sk =

k∑

t=p+1

xt(Yt − x′
tϕn), ϕn = C−1

n

n∑

t=p+1

xtYt,

Ck =

k∑

t=p+1

xtx
′
t, C0

k =

n∑

t=k+1

xtx
′
t = Cn − Ck.

An estimator of σ2 which has good properties under H0 and H1 is for example

σ̂2
n(k̂) =

1

n− p

[ k̂∑

i=p+1

(
Yi − x′β1

k̂

)2
+

n∑

i=k̂+1

(
Yi − x′β2

k̂

)2 ]
,

where k̂ is a suitable estimator of the change point k∗ and β1
k̂
, β2

k̂
are the least

squares estimators of β based on Y1, . . . , Yk̂ and Y
k̂
, . . . , Yn, respectively. Suitable

estimators of the change point k∗ are for example

k̂1 = min
{
k ∈ (p, n) : S′

kC
−1
k Cn(C

0
k)
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kC
−1
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(
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hC

−1
n Sh

)}
.

2.1 Asymptotic Distributions

By Γ(x) we denote the gamma function. The following theorems utilize functions
A(x) =

√
2 log x and Dp(x) = 2 log x + p

2 log log x− log Γ(p/2) and the following
two assumptions.

(I.1) {εt, t ∈ Z} are i.i.d. centered random variables with positive variance
σ2 and finite moment E|εt|4+ν, for some ν > 0, with density f such that

sup
a∈R

1

|a|

∫

R

∣∣f (x + a) − f (x)
∣∣ dx < ∞.

(I.2) {εt, t ∈ Z} are i.i.d. centered random variables with positive variance
σ2 and finite fourth moment m4 = E|εt|4.

The following theorems are either proved or referenced in [4]. We denote by
‖ · ‖ the p-dimensional Euclidean norm and

{
B(t), t ∈ [0, 1]

}
is a p-dimensional

standard Brownian bridge process with independent components, i.e. B(t) =(
B1(t), . . . , Bp(t)

)′
with

{
Bi(t), t ∈ [0, 1]

}
being a standard Brownian bridge for

all i = 1, . . . , p.

Theorem 1 (Asymptotics of Tn). Let assumptions (H.1) and (H.3) be satis-
fied and let σ̂2 be an estimator of σ2 such that σ̂2 − σ = oP((log logn)−1) as
n → ∞. Furthermore, let the white noise sequence {εt, t ∈ Z} satisfy (I.1).
Then,

lim
n→∞P

(
A(logn)T

1/2
n −Dp(logn) ≤ t

)
= exp

{
− 2e−t

}
, t ∈ R.

It also holds for all t ∈ R

lim
n→∞P

([
A2(log n)Tn −D2

p(log n)
] /

Dp(logn) ≤ t
)

= exp
{
− 2e−t/2

}
.

Theorem 2 (Asymptotics of Tn(ǫ), Tn(q, ǫ) and Tn(q)). Let assumptions
(H.1) and (H.3) be satisfied and let σ̂2 be a consistent estimator of σ2. Fur-
thermore, let {εt, t ∈ Z} be such that it satisfies (I.2). Then, for any ǫ ∈ (0, 1

2),
it holds

√
Tn(ǫ)

D−−−−→
n→∞ sup

t∈[ǫ,1−ǫ]

‖B(t)‖√
t(1 − t)

.

If, in addition, q(t) is a function that satisfies inf{q(t); t ∈ (ǫ, 1 − ǫ)} > 0,
then for any ǫ ∈ (0, 1) it holds

√
Tn(q, ǫ)

D−−−−→
n→∞ sup

t∈[ǫ,1−ǫ]

‖B(t)‖
q(t)

.

If, in addition, a function qβ(t) is defined as qβ(t) =
(
t(1 − t)

)β
, t ∈ (0, 1),

with β ∈
[
0, 1

2

)
, then also

√
Tn(qβ)

D−−−−→
n→∞ sup

t∈(0,1)

∥∥B(t)
∥∥

qβ(t)
.

3 Simulations

In [4] we simulated large number of AR processes of 3 different orders of autore-
gression p1 = 1, p2 = 3 and p3 = 5. For each order we simulated 1000 repetitions
of AR processes of lengths n = 100, 200, 300, 400, 500, 760, 1000, 2000. We per-
formed these simulations under three different distributions of the innovations {εt}:
the standard normal distribution, t6-distribution and the uniform distribution on
[−1, 1 ]. For the lack of available space we present here only the normal case. We
should like to mention that the results were very similar for all three distributions.
We also simulated processes with fixed and randomly chosen coefficients. We only
present the case of fixed coefficients, which were fixed at ϕ1 = 0.5 for p = 1, and
ϕ1 = 0.5, ϕ2 = −0.4, ϕ3 = 0.1 for p = 3, and ϕ1 = 1, ϕ2 = −0.1, ϕ3 = 0.3,
ϕ2 = −0.4, ϕ5 = 0.1 for p = 5. These coefficients were used to generate AR
with no change point and the before change portion of AR processes with change
point. On the other hand, the the coefficients used to simulate the after change
point portion of the data were fixed at the values ψ1 = 0.8 for p = 1, and ψ1 = 1,
ψ2 = −1, ψ3 = 0.1 for p = 3, and ψ1 = −0.5, ψ2 = 0.5, ψ3 = 0.3, ψ2 = −0.4,
ψ5 = 0.1 for p = 5. To get a broader picture we also used different change points.
The location of the change point for each choice of p and each n are defined using
τ as τ1 = 0.25, τ2 = 0.5 and τ3 = 0.75, respectively.

3.1 Behavior of Statistics under Null Hypothesis

From these graphs it is apparent that while most of the statistics behaved in ac-
cordance with theory, the attained levels of significance were not always near the
chosen value of α = 5% even for large sample sizes. For example, a lower level of

significance was attained by the test statistic Sn(1) = An(logn)T
1/2
n −Dp(logn)

for the two smaller choices of order p = 1, 3, with the results for p = 3 being slightly
more favorable. On the other hand, already for the case of p = 5 the attained level
of significance for a test based on Sn(1) is quite close to the asymptotic level of 5%.
However, in the case of Sn(2) = (A2

n(logn)Tn − D2
p(log n))/Dp(log n) for p = 5

the convergence is particularly slow and the attained level of significance even for
n = 2000 is much higher than 5%. We also conclude that the tests based on Tn(ǫ),
Tn(q0, ǫ) and Tn(q0) have the attained level quite close to the theoretical value of
5%.
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We illustrate the behavior of Sn(1) and Sn(2) by the convergence of their dis-
tribution functions. The upper row corresponds to Sn(1), while the lower row
corresponds to Sn(2), both with orders increasing from left to right (p = 1, 3, 5).
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3.2 Detection of Change Point under Alternatives

The tests based on statistics statistics Tn, Tn(ǫ), Tn(q0, ǫ) and Tn(q) with q =(
t(1 − t)

)β
, t ∈ (0, 1), β ∈

[
0, 1

2

)
are consistent (see [2] or [4]). To illustrate this

we again simulated N = 1000 realizations of AR processes with a change of au-
toregression coefficients at time k∗ = ⌊τn⌋. We present here the results for Sn(1)
and Sn(2). The distribution of Sn(1) behaved as shown on the following graphs
(increasing τ = 0.25, 0.5, 0.75 from left to right, increasing order p = 1, 3, 5 from
top to bottom).
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An illustration of the behavior of distribution functions of Sn(2) with the same
ordering as in the case of Sn(1) follows.
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In our graphs we can observe an apparent shifting of the empirical distribution func-
tions of Sn(1) and Sn(2) towards infinity for all orders p = 1, 3, 5 as n increases.
Note, that the convergence seems to be faster for higher orders of autoregression.
Based on the results in [4] we can also conclude that the convergence of Sn(1) and
Sn(2) to infinity appears faster for τ = 0.5 than for either of other two choices
τ = 0.25 and τ = 0.75. Finally, we illustrate consistency of all of the presented
test statistics Sn(1), Sn(2), Tn(ǫ), Tn(q, ǫ) and Tn(q) in terms of empirical power
for p = 1, p = 3 and p = 5 with τ = 0.5 and ǫ = 0.1. The simulated results seem
to be quite satisfactory.
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