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Abstract: In this work we will focus on a problem of estimating an unknown regression function based on spline approach, while taking into account also some sudden
jumps - change-points. We will propose an algorithm for both, continuous and discrete response variable which allows for possible change-points not only in the regression
function itself, but also in all order derivatives.

We will discuss different initial settings required for spline fitting problem, like the degree and type of spline basis, the number and positions of knot points and also the
way how to reveal jumps in all level derivatives. The proposed methods are applied to seroprevalence data of B19 parvovirus in Belgium population. Different models have
been fitted and compared with respect to several statistical criteria. To have a better view on some aspects of this problem we have also proposed some simulation study.

Splines in statistics
are quite common modelling approach used nowadays as they can offer
nice statistical properties together with an easy implementation and
a straightforward interpretation.

Even if splines are not parametric in functional form, in most cases
they may be written as a linear combination of some basis functions
which usually have a polynomial representation. Locally they are de-
fined by parameters and thus there is a certain parametric flavour.
However, the set of all admissible functions that may be splines has
a cardinality qual to RR which gives them enough flexibility to model
almost any possible regression function. Moreover, being piecewise
polynomial causes that the spline behaviour in one region may be
totally unrelated to the bahavior in another region. This is not the
case in some other nonparametric approaches. Splines are everywhere
represented by simple polynomials, therefore they are easy to handle
and their integrals and derivatives are also spline functions of degree
higher or lower respectively.

Finaly, there is no need to have the whole data set available in order
to reconstruct the estimate or to predict new observations. The only
thing one really needs is a set of basis functions and the corresponding
coefficients estimates.

Let {(Xi, Yi); i = 1, . . . , N} be a random sample given from a

2-dimensional space R2 where the distribution of each couple (Xi, Yi)

is described by a joint desity function f (x, y) and the relation between

the dependent variable Y and the regressor variable X can be in general

described as

E[Y |X = x] = m(x), and m(p)(x) = m
(p)
0 (x) +

Tp∑
t=1

αptI{x>xpt},

where the functionm0 is considered to be smooth up to the order n ∈ N,

p < n stands for the order of derivative we consider and xpt are corre-

sponding change-points locations with the size of a jump equal to αpt.

In case of continuous response variable the estimate is simply defined

as a linear combination of some well-defined spline basis functions, where

the coefficients of this linear combination are given as a solution to the

following minimization problem

Θ̂ =
Argmin

Θ ∈ RK

 N∑
i=1

Yi − K∑
j=1

θjψj(Xi)

2

+ λ Θ>DΘ

 ,
where λ stays for smoothing parameter and the matrix D is some diag-

onal matrix with zeros and ones on its diagonal.

In case of logistic regression where the parameter of interest ζ is mod-

eled via a link function by m(·) the estimates for basis coefficients are

given by the maximization problem

Θ̂ =
Argmax

Θ ∈ RK

[
N∑
i=1

{
Yiζi − log(1 + eζi)

}
− 1

2
λ Θ>DΘ

]
,

where we consider an exponential density distribution family for Yi,

given by f (y) = exp{yζ+b(ζ)a(φ) + c(y, φ)}.

1. Basis selection
With respect to interpretability and nice properties we have used the
third order (n = 3) truncated power spline basis. The actual choice of
type of basis (B-splines, modified B-splines or truncated power splines)
is not so much important as one can easily show an equivalence even
with respect to smoothing parameter λ involved in this problem.

2. Knots selection
We have used k ∈ N equidistantly spaced inner knot points for the
main spline basis (basis with no allowance for change-points) and later
on we have implemented an automatical data-driven procedure pro-
posed by Stone in order to find the optimal locations for change-points
knots via minimizing of the GCV criterion. Such a mesh of knots
∆ = {ξ1, . . . , ξk} was used to fit the final estimate.

3. Model selection
We have proposed to use the GVC criterion for model selection with
respect to knots locations and smoothing parameter value but as far
as the GCV can lead to undersmoothing for large sample sizes we have
based our final decision on the BIC criterion which can slightly avoid
this unconvenient property.

One can nicely verify that the number of basis functions K is given

within the set {n+ k+ 1, . . . , (n+ 1)× (k+ 1)}, where k stand for the

number of inner knot points, the mesh ∆ = {ξ1, . . . , ξk}, considered for

the building of the spline basis (K = n + k + 1 if we consider just a

simple spline model with no change-points, K = (n + 1) × (k + 1) if

we consider the full, saturated model with possible change-points in all

knot points at all order derivatives).

By using a matrix representation for the basis coefficients Θ ∈ RK

and the set of basis functions {ψ11(x), . . . , ψ(n+1)(k+1)} defined as

Θ = (θ1, . . . , θn+1, θn+2, . . . , θ2(n+1), . . . , . . . , θ(k+1)(n+1))
>,

XT =


ψ11(X1) . . . ψ1(n+1)(X1) ψ21(X1) . . . ψ2(n+1)(X1) . . . ψ(k+1)(n+1)(X1)
ψ11(X2) . . . ψ1(n+1)(X2) ψ21(X2) . . . ψ2(n+1)(X2) . . . ψ(k+1)(n+1)(X2)

...
. . .

...
...

. . .
... . . .

...
ψ11(XN) . . . ψ1(n+1)(XN) ψ21(XN) . . . ψ2(n+1)(XN) . . . ψ(k+1)(n+1)(XN)

 ,

the estimate for Θ can be written in sence of normal equations. How-

ever, in case of logistic regression the solution to this equation is not

given explicitly as the value of the canonical parameter ζi depends via

m(·) also on the unknown parameter Θ. Therefore, we have proposed a

modified penalized quasilikelihood approach based on Newton-Raphson

iterations in order to get a final solution while taking into account also

a penalty term.

Fitting algorithm
Iterate: Θnew = Θ∗ − (H(Θ∗))−1 · S(Θ∗), where

1. S(Θ∗) = X>
T

(
Y − eζ

1 + eζ

)
= X>

(
Y − exp{X>

T Θ∗}
1 + exp{X>

T Θ∗}

)
= 0;

2. H(Θ∗) = (−1) ·
(
X>

T WXT + λD
)
;

H(Θ∗) = (−1) ·
(
X>

T WXT + λ1D1 + λ2D2
)

respectively.

where W = diag(b′′(ζ1, . . . , ζN)). The iterative procedure is repetead
until convergence, defined as |Θnew − Θ∗| ≤ ε for some some small
ε > 0, where

|Θnew−Θ∗| ≤ ε⇐⇒ ∀j=1,...(k+1)×(n+1) |θnew
j −θ∗i | ≤ ε and ∃j |θnew

j −θ∗i | < ε.

1. Simulation study
We have proposed an extensive simulation study to see how the algo-

rithm works in case of more suitable data sets and to reveal an impor-

tance of different initial setting for the final spline estimate.

1. The original data set were not shown to be fully appropriate

for change-points implementation as the variability in data was

much higher than the possiblejump sizes in the original regres-

sion function m(·). Therefore, the proposed algorithms do not

have enough power to fully reveal all change-points, which could

be present.

2. We want to see the performace of multiple penalization method

which we have proposed, where one penalizes for each level of

basis coefficients separately. One can easily separate coefficiets

which are responsible for a regular spline estimate and coeffi-

cients which corresponds with change-points occurences and to

impose a double penalization method instead. This means that

λ Θ>DΘ is replaced by (λ1 Θ>D1Θ + λ2 Θ>D2Θ), where both

parameters λ1 and λ2 need to be estimated via some model se-

lection method and D1 and D2 are diagonal matrixes with zeros

and ones on their diagonals. One can even extend double pe-

nalization and to impose a multiple penalization however, this

becomes too much intensive for higher order derivatives.

All important details coming from the simulation study are stated in our

report. However, mainly we can state that:

• the multiple penalization performs much betther than

the simple penalization, with respect to both criteria,

GCV and BIC;

• the proposed jump detection algorithm was able to re-

veal all important jumps in the simulated data sets, re-

sulting in a quite reliable model;

• the optimal model selection was in correspondence with

the real regression function considered for simulations;

Lasso selection approach
We have also considered the lasso method proposed by Tibshirany,
where all important coefficients were picked up directly from the sat-
urated model. This has performed quite nice for simulated data how-
ever, in case of real application we have obtained better results with
the jump detection algorithm.

2. Current status data (continuous response)
We have considered B19 parvovirus antibody level in Belgium pop-

ulation, given the age of a patient. Optimal model was taken from the
class of all plausible models which considered at least one change-point
(selection via BIC criterion).
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Fig.1 Jump detection algorithm for the function itself and the first two derivatives.
However, the boundary limits for this algorithm vere much higher than the ploted values.

Based on a simulation study, we have fitted double penalized spline
estimate which can provide better with respect to selection criteria
(GCV and BIC). The final model considers one zero-order change-point
located at the age of 23 years.
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Fig.2 2D generalized cross-validation function with the corresponding final spline model for the
overall mean profile, male and female profiles given together with the first two derivatives.

Model order inner knots d.f. GCV BIC log10λ1 log10λ2

Overall model 3 10/equidistant 7.939 37 079 980 0.3626 1.8808 1.4623
Males only 3 10/equidistant 7.154 16 179 478 0.5766 1.8808 1.4623
Females only 3 10/equidistant 7.214 20 588 471 0.5735 1.8808 1.4623

The zero order jump Overall model Model for males Model for females
Size of a jump αoverall = 36.7683 αmale = 17.2469 αfemale = 41.9551

3. Seroprevalence data (discrete response)

For fitting a logistic regression model we have assumed a prior know-
ledge: from the specific relation between the current status data and the
seroprevalence data we have assumed the same change-points behaviour
at the same knot-points locations. The final model again consideres
only one zero-order change-point located at the age of 23 years.
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Fig.3 Generalized cross-validation function with the corresponding logistic spline model for
the overall mean profile, male and female profiles given together with the first two derivatives.

Model order inner knots d.f. GCV BIC log10λ Size of jump
Overall model 3 10/equidistant4 10.405 574.25 0.1731 4.9899 0.0678
Males only 3 10/equidistant4 9.782 290.59 0.2689 4.9899 0.0108
Females only 3 10/equidistant4 9.705 284.09 0.2584 4.9899 0.1311
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