TIME SERIES WITH NON-POSITIVE AUTOCORRELATIONS

ŠÁRKA DOŠLÁ

dosla@karlin.mff.cuni.cz

Department of Statistics, Charles University, Prague

ROBUST 2008

Abstract: We deal with time series models with non-positive autocorrelations. For a strictly stationary process with an autocorrelation function \(r_k \), such that \(\sum_{k=1}^{\infty} |r_k| < \infty \), we investigate the lower bound for the sum of autocorrelations \(\sum_{k=1}^{\infty} r_k \). The bound \(-1/2\) is reached if and only if \(f(0) = 0 \), where \(f \) is the continuous spectral density of the process \(X_t \). This gives a guideline how the "optimal" value \(-1/2\) can be reached by an ARMA process.

Bernoulli variables

The following problem was proposed in Bondesson (2003). It stays unsolved even in the simplest case of 1-dependent Bernoulli variables.

Problem: Let \(\{r_k\} \) be an autocorrelation sequence of a strictly stationary Bernoulli process and \(r_k \leq 0 \) for all \(k \geq 1 \). Which value of \(\alpha \) is the smallest possible such that \(\sum_{k=1}^{\infty} r_k \geq \alpha \)?

1-dependent variables

Consider two Bernoulli variables \(Y_1 \) and \(Y_2 \) with \(p = P(Y_1 = 1) \) and set \(q = 1 - p \). Then \(\text{corr}(Y_1, Y_2) = \frac{Pr(Y_1 = 1, Y_2 = 1) - pq}{\sqrt{P(Y_1 = 1)p} \sqrt{P(Y_2 = 1)q}} \).

Joe (1997) shows how the bound (2) can be attained for \(p = 0 \) and \(p = 1 \).

Conclusion

The lower bound for the sum of autocorrelations \(\sum_{k=1}^{\infty} r_k \) is investigated for stationary time series.

Remarks

- The inequality (4) holds for \(\mathbb{E}Z_1 \neq 0 \) as well. The proof of Theorem 2 can be found in Došlák (2008).
- The bound \(-1/3\) is reached for m-dependent variables if and only if \(\rho_m = -1/2 \) for some \(k \in \{1, \ldots, m\} \) and \(r_1 = 0 \) otherwise. For any other setting, the sum of correlations lies above \(-1/3\).

Question: Is \(\sum_{k=1}^{\infty} r_k \) always above \(-1/3\) for general dependent Bernoulli variables?

Open problem: Is \(\alpha = 1/e \) the lowest possible value for a general process with Bernoulli variables?

Acknowledgments

This poster is based on a joint work with Professor Jiří Anděl. He is gratefully thanked for his advice, comments and suggestions.

This work is supported by grant 56808 of the Grant Agency of Charles University in Prague and grant 201/06/B007 of the Grant Agency of the Czech Republic.

References

